
Citation: Cai, Y.; Zhang, Y.; Qi, Q.;

Qin, Y.; Zhou, T.; Sun, Z.

Optimization of Numerical

Simulation Algorithm for

Spontaneous Combustion in Goaf via

a Compression Storage and Solution

Method of Coefficient Matrix. Fire

2022, 5, 71. https://doi.org/10.3390/

fire5030071

Academic Editor: Minbo Zhang

Received: 6 May 2022

Accepted: 23 May 2022

Published: 29 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fire

Article

Optimization of Numerical Simulation Algorithm for
Spontaneous Combustion in Goaf via a Compression Storage
and Solution Method of Coefficient Matrix
Yongbo Cai 1, Yanlu Zhang 1, Qingjie Qi 1,*, Yueping Qin 2, Tianbai Zhou 3 and Zuo Sun 1

1 Emergency Science Research Academy, China Coal Research Institute, Beijing 100013, China;
caiyongbo@mail.ccri.ccteg.cn (Y.C.); zhangyanlu@mail.ccri.ccteg.cn (Y.Z.); sunzuo@mail.ccri.ccteg.cn (Z.S.)

2 School of Emergency Management and Safety Engineering, China University of Mining and
Technology (Beijing), Beijing 100083, China; yanpp@ccteg-bigdata.com

3 Research Institute of Mine Big Data, China Coal Research Institute, Beijing 100013, China;
zhoutb@ccteg-bigdata.com

* Correspondence: qiqingjie@mail.ccri.ccteg.cn; Tel.: +86-13898568886

Abstract: In coal mine engineering, numerical software is used to analyze the behavior of coal rock
damage and fluid migration. The order of the coefficient matrix used in numerical calculations is
increasing, and this increases the computation steps in obtaining the coefficient matrix solution. The
storage and solution of the coefficient matrix are key factors influencing the efficiency of the numerical
software. Therefore, to save storage space and reduce the computation steps, the coefficient matrix
must be effectively compressed and stored. In this work, the structural characteristics of different
coefficient matrices are analyzed in detail, and we find that for different computational regions, as
long as the nodes are numbered according to certain rules, the corresponding coefficient matrices
will have similar structural characteristics. The nonzero elements are symmetrically distributed
in the diagonal band, and all the elements on both sides outside the band are zero. Based on this,
the coefficient matrix is compressed by a pivoting scheme, and the compressed matrix is directly
eliminated by dislocation Gaussian elimination. Thus, a compressed storage method that integrates
the compression and solution of the coefficient matrix is established. The compressed storage and
calculation module is incorporated into our self-developed simulation software COMBUSS-3D to
simulate the evolution of the temperature field in the goaf of Luling Coal Mine. Compared with the
conventional method, the compressed storage module can significantly improve the computing rate
of the simulation, by approximately 80%.

Keywords: coefficient matrix; band matrix; sparse matrix; compressed storage; Gaussian elimination

1. Introduction

Common numerical calculation methods include the finite difference method, finite
element method, and finite volume method. A numerical calculation process eventually
evolves into a solution of large linear equations [1–5]. The matrix used to store such equa-
tions is called the coefficient matrix. To some extent, the solution speed of the coefficient
matrix determines the computational efficiency of the numerical software [6–10]. A coeffi-
cient matrix contains a large number of zero elements, occupying considerable space in
the matrix storage and calculation when solving by Gaussian elimination, resulting in an
unnecessarily high computational load [11,12]. Therefore, compressed storage is applied to
improve the computational efficiency of numerical software [13,14].

Many studies have focused on the compressed storage of sparse matrices, and some
feasible methods have been proposed to solve the compression process of various types of
matrices. Stabrowski proposed two methods for compressing asymmetric sparse matrices,
which were comprehensively compared with various matrices derived from engineer-
ing applications [15]. Lin et al. concluded that the compressed row/column storage

Fire 2022, 5, 71. https://doi.org/10.3390/fire5030071 https://www.mdpi.com/journal/fire

https://doi.org/10.3390/fire5030071
https://doi.org/10.3390/fire5030071
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fire
https://www.mdpi.com
https://doi.org/10.3390/fire5030071
https://www.mdpi.com/journal/fire
https://www.mdpi.com/article/10.3390/fire5030071?type=check_update&version=4

Fire 2022, 5, 71 2 of 17

schemes are not perfect and proposed two types of multidimensional sparse-matrix com-
pression schemes to obtain better results [16]. Katherine et al. developed two optimization
techniques to improve the storage efficiency of sparse-matrix vector multiplication and
evaluated their optimization results [17]. Other scholars studied targeted compression
schemes to meet the storage requirements of the various forms of sparse matrices [18–20].
The existing compression methods have been proposed to compress sparse matrices with a
general form. Although these compression schemes have a wide application scope, they do
not focus on the structural particularity of the coefficient matrix. Moreover, the existing
compression schemes are used for storage, which do not directly involve the solution of
the matrices and are not effectively combined with Gaussian elimination.

Gaussian elimination is a classical algorithm for solving large linear equations and
has been widely used in numerical computation. The core of the algorithm is to convert
the matrix elements into a triangular form by basic transformation. Optimization schemes
for Gaussian elimination have been proposed to improve the computational efficiency of
numerical software. Peña developed a pivoting strategy to modify the Gaussian elimination
process and applied it to some important matrix classes, and the results obtained using
this pivoting strategy were compared with those obtained by general partial rotation [21].
Alanelli and Hadjidimos proposed a block transformation strategy to optimize the Gaussian
elimination process and combined it with the conventional iterative method for the solution
of linear systems with a high convergence rate [6]. Xiao et al. integrated the elimination
processes of the coefficient and column matrices by analyzing the triangle process, and
the calculation results obtained using the improved Gaussian method implemented by
OpenCL were analyzed in detail [22]. The column pivot elimination is another improved
strategy of Gaussian elimination. The modification made to this strategy is the selection of
the column pivot element as the principal element in turn among the principal diagonal
elements of the coefficient matrix and the elements below it. Subsequently, by moving the
principal element to the principal diagonal, the elements below the principal diagonal can
be eliminated, and the matrix is finally transformed into a triangular system [23]. Through
the above optimization strategies for Gaussian elimination, it can be found that reducing
the calculation of the irrelevant elements in the elimination process can help effectively
improve the computing rate. In fact, based on the structural characteristics of the coefficient
matrix, the compressed storage and solution of the matrix can be integrated to improve the
computational efficiency.

First, the structural characteristics of the coefficient matrices were analyzed in detail by
combining three coal mine engineering examples. All the nonzero elements of the coefficient
matrix were confined within a band with diagonal symmetry, and the bandwidth was
related to the meshing method used and the number of adjacent nodes. Based on the
structural characteristics of the coefficient matrix, the zero elements outside the band were
removed, and the remaining elements were pivoted diagonally into a new matrix, thus
realizing the compressed storage of the coefficient matrix. Subsequently, the coefficient
matrix could be directly solved by dislocation Gaussian elimination of the compressed
matrix. The advantage of the compressed storage method was preliminarily verified
by comparing the calculation rates of coefficient matrices of different orders using the
conventional Gaussian method. Finally, a compressed storage module was incorporated
into our self-developed simulation software COMBUSS-3D to simulate the distributions
of the temperature and oxygen concentration in the goaf area of Luling Coal Mine, Anhui
Province, China. The incorporation of the compression module into the COMBUSS-3D
software significantly improved its computational efficiency, and the computational time
was reduced by approximately 80% on average. The proposed compression strategy
integrates the compressed storage and solution of the coefficient matrix, thus improving
the computational efficiency of the simulation software and enabling its application to
engineering calculations.

Fire 2022, 5, 71 3 of 17

2. Structural Analysis of Coefficient Matrix

For mesh generation, any grid node P is taken as an example. In the synthesis of linear
equations, all grid nodes adjacent to node P contribute to the node equation of node P,
whereas the grid nodes that are not adjacent to it do not. In the finite difference method, the
grid nodes adjacent to node P are the nodes above, below, left, and right of it, while in the
finite element method, the grid nodes adjacent to node P are the other nodes in the same
grid element with node P. Assuming that there are n nodes in the mesh generation and the
number of nodes adjacent to node P is m, the grid linear equation of node P will contain n
coefficients. The number of nonzero coefficients is m + 1, and the other coefficients are zero.
Since only the coefficients corresponding to the adjacent nodes in the node linear equation
are nonzero, the other nodes have no contribution to the equation. Therefore, the coefficient
matrix containing a large number of zero elements is a sparse matrix. To thoroughly explore
the general structural characteristics of coefficient matrices, the following analysis was
performed in combination with three engineering examples in the numerical simulation of
coal mines.

The first engineering example is a model of the spontaneous combustion of coal in
the goaf area of the coal mine, which involves solving a 2D rectangular computational
region using the finite difference method to simulate the temperature distribution in the
goaf area [24]. In fact, this example is representative of not only the simulation of heat
conduction, but also other mechanical or other physical field problems. As shown in
Figure 1, the rectangular computational region is meshed, and the grid nodes are numbered
in turn. The computational region is divided into 20 nodes, i.e., the linear system contains
20 linear equations. The internal nodes are adjacent to the four surrounding nodes at most,
and the number of nodes adjacent to the boundary nodes is less than four; therefore, each
node equation contains at most five nonzero coefficients. By writing the nodal equations
into a matrix, the coefficient matrix M of the computational region can be obtained, as
expressed in Equation (1). From Equation (1), it can be found that the nonzero elements in
the coefficient matrix M are distributed in a symmetrical band along the matrix diagonal,
with a bandwidth of 9.

M =



k0,0 k0,1 k0,4
k1,0 k1,1 k1,2 k1,5

k2,1 k2,2 k2,3
. . .

k3,2 k3,3
. . .

k4,0 k4,4 k4,5

k5,1 k5,4 k5,5
. . .

. k18,19
. . . k19,18 k19,19


20×20

(1)

Fire 2022, 5, 71 3 of 18

trix, thus improving the computational efficiency of the simulation software and ena-
bling its application to engineering calculations.

2. Structural Analysis of Coefficient Matrix
For mesh generation, any grid node P is taken as an example. In the synthesis of

linear equations, all grid nodes adjacent to node P contribute to the node equation of
node P, whereas the grid nodes that are not adjacent to it do not. In the finite difference
method, the grid nodes adjacent to node P are the nodes above, below, left, and right of
it, while in the finite element method, the grid nodes adjacent to node P are the other
nodes in the same grid element with node P. Assuming that there are n nodes in the
mesh generation and the number of nodes adjacent to node P is m, the grid linear equa-
tion of node P will contain n coefficients. The number of nonzero coefficients is m + 1,
and the other coefficients are zero. Since only the coefficients corresponding to the adja-
cent nodes in the node linear equation are nonzero, the other nodes have no contribution
to the equation. Therefore, the coefficient matrix containing a large number of zero ele-
ments is a sparse matrix. To thoroughly explore the general structural characteristics of
coefficient matrices, the following analysis was performed in combination with three
engineering examples in the numerical simulation of coal mines.

The first engineering example is a model of the spontaneous combustion of coal in
the goaf area of the coal mine, which involves solving a 2D rectangular computational
region using the finite difference method to simulate the temperature distribution in the
goaf area [24]. In fact, this example is representative of not only the simulation of heat
conduction, but also other mechanical or other physical field problems. As shown in
Figure 1, the rectangular computational region is meshed, and the grid nodes are num-
bered in turn. The computational region is divided into 20 nodes, i.e., the linear system
contains 20 linear equations. The internal nodes are adjacent to the four surrounding
nodes at most, and the number of nodes adjacent to the boundary nodes is less than
four; therefore, each node equation contains at most five nonzero coefficients. By writing
the nodal equations into a matrix, the coefficient matrix M of the computational region
can be obtained, as expressed in Equation (1). From Equation (1), it can be found that the
nonzero elements in the coefficient matrix M are distributed in a symmetrical band
along the matrix diagonal, with a bandwidth of 9.

Figure 1. Mesh generation of the model of spontaneous combustion of coal in goaf area. Figure 1. Mesh generation of the model of spontaneous combustion of coal in goaf area.

Fire 2022, 5, 71 4 of 17

Here, kx,y represents the nonzero elements of the coefficient matrix, x and y represent
the row and column positions, respectively. The zero elements in the coefficient matrix
are omitted.

The second example is the calculation of the heat emitting from a surrounding rock
at the drifting face using the finite element method [25]. In the numerical simulation, the
drifting face can be considered axisymmetric; therefore, half of its section is taken as the
computational region. In this model, triangular elements are used as basic elements to
discretize the continuum in the computational region and divide the entire area into a
series of elements. The division of the elements should satisfy two requirements. (1) It
should be based on the temperature distribution in the computational region, elements in
the area with large temperature change should be encrypted, and elements in the area with
small temperature change should be reduced. (2) This model focuses on the temperature
distribution in the surrounding rock at the drifting face. Encryption elements are required
in the computational region close to the wall of the surrounding rock to obtain the node
temperature with a high accuracy. Therefore, by increasing the element size in equal
proportion, the element density near the wall of the surrounding rock can be increased, and
the element becomes smaller. The farther away from the wall of the surrounding rock, the
lower the element density and the larger the element. The nodes are numbered sequentially
from right to left and from near to far. There are 99 nodes in the computational region, and
99 equations are correspondingly obtained. Figure 2 shows the element division and node
number; only some representative nodes are identified in the figure. As shown in the red
region, each node equation has at most seven nonzero coefficients. The coefficient matrix
L is expressed in Equation (2), and the matrix order is 99 × 99. The nonzero elements are
distributed in the band with a bandwidth of 23.

L =



k0,0 k0,1 k0,11
k1,0 k1,1 k1,2 k1,11 k1,12

k2,1 k2,2 k2,3 k2,12 k2,13
.

.
k11,0 k11,1 k11,11 k11,12 k11,22

k12,1 k12,2 k12,11 k12,12 k12,13 k12,22 k12,23
. .


99×99

(2)

Fire 2022, 5, 71 5 of 18

Figure 2. Mesh generation of the model of heat emitting from a surrounding rock at the drifting
face.

0,0 0,1 0,11

1,0 1,1 1,2 1,11 1,12

2,1 2,2 2,3 2,12 2,13

11,0 11,1 11,11 11,12 11,22

12,1 12,2 12,11 12,12 12,13 12,22 12,23

99 99

k k k

k k k k k

k k k k k

k k k k k

k k k k k k k

×

=

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

L
    

    

      

(2)

The third example is the analysis of the heat dissipation in the surrounding rock of
trapezoid roadways in a coal mine using the finite volume method [26,27]. To improve
the adaptability of the element division to the wall and corner area of the surrounding
rock, triangular elements are used as basic elements to divide the computational region.
The computational region is divided into 16 elements along the circumference and 8 el-
ements along the radial direction. Figure 3 shows the mesh generation; only representa-
tive nodes are identified in the figure. Based on the characteristics of the temperature
distribution in the surrounding rock, the element size is determined using the equal
proportion increment method, and the element density is increased appropriately near
the wall and corner area in the computational region; thus, the node temperature can be
obtained with a relatively high accuracy. The nodes are numbered clockwise from out-
side to inside, totaling 144 nodes. There are at most seven nonzero coefficients in each
node equation. The corresponding coefficient matrix is denoted by N. As expressed in
Equation (3), the order of the matrix is 144×144, and the nonzero elements are distribut-
ed in the band with a bandwidth of 35.

Figure 2. Mesh generation of the model of heat emitting from a surrounding rock at the drifting face.

The third example is the analysis of the heat dissipation in the surrounding rock of
trapezoid roadways in a coal mine using the finite volume method [26,27]. To improve the
adaptability of the element division to the wall and corner area of the surrounding rock,
triangular elements are used as basic elements to divide the computational region. The
computational region is divided into 16 elements along the circumference and 8 elements

Fire 2022, 5, 71 5 of 17

along the radial direction. Figure 3 shows the mesh generation; only representative nodes
are identified in the figure. Based on the characteristics of the temperature distribution in
the surrounding rock, the element size is determined using the equal proportion increment
method, and the element density is increased appropriately near the wall and corner area in
the computational region; thus, the node temperature can be obtained with a relatively high
accuracy. The nodes are numbered clockwise from outside to inside, totaling 144 nodes.
There are at most seven nonzero coefficients in each node equation. The corresponding
coefficient matrix is denoted by N. As expressed in Equation (3), the order of the matrix is
144 × 144, and the nonzero elements are distributed in the band with a bandwidth of 35.

N =



k0,0 k0,1 k0,15 k0,16 k0,17
k1,0 k1,1 k1,2 k1,17 k1,18

k2,1 k2,2 k2,3 k2,18 k2,19
.

.
.

k15,0 k15,14 k15,15 k15,16
k16,0 k16,15 k16,16 k16,17
k17,0 k17,1 k17,16 k17,17 k17,18

.


144×144

(3)

Fire 2022, 5, 71 6 of 18

Figure 3. Mesh generation of the model of surrounding rock heat dissipation for trapezoid road-
ways in a coal mine.

0,0 0,1 0,15 0,16 0,17

1,0 1,1 1,2 1,17 1,18

2,1 2,2 2,3 2,18 2,19

15,0 15,14 15,15 15,16

16,0 16,15 16,16 16,17

17,0 17,1 17,16 17,17 17,18

k k k k k

k k k k k

k k k k k

k k k k

k k k k

k k k k k

=

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





 

N

     

  

  

     
144 144×







(3)

A further analysis, as presented in Figure 1, shows two adjacent nodes at the 0th,
3rd, 16th, and 19th nodes, and the linear equations of these nodes have three nonzero
coefficients. Similarly, there are four adjacent nodes in the 5th, 6th, 9th, 10th, 13th, and
14th nodes, and the linear equations of these nodes contain five nonzero coefficients. The
linear equations of the remaining nodes contain four nonzero coefficients. Thus, as
shown in Figure 1, the coefficient matrix M has at least three nonzero elements and at
most five nonzero elements per row. For example, the 0th and 4th nodes are adjacent to
each other; therefore, 𝑘଴,ସ and 𝑘ସ,଴ are nonzero elements and symmetrical about the
diagonal. In other words, all the diagonal elements of the coefficient matrix M are non-
zero elements, and the remaining nonzero elements appear in pairs with diagonal sym-
metry. Similarly, the coefficient matrices L and N also conform to the above rules. Figure
4 shows the general form of the coefficient matrix. The red and blue circles in the figure
represent the diagonal elements and the remaining nonzero elements, respectively. Ac-
cording to the examples of the three numerical calculation methods mentioned above,
regardless of the shape of the basic element and regardless of whether the element size

Figure 3. Mesh generation of the model of surrounding rock heat dissipation for trapezoid roadways
in a coal mine.

A further analysis, as presented in Figure 1, shows two adjacent nodes at the 0th,
3rd, 16th, and 19th nodes, and the linear equations of these nodes have three nonzero
coefficients. Similarly, there are four adjacent nodes in the 5th, 6th, 9th, 10th, 13th, and
14th nodes, and the linear equations of these nodes contain five nonzero coefficients. The
linear equations of the remaining nodes contain four nonzero coefficients. Thus, as shown
in Figure 1, the coefficient matrix M has at least three nonzero elements and at most five
nonzero elements per row. For example, the 0th and 4th nodes are adjacent to each other;
therefore, k0,4 and k4,0 are nonzero elements and symmetrical about the diagonal. In other

Fire 2022, 5, 71 6 of 17

words, all the diagonal elements of the coefficient matrix M are nonzero elements, and
the remaining nonzero elements appear in pairs with diagonal symmetry. Similarly, the
coefficient matrices L and N also conform to the above rules. Figure 4 shows the general
form of the coefficient matrix. The red and blue circles in the figure represent the diagonal
elements and the remaining nonzero elements, respectively. According to the examples
of the three numerical calculation methods mentioned above, regardless of the shape
of the basic element and regardless of whether the element size changes or not, as long
as the nodes are numbered in sequence according to certain rules, the coefficient matrix
will exhibit the following common characteristics: (1) It contains a large number of zero
elements; (2) its nonzero elements are regularly distributed in the band; (3) its diagonal
elements are all nonzero elements; (4) the nonzero elements outside the diagonal have
diagonal symmetry; (5) its bandwidth depends on the number of adjacent nodes in the grid
and the numbering method of the nodes.

Fire 2022, 5, 71 7 of 18

changes or not, as long as the nodes are numbered in sequence according to certain
rules, the coefficient matrix will exhibit the following common characteristics: (1) It con-
tains a large number of zero elements; (2) its nonzero elements are regularly distributed
in the band; (3) its diagonal elements are all nonzero elements; (4) the nonzero elements
outside the diagonal have diagonal symmetry; (5) its bandwidth depends on the number
of adjacent nodes in the grid and the numbering method of the nodes.

Figure 4. General form diagram of the coefficient matrix.

3. Compressed Storage and Solution Method
On the one hand, the coefficient matrix is a sparse matrix containing a large number

of zeros and occupies considerable storage space. On the other hand, in the process of
Gaussian elimination, if all the zero elements are involved in the elimination, the calcu-
lation steps will be significantly high. Hence, to improve the computational efficiency of
the numerical software, the coefficient matrix must be compressed. Many studies have
been conducted on compressed storage, mainly focusing on the compression of general
sparse matrices. These compression methods have a wide range of applications, and
there is no restriction on the matrix structure when compressing a sparse matrix. They
are applicable for almost any large sparse matrix. However, through the previous analy-
sis, it can be concluded that the distinct structural characteristics of the coefficient matrix
should be utilized to further optimize the compressed storage. Based on the diagonally
symmetrical band distribution of the nonzero elements in the coefficient matrix, a con-
cise compressed storage and solution scheme is proposed in this paper. The flowchart is
shown in Figure 5.

Figure 4. General form diagram of the coefficient matrix.

3. Compressed Storage and Solution Method

On the one hand, the coefficient matrix is a sparse matrix containing a large number
of zeros and occupies considerable storage space. On the other hand, in the process of
Gaussian elimination, if all the zero elements are involved in the elimination, the calculation
steps will be significantly high. Hence, to improve the computational efficiency of the
numerical software, the coefficient matrix must be compressed. Many studies have been
conducted on compressed storage, mainly focusing on the compression of general sparse
matrices. These compression methods have a wide range of applications, and there is no
restriction on the matrix structure when compressing a sparse matrix. They are applicable
for almost any large sparse matrix. However, through the previous analysis, it can be
concluded that the distinct structural characteristics of the coefficient matrix should be
utilized to further optimize the compressed storage. Based on the diagonally symmetrical
band distribution of the nonzero elements in the coefficient matrix, a concise compressed
storage and solution scheme is proposed in this paper. The flowchart is shown in Figure 5.

Fire 2022, 5, 71 7 of 17Fire 2022, 5, 71 8 of 18

Figure 5. Flowchart of the compressed storage and solution method.

3.1. Compressed Storage of Coefficient Matrix
The compression scheme involves deleting a large number of zero elements on both

sides of the band of the coefficient matrix, and the remaining elements are pivoted
clockwise by 45°. Taking the coefficient matrix M as an example, the bandwidth of the
matrix is 9. All the zero elements in the lower left and upper right of the nine column
elements along the diagonal direction are deleted, and the matrix is rotated clockwise by
45°. Figure 6 shows the compression process of the coefficient matrix. The different col-
ored circles in the figure represent the diagonal, nonzero, and zero elements. Thus, the
original coefficient matrix M is compressed into a new matrix M′ of 20 rows and 9 col-
umns, as expressed in Equation (4).

Figure 5. Flowchart of the compressed storage and solution method.

3.1. Compressed Storage of Coefficient Matrix

The compression scheme involves deleting a large number of zero elements on both
sides of the band of the coefficient matrix, and the remaining elements are pivoted clockwise
by 45◦. Taking the coefficient matrix M as an example, the bandwidth of the matrix is 9.
All the zero elements in the lower left and upper right of the nine column elements along
the diagonal direction are deleted, and the matrix is rotated clockwise by 45◦. Figure 6
shows the compression process of the coefficient matrix. The different colored circles in the
figure represent the diagonal, nonzero, and zero elements. Thus, the original coefficient

Fire 2022, 5, 71 8 of 17

matrix M is compressed into a new matrix M′ of 20 rows and 9 columns, as expressed in
Equation (4).

M’ =



k0,0 k0,1 0 0 k0,4
k1,0 k1,1 k1,2 0 0 k1,5

0 k2,1 k2,2 k2,3 0 0 k2,6
0 0 k3,2 k3,3 0 0 0 k3,7

k4,0 0 0 0 k4,4 k4,5 0 0 k4,8
...

...
...

...
...

...
...

...
...

k15,11 0 0 k15,14 k15,15 0 0 0 k15,19
k16,12 0 0 0 k16,16 k16,17 0 0
k17,13 0 0 k17,16 k17,17 k17,18 0
k18,14 0 0 k18,17 k18,18 k18,19
k19,15 0 0 k19,18 k19,19


20×9

(4)

Fire 2022, 5, 71 9 of 18

Figure 6. Compression process of the coefficient matrix M.

0,0 0,1 0,4

1,0 1,1 1,2 1,5

2,1 2,2 2,3 2,6

3,2 3,3 3,7

4,0 4,4 4,5 4,8

15,11 15,14 15,15 15,19

16,12 16,16 16,17

17,13 17,16 17,17 17,18

18,14 18,17 18,18

0 0
0 0

0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0
0 0

k k k
k k k k
k k k k
k k k

k k k k

k k k k
k k k
k k k k
k k k

′ =M         

18,19

19,15 19,18 19,19 20 9
0 0

k
k k k

×

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

(4)

For an arbitrary matrix 𝑀௠×௡, it is assumed that the matrix storage is 𝑅 in bytes.
The size (double) represents the size of a double-precision floating-point variable. The
storage of the coefficient matrix can be calculated using Equation (5):

R m n ize(dou leS b)× ×= (5)

The coefficient matrix M contains 400 elements, of which 81 are nonzero. According
to Equation (5), the storage values of matrix M and compressed matrix M′ are calculat-
ed, as shown in Table 1.

Table 1. Comparison of the coefficient matrix storage.

Coefficient Matrix Uncompressed Matrix M Compressed Matrix M′
Matrix storage (Bytes) 3200 1440

As shown in Table 1, the storage capacity of the coefficient matrix can be signifi-
cantly reduced using the proposed compressed storage scheme. Theoretically, with the
increase in the dimension and sparsity of the coefficient matrix, the compression effi-
ciency should increase. The most important advantage of this storage method is that the
compressed matrix can be directly eliminated by Gaussian elimination, which integrates
the storage and solution of the matrix.

Figure 6. Compression process of the coefficient matrix M.

For an arbitrary matrix Mm×n, it is assumed that the matrix storage is R in bytes. The
size (double) represents the size of a double-precision floating-point variable. The storage
of the coefficient matrix can be calculated using Equation (5):

R = m× n× Size(double) (5)

The coefficient matrix M contains 400 elements, of which 81 are nonzero. According
to Equation (5), the storage values of matrix M and compressed matrix M′ are calculated,
as shown in Table 1.

Table 1. Comparison of the coefficient matrix storage.

Coefficient Matrix Uncompressed Matrix M Compressed Matrix M′

Matrix storage (Bytes) 3200 1440

As shown in Table 1, the storage capacity of the coefficient matrix can be significantly
reduced using the proposed compressed storage scheme. Theoretically, with the increase
in the dimension and sparsity of the coefficient matrix, the compression efficiency should
increase. The most important advantage of this storage method is that the compressed
matrix can be directly eliminated by Gaussian elimination, which integrates the storage
and solution of the matrix.

Fire 2022, 5, 71 9 of 17

3.2. Solution of Coefficient Matrix

By compressing the coefficient matrix M, the solution of matrix M is transformed into
a solution of the compressed matrix M′. Unlike the conventional Gaussian elimination
scheme, where the original coefficient matrix is eliminated, the proposed compression
scheme eliminates the compressed coefficient matrix, thus avoiding the substitution of
a large number of zero elements for calculation and improving the calculation efficiency.
Notably, the address of the compressed matrix M′ is used directly in the programming. The
relationship between the matrices M and M′ in terms of their row and column positions is
expressed in Equation (6): {

I = i
J − I + 5 = j

(6)

Here, I and J are the row and column positions of matrix M, respectively. i and j are
the row and column positions of matrix M′, respectively.

Similarly, the row–column positions of an arbitrary coefficient matrix before and after
the compression can be expressed as follows:{

I = i
J − I + B

2 + 1 = j
(7)

Here, B represents the bandwidth of the coefficient matrix.
Taking the calculation of matrix M as an example, it is assumed that:

MX = b (8)

Here, b represents the constant vector.
The original coefficient matrix M is compressed into a new coefficient matrix M′. The

constant vector b is stored in the 0th column of the matrix such that an augmented matrix
A can be obtained, as expressed in Equation (9). The matrix A is the matrix actually stored
and solved in the computer.

A =



b0 a0,5 a0,6 0 0 a0,9
b1 a1,4 a1,5 a1,6 0 0 a1,9
b2 0 a2,4 a2,5 a2,6 0 0 a2,9
b3 0 0 a3,4 a3,5 0 0 0 a3,9
b4 a4,1 0 0 0 a4,5 a4,6 0 0 a4,9
...

...
...

...
...

...
...

...
...

...
b13 a13,1 0 0 a13,4 a13,5 a13,6 0 0 a13,9
b14 a14,1 0 0 a14,4 a14,5 a14,6 0 0 a14,9
b15 a15,1 0 0 a15,4 a15,5 0 0 0 a15,9
b16 a16,1 0 0 0 a16,5 a16,6 0 0
b17 a17,1 0 0 a17,4 a17,5 a17,6 0
b18 a18,1 0 0 a18,4 a18,5 a18,6
b19 a19,1 0 0 a19,4 a19,5


20×10

(9)

Here, ax,y represents the nonzero elements of the augmented matrix, and bx,y repre-
sents the elements of the constant vector.

The specific elimination step is first to eliminate the 5th column elements of the
augmented matrix to 1, i.e., the diagonal elements of the original coefficient matrix M.
Subsequently, the matrix elements are dislocation eliminated from top to bottom, while the
constant-vector elements are eliminated directly from the 0th row to the 19th row. Finally,
all the elements before the 5th column of the augmented matrix are eliminated to zero.
Figure 7 shows the elimination process of the augmented matrix, in which the black circles
represent the constant-vector elements, and the arrows represent the elimination direction.
Notably, the blank areas in Equation (9), which are generated by the rotation of the original

Fire 2022, 5, 71 10 of 17

coefficient matrix, do not actually exist; therefore, they are not involved in the calculation.
The compressed storage program module can be written using Visual Basic. The program
module can be found in the Appendix A.

Fire 2022, 5, 71 11 of 18

black circles represent the constant-vector elements, and the arrows represent the elimi-
nation direction. Notably, the blank areas in Equation (9), which are generated by the
rotation of the original coefficient matrix, do not actually exist; therefore, they are not
involved in the calculation. The compressed storage program module can be written us-
ing Visual Basic. The program module can be found in the Appendix A [Appendix A].

Figure 7. Elimination process of the augmented matrix A.

The compressed storage module has been applied in a simulation software devel-
oped by the authors of this study; this module not only helps perform accurate calcula-
tions, but also significantly improves the calculation rate of the software [28–31]. The
advantages of the compressed storage method can be initially verified by solving sparse
matrices of different sizes. Taking the solution of AX = 𝑏 as an example and assuming
that the matrix is 𝐴௡×௡ with a bandwidth of 9, the operation times of the two methods
for n = 20, 50, and 200 were recorded. The average of 10 simulations of solving the same
matrix was taken as the calculation time. Table 2 presents the results.

Table 2. Comparison of the computation time.

Matrix Order 20 × 20 50 × 50 200 × 200
Computation time without compression (s) 0.000148 0.002077 0.092566

Computation time of compressed storage (s) 0.000064 0.000118 0.000388 Computation time of compression storageComputation time without compression 0.432 0.0568 0.00419

The results show that the compressed storage method requires significantly less
computation time than the conventional Gaussian elimination. With the increase in the
order of the matrix, the advantages of the compressed storage method become more
prominent. In a numerical calculation, the solution to large linear equations is a key fac-
tor affecting the calculation rate. The proposed method that combines the matrix com-
pressed storage and solution can play a certain role in improving the efficiency of nu-
merical calculations.

4. Engineering Application
The compressed storage module is proposed to optimize the numerical software

and apply it to engineering calculations. To further verify the practicality of the com-
pression strategy, the compressed storage module is applied to a field engineering cal-

Figure 7. Elimination process of the augmented matrix A.

The compressed storage module has been applied in a simulation software developed
by the authors of this study; this module not only helps perform accurate calculations, but
also significantly improves the calculation rate of the software [28–31]. The advantages
of the compressed storage method can be initially verified by solving sparse matrices of
different sizes. Taking the solution of AX = b as an example and assuming that the matrix
is An×n with a bandwidth of 9, the operation times of the two methods for n = 20, 50, and
200 were recorded. The average of 10 simulations of solving the same matrix was taken as
the calculation time. Table 2 presents the results.

Table 2. Comparison of the computation time.

Matrix Order 20 × 20 50 × 50 200 × 200

Computation time without compression (s) 0.000148 0.002077 0.092566
Computation time of compressed storage (s) 0.000064 0.000118 0.000388

Computation time of compression storage
Computation time without compression

0.432 0.0568 0.00419

The results show that the compressed storage method requires significantly less
computation time than the conventional Gaussian elimination. With the increase in the
order of the matrix, the advantages of the compressed storage method become more
prominent. In a numerical calculation, the solution to large linear equations is a key
factor affecting the calculation rate. The proposed method that combines the matrix
compressed storage and solution can play a certain role in improving the efficiency of
numerical calculations.

4. Engineering Application

The compressed storage module is proposed to optimize the numerical software and
apply it to engineering calculations. To further verify the practicality of the compression
strategy, the compressed storage module is applied to a field engineering calculation,
and the effect of the compression module on improving the efficiency of the engineering

Fire 2022, 5, 71 11 of 17

calculation is explored. Spontaneous combustion in the goaf is a common disaster in coal
mines, causing economic losses and casualties. Model research and numerical simulations
of the spontaneous combustion in goaf areas have been widely conducted. COMBUSS-3D
is a numerical simulation software for simulating the spontaneous combustion in the goaf
area, developed independently to solve the distributions of the temperature and oxygen
concentration in the goaf area and provide theoretical support for controlling spontaneous
combustion. The COMBUSS-3D software used in this work is self-developed, which
adopts serial mode and single thread calculation. For wider engineering applications, more
works of processor vectorization and processor hyper threading will be presented in our
further work. By matching field measurement results obtained from engineering projects,
this software has been verified as an effective method for predicting the spontaneous
combustion in goaf areas [29,32].

The Luling Coal Mine, located in Huaibei City, Anhui Province, China, was taken as
the study object. Figure 8 shows the computational region of the goaf area. As shown, the
two wings of the working face are the directions of the air intake roadway and air return
roadway, and Γ1, Γ2, Γ3, and Γ4 are the boundaries of the computational region.

Fire 2022, 5, 71 12 of 18

culation, and the effect of the compression module on improving the efficiency of the
engineering calculation is explored. Spontaneous combustion in the goaf is a common
disaster in coal mines, causing economic losses and casualties. Model research and nu-
merical simulations of the spontaneous combustion in goaf areas have been widely
conducted. COMBUSS-3D is a numerical simulation software for simulating the spon-
taneous combustion in the goaf area, developed independently to solve the distributions
of the temperature and oxygen concentration in the goaf area and provide theoretical
support for controlling spontaneous combustion. The COMBUSS-3D software used in
this work is self-developed, which adopts serial mode and single thread calculation. For
wider engineering applications, more works of processor vectorization and processor
hyper threading will be presented in our further work. By matching field measurement
results obtained from engineering projects, this software has been verified as an effective
method for predicting the spontaneous combustion in goaf areas [29,32].

The Luling Coal Mine, located in Huaibei City, Anhui Province, China, was taken
as the study object. Figure 8 shows the computational region of the goaf area. As shown,
the two wings of the working face are the directions of the air intake roadway and air
return roadway, and 𝛤ଵ, 𝛤ଶ, 𝛤ଷ, and 𝛤ସ are the boundaries of the computational region.

Figure 8. Computational region of the goaf area.

The physical model of spontaneous combustion in goaf includes the interaction
between flow field, oxygen concentration field, gas temperature field, and solid temper-
ature field. The partial differential equations of the four fields are shown in Equations
(10)–(13).

Flow field:

cos sin cos

cos cos 0

g

g
g

K P K P
S S

g x g y
K P

g S n V
g z t

gα ρ θ β

ρ
ρ θ γ

∂ ∂
 ⋅ Δ +  ⋅ + Δ +

∂ ∂
∂∂

 ⋅ + Δ −  Δ =
∂ ∂

 
 
 

 
 
 

(10)

Here, 𝐾 represents the permeability coefficient of porous media, 𝑚/𝑠; 𝑔 repre-
sents the gravitational acceleration, 𝑚/𝑠ଶ ; 𝜌௚ represents the air density, 𝑘𝑔/𝑚ଷ ; 𝑃
represents the sum of static pressure and dynamic pressure, 𝑃𝑎; and 𝑛 represents the
porosity of float coal, %;

Oxygen concentration field:

Figure 8. Computational region of the goaf area.

The physical model of spontaneous combustion in goaf includes the interaction be-
tween flow field, oxygen concentration field, gas temperature field, and solid temperature
field. The partial differential equations of the four fields are shown in Equations (10)–(13).

Flow field:

∑ K
g ·

∂P
∂x cos α∆S + ∑ K

g ·
(

∂P
∂y + ρgg sin θ

)
cos β∆S+

∑ K
g ·
(

∂P
∂z + ρgg cos θ

)
cos γ∆S−∑ n ∂ρg

∂t ∆V = 0
(10)

Here, K represents the permeability coefficient of porous media, m/s; g represents the
gravitational acceleration, m/s2; ρg represents the air density, kg/m3; P represents the sum
of static pressure and dynamic pressure, Pa; and n represents the porosity of float coal, %;

Oxygen concentration field:

∑ nvko2

∂Co2

∂
→
n

∆S−∑ Co2

(
vx cos α + vy cos β + vz cos γ

)
∆S−

∑ u(t)∆V −∑ n
∂Co2

∂t ∆V = 0
(11)

Fire 2022, 5, 71 12 of 17

Here, CO2 represents the oxygen concentration, mol/m3; kO2 represents the constant
term of oxygen diffusion coefficient; →

n
represents the normal vector outside the unit

of the area element on the boundary of the control volume; u(t) represents the oxygen
consumption per unit volume of coal in unit time, mol·m−3·s−1.

Gas temperature field:

∑ nλg
∂Tg

∂
→
n

∆S + ∑ KeSe
(
Ts − Tg

)
∆V −∑ nρgCgtg

→
v ·→n ∆S−∑ nρgCg

∂Tg

∂t
∆V = 0 (12)

Here, Tg represents the gas temperature, K; λg represents the thermal conductivity of
gas, W/(m·K); Cg represents the specific heat of gas, KJ/(kg·K).

Solid temperature field:

∑(1− n)λs
∂Ts

∂
→
n

∆S−∑ KeSe
(
Ts − Tg

)
∆V + ∑ q(t)∆V −∑(1− n)ρsCs

∂Ts

∂t
∆V = 0 (13)

Here, λs represents the thermal conductivity of coal and rock, W/(m·K); Ts represents
the solid temperature, K; Se represents the surface area of solid per unit volume in goaf,
m2; Ke represents the convective heat transfer coefficient, J/

(
m2·s·K

)
; ρs represents the

density of coal and rock, kg/m3; Cs represents the specific heat capacity of coal and rock,
KJ/(kg·K).

The calculation area was divided into hexahedral meshes. The number of grid points
was 5320, and the boundary conditions and mesh or grid points in different simulations
were not changed. The mesh size and types are shown in Figure 9.

Fire 2022, 5, 71 13 of 18

()
()

2

2 2

2

cos cos cos

0

o
o o x y z

o

C
nvk S C v v v S

n
C

u t V n V
t

α β γ
∂

 Δ − + + Δ −
∂

∂
 Δ − Δ =

∂



(11)

Here, 𝐶ைమ represents the oxygen concentration, 𝑚𝑜𝑙/𝑚ଷ ; 𝑘ைమ represents the con-
stant term of oxygen diffusion coefficient; ௡→ represents the normal vector outside the
unit of the area element on the boundary of the control volume; 𝑢(𝑡) represents the
oxygen consumption per unit volume of coal in unit time, 𝑚𝑜𝑙 ∙ 𝑚ିଷ ∙ 𝑠ିଵ.

Gas temperature field:

() 0g g
g e e s g g g g g g

T T
n S K S T T V n C v n S n C V

n t
tλ ρ ρ

∂ ∂
 Δ + − Δ − ⋅ Δ − Δ =

∂ ∂
 



(12)

Here, 𝑇௚ represents the gas temperature, 𝐾; 𝜆௚ represents the thermal conductivity
of gas, 𝑊/(𝑚 ∙ 𝐾); 𝐶௚ represents the specific heat of gas, 𝐾𝐽/(𝑘𝑔 ∙ 𝐾).

Solid temperature field:

() () () ()1 1 0s s
s e e s g s s
T T

n S K S T T V q t V n C V
n t

λ ρ
∂ ∂

 − Δ − − Δ +  Δ − − Δ =
∂ ∂

(13)

Here, 𝜆௦ represents the thermal conductivity of coal and rock, 𝑊/(𝑚 ∙ 𝐾); 𝑇௦ rep-
resents the solid temperature, 𝐾; 𝑆௘ represents the surface area of solid per unit volume
in goaf, 𝑚ଶ ; 𝐾௘ represents the convective heat transfer coefficient, 𝐽/(𝑚ଶ ∙ 𝑠 ∙ 𝐾); 𝜌௦
represents the density of coal and rock, 𝑘𝑔/𝑚ଷ; 𝐶௦ represents the specific heat capacity
of coal and rock, 𝐾𝐽/(𝑘𝑔 ∙ 𝐾).

The calculation area was divided into hexahedral meshes. The number of grid
points was 5320, and the boundary conditions and mesh or grid points in different sim-
ulations were not changed. The mesh size and types are shown in Figure 9.

Figure 9. Mesh generation of the model of the goaf area.

Figures 10 and 11 show the simulation results of the temperature and oxygen con-
centration distributions in the goaf, respectively.

Figure 9. Mesh generation of the model of the goaf area.

Figures 10 and 11 show the simulation results of the temperature and oxygen concen-
tration distributions in the goaf, respectively.

The compressed storage module can be incorporated into the spontaneous combustion
simulation software COMBUSS-3D. Under the same initial simulation conditions, the
distributions of the temperature and oxygen concentration in the goaf area of the Luling
Coal Mine were simulated. The computation times of the original COMBUSS-3D software
and the COMBUSS-3D software with the compressed storage module were recorded.
The calculation efficiency of Gaussian elimination method was compared with that of
compression storage method, and the calculation results were exactly the same. The
compression method does not affect the quality of solved fields. The time required to

Fire 2022, 5, 71 13 of 17

perform ten simulations was recorded, as shown in Table 3, in hours, with two decimal
digits reserved.

Fire 2022, 5, 71 14 of 18

Figure 10. Simulation result of the temperature distribution in the goaf area.

Figure 11. Simulation result of the oxygen concentration distribution in the goaf area.

The compressed storage module can be incorporated into the spontaneous combus-
tion simulation software COMBUSS-3D. Under the same initial simulation conditions,
the distributions of the temperature and oxygen concentration in the goaf area of the Lu-
ling Coal Mine were simulated. The computation times of the original COMBUSS-3D
software and the COMBUSS-3D software with the compressed storage module were
recorded. The calculation efficiency of Gaussian elimination method was compared with
that of compression storage method, and the calculation results were exactly the same.
The compression method does not affect the quality of solved fields. The time required
to perform ten simulations was recorded, as shown in Table 3, in hours, with two deci-
mal digits reserved.

Table 3. Comparisons of the computation time.

Computation Time after Incorporating
the Compression Module 𝑻ᇱ(h)

Computation Time without the
Compression Module 𝑻 (h)

Increase in the Computational Efficiency 𝟏 − 𝑻ᇲ𝑻 (%)
2.66 13.23 79.89
2.64 13.49 80.43
2.61 13.16 80.17
2.69 13.34 79.84
2.66 13.03 79.59
2.60 12.95 79.92
2.65 13.12 79.80

Figure 10. Simulation result of the temperature distribution in the goaf area.

Fire 2022, 5, 71 14 of 18

Figure 10. Simulation result of the temperature distribution in the goaf area.

Figure 11. Simulation result of the oxygen concentration distribution in the goaf area.

The compressed storage module can be incorporated into the spontaneous combus-
tion simulation software COMBUSS-3D. Under the same initial simulation conditions,
the distributions of the temperature and oxygen concentration in the goaf area of the Lu-
ling Coal Mine were simulated. The computation times of the original COMBUSS-3D
software and the COMBUSS-3D software with the compressed storage module were
recorded. The calculation efficiency of Gaussian elimination method was compared with
that of compression storage method, and the calculation results were exactly the same.
The compression method does not affect the quality of solved fields. The time required
to perform ten simulations was recorded, as shown in Table 3, in hours, with two deci-
mal digits reserved.

Table 3. Comparisons of the computation time.

Computation Time after Incorporating
the Compression Module 𝑻ᇱ(h)

Computation Time without the
Compression Module 𝑻 (h)

Increase in the Computational Efficiency 𝟏 − 𝑻ᇲ𝑻 (%)
2.66 13.23 79.89
2.64 13.49 80.43
2.61 13.16 80.17
2.69 13.34 79.84
2.66 13.03 79.59
2.60 12.95 79.92
2.65 13.12 79.80

Figure 11. Simulation result of the oxygen concentration distribution in the goaf area.

Table 3. Comparisons of the computation time.

Computation Time after
Incorporating the

Compression Module T’ (h)

Computation Time without
the Compression Module T

(h)

Increase in the
Computational Efficiency

1− T’

T (%)

2.66 13.23 79.89
2.64 13.49 80.43
2.61 13.16 80.17
2.69 13.34 79.84
2.66 13.03 79.59
2.60 12.95 79.92
2.65 13.12 79.80
2.67 13.25 79.85
2.66 13.36 80.09
2.67 13.33 79.97

In fact, when the initial simulation conditions did not change considerably, the compu-
tation time required to simulate the same operating point was less different. Therefore, the
difference in the computation times between the software for ten simulations was only a
few minutes. As shown in Table 3, after incorporating the compressed storage module, the

Fire 2022, 5, 71 14 of 17

average computation time of the software was approximately 2.65 h; the average computa-
tion time of the original software was approximately 13.23 h. The average computation
efficiency was improved by 79.96%. Therefore, the compressed storage module was verified
to be effective in engineering calculations and can significantly improve the calculation rate
of numerical software.

5. Discussions

Method applicability to numerical simulation of spontaneous combustion in goaf is
confirmed, and its compressed storage and solution in numerical simulation study should
be applied more widely. As long as the grid division and node numbering are carried
out according to the fixed law, the compressed storage and solution method can be used
to optimize the calculation. In fact, each coefficient matrix has an optimal node number-
ing scheme to further reduce the bandwidth and improve the computational efficiency.
Through the above analysis, compared with the computational efficiency of Gaussian elimi-
nation method, the proposed method has significant advantages. For very large coefficient
matrices, the significant advantages of the method cannot be proven compared with the
iterative method. However, the matrix size required in the current engineering examples
simulation could be compressed by the proposed method. In addition, in the numerical
calculation software using the iterative method, the method proposed in this paper can
also be used to improve the efficiency of partial matrix calculation.

6. Conclusions

In this study, a method that integrates compressed storage and solution for coefficient
matrices was developed to improve the computational rate of the Gaussian elimination
method. The following conclusions can be drawn from the study:

(1) In numerical calculations, as long as the nodes are numbered according to certain
rules, the coefficient matrix will exhibit evident structural characteristics. Typically, the
nonzero elements are symmetrically distributed in the diagonal band, and all the elements
on both sides outside the band are zero.

(2) Based on the structural characteristics of the coefficient matrix, a new scheme
that integrates compressed storage and Gaussian elimination was developed. In this
compression method, a large number of zero elements is deleted through a pivoting scheme,
and the matrix order is reduced, thus significantly saving the storage space required for the
coefficient matrix.

(3) When solving the coefficient matrix, a compressed coefficient matrix can be directly
solved by dislocation Gaussian elimination. Compared with conventional methods, this
method significantly improves the computing rate by solving matrices of different sizes.
The higher the order and greater the sparsity of the coefficient matrix, the more evident the
advantages of this compression method.

(4) By incorporating the compression method into the COMBUSS-3D software, it was
found that the compressed storage module can significantly improve the computing rate of
the simulation, by approximately 80%. Thus, the compressed storage method can be used
to improve the computational efficiency of numerical simulation software, which is of great
significance for efficiently solving engineering problems.

(5) For very large coefficient matrices, the significant advantages of the method cannot
be proven compared with the iterative method; more studies will be presented in our
further work.

Author Contributions: Conceptualization, Y.C., Y.Q. and T.Z.; Data curation, Y.C. and T.Z.; Project
administration, Q.Q.; Software, Y.Q., T.Z. and Z.S.; Supervision, Q.Q.; Validation, Y.Z.; Visualization,
Y.C. and T.Z.; Writing—original draft, Y.C.; Writing—review & editing, Y.C., Y.Z. and Q.Q. All authors
have read and agreed to the published version of the manuscript.

Fire 2022, 5, 71 15 of 17

Funding: This research was supported financially by the National Natural Science Foundation of
China [grant number 52174188] and [grant number 52074156], and the youth projects of Science and
Technology Innovation and Entrepreneurship Fund of China Coal Science and Industry Group [grant
number 2022-QN001].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Public Sub Solve(A() As Double)
Dim M%, N%, i%, j%, k%, ii%, jj%
M = UBound(A, 1)
N = UBound(A, 2)
jj = (N − 1)/2
ii = M − jj
For i = 0 To ii
A(i, 0) = A(i, 0)/A(i, jj + 1)
For j = N To jj + 1 Step −1
A(i, j) = A(i, j)/A(i, jj + 1)
Next j
For k = 1 To jj
A(i + k, 0) = A(i + k, 0) − A(i + k, jj + 1 − k) × A(i, 0)
For j = N To jj + 1 Step −1
A(i + k, j − k) = A(i + k, j − k) − A(i + k, jj + 1 − k) × A(i, j)
Next j
Next k
Next i
For i = ii + 1 To M − 1
A(i, 0) = A(i, 0)/A(i, jj + 1)
For j = N To jj + 1 Step −1
A(i, j) = A(i, j)/A(i, jj + 1)
Next j
For k = 1 To M − i
A(i + k, 0) = A(i + k, 0) − A(i + k, jj + 1 − k) × A(i, 0)
For j = N − i + ii + 1 To jj + 1 Step −1
A(i + k, j − k) = A(i + k, j − k) − A(i + k, jj + 1 − k) × A(i, j)
Next j
Next k
Next i
A(M, 0) = A(M, 0)/A(M, jj + 1)
A(M, jj + 1) = 1

“***********************
For i = M To jj Step −1
For k = 1 To jj
A(i − k, 0) = A(i − k, 0) − A(i − k, jj + 1 + k) × A(i, 0)
Next k
Next i
For i = jj − 1 To 1 Step −1
For k = 1 To i
A(i − k, 0) = A(i − k, 0) − A(i − k, jj + 1 + k) × A(i, 0)
Next k

Fire 2022, 5, 71 16 of 17

Next i
End Sub

References
1. Alonso, P.; Delgado, J.; Gallego, R.; Peña, J.M. A collection of examples where Neville elimination outperforms Gaussian

elimination. Appl. Math. Comput. 2010, 216, 2525–2533. [CrossRef]
2. Gilbert, A.; Indyk, P. Sparse Recovery Using Sparse Matrices. Proc. IEEE 2010, 98, 937–947. [CrossRef]
3. Pan, V.Y.; Zhao, L. Numerically safe Gaussian elimination with no pivoting. Linear Algebra Its Appl. 2017, 527, 349–383. [CrossRef]
4. Davis, T.A.; Hu, Y. The university of Florida sparse matrix collection. ACM Trans. Math. Softw. 2011, 38, 1–25. [CrossRef]
5. Tiskin, A. Communication-efficient parallel generic pairwise elimination. Future Gener. Comput. Syst. 2007, 23, 179–188. [CrossRef]
6. Alanelli, M.; Hadjidimos, A. Block Gauss elimination followed by a classical iterative method for the solution of linear systems. J.

Comput. Appl. Math. 2004, 163, 381–400. [CrossRef]
7. Ji, J. Gauss–Jordan elimination methods for the Moore–Penrose inverse of a matrix. Linear Algebra Its Appl. 2012, 437, 1835–1844.

[CrossRef]
8. Misawa, M.; Sekiya, T.; Oba, M. Improved Solution of Equations by Regularizing Ill-Conditioned Coefficient Matrix for System

Identification. AIAA J. 2013, 51, 2076–2085. [CrossRef]
9. Vuduc, R.; Demmel, J.W.; Yelick, K.A. OSKI: A library of automatically tuned sparse matrix kernels. J. Phys. Conf. Ser. 2005, 16,

521–530. [CrossRef]
10. Wambui Mutoru, J.; Firoozabadi, A. Form of multicomponent Fickian diffusion coefficients matrix. J. Chem. Thermodyn. 2011, 43,

1192–1203. [CrossRef]
11. Yu, Y.; Zha, X.W.; Li, W. A Criterion for Maximally Six-Qubit Entangled States via Coefficient Matrix. Int. J. Theor. Phys. 2016, 56,

931–941. [CrossRef]
12. Rostami, M.W. New Algorithms for Computing the Real Structured Pseudospectral Abscissa and the Real Stability Radius of

Large and Sparse Matrices. SIAM J. Sci. Comput. 2015, 37, S447–S471. [CrossRef]
13. D’Azevedo, E.F.; Fahey, M.R.; Mills, R.T. Vectorized Sparse Matrix Multiply for Compressed Row Storage Format. In Lecture Notes

in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; pp. 99–106. [CrossRef]
14. Hsieh, S.-H.; Yang, Y.-S.; Hsu, P.-Y. Integration of General Sparse Matrix and Parallel Computing Technologies for Large-Scale

Structural Analysis. Comput.-Aided Civ. Infrastruct. Eng. 2002, 17, 423–438. [CrossRef]
15. Stabrowski, M.M. Product or sum with transposed matrix: What is best for unsymmetric sparse matrix compression. Adv. Eng.

Softw. 2004, 35, 223–229. [CrossRef]
16. Chun-Yuan, L.; Yeh-Ching, C.; Jen-Shiuh, L. Efficient data compression methods for multi-dimensional sparse array operations.

In Proceedings of the First International Symposium on Cyber Worlds, Tokyo, Japan, 6–8 November 2002.
17. Im, E.-J.; Yelick, K.; Vuduc, R. Sparsity: Optimization Framework for Sparse Matrix Kernels. Int. J. High Perform. Comput. Appl.

2004, 18, 135–158. [CrossRef]
18. Li, Y.; Dong, W.; Peng, Y. Study on matrix compressive storage method based on 0-1 property-matrix. Comput. Eng. Appl. 2003, 39,

82–84.
19. Cheng, G.; Zhang, B. Compression Storage and Solution of Large and Sparse Matrix in Traveltime Tomography of Reflection

Seismic Data. Prog. Geophys. 2008, 23, 674–680.
20. Yang, H.; Fang, H.; Zhang, C. Large image reconstruction based on sparse-banded matrix. Comput. Eng. Appl. 2013, 10, 184–187.
21. Peña, J.M. Eigenvalue localization and pivoting strategies for Gaussian elimination. Appl. Math. Comput. 2013, 219, 7725–7729.

[CrossRef]
22. Xiao, Y.; Gao, P.; Lu, Y. Improved Parallel Gaussian Elimination Algorithm in Magnetotelluric Occam’s Inversion. In Intelligent

Computing Theories and Application; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 591–600. [CrossRef]
23. Druinsky, A.; Toledo, S. Factoring matrices with a tree-structured sparsity pattern. Linear Algebra Its Appl. 2011, 435, 1099–1110.

[CrossRef]
24. Wang, Y.; Wu, Y.; Zhang, J. Study of Simulation and Development of Goaf Nitrogen Injecting Software. Coal Min. Technol. 2018,

23, 6–11.
25. Wu, Q.; Qin, Y.; Guo, L. Calculation of the Heat Emitting from the Wall Rock at Drifting Face with Finite Element Method. China

Saf. Sci. J. 2020, 12, 33–36.
26. Qin, Y.; Song, H.; Wu, J.; Bai, Y.; Dong, Z.; Ye, F. Analysis of surrounding rock heat dissipation for trapezoid roadway by

finite-volume method. J. Liaoning Tech. Univ. Nat. Sci. 2015, 43, 898–904.
27. Qin, Y.; Song, H.; Wu, J.; Dong, Z.-y. Numerical analysis of temperature field of surrounding rock under periodic boundary using

Finite Volume Method. J. China Coal Soc. 2015, 40, 1541–1549.
28. Qin, Y.; Liu, H.; Zhu, C. Numerical Simulation of Goaf Hot Blast on Coal Mining Face with High Temperature. Saf. Coal Mines

2011, 42, 11–14.
29. Liu, W.; Qin, Y. Multi-physics coupling model of coal spontaneous combustion in longwall gob area based on moving coordinates.

Fuel 2017, 188, 553–566. [CrossRef]
30. Qin, Y.; Sun, Q.; Liu, W. Three finite volume schemes for elastic mechanics. J. Liaoning Tech. Univ. 2012, 31, 349–353.

http://doi.org/10.1016/j.amc.2010.03.094
http://doi.org/10.1109/JPROC.2010.2045092
http://doi.org/10.1016/j.laa.2017.04.007
http://doi.org/10.1145/2049662.2049663
http://doi.org/10.1016/j.future.2006.04.017
http://doi.org/10.1016/j.cam.2003.08.045
http://doi.org/10.1016/j.laa.2012.05.017
http://doi.org/10.2514/1.J051394
http://doi.org/10.1088/1742-6596/16/1/071
http://doi.org/10.1016/j.jct.2011.03.003
http://doi.org/10.1007/s10773-016-3235-0
http://doi.org/10.1137/140975413
http://doi.org/10.1007/11428831_13
http://doi.org/10.1111/1467-8667.00288
http://doi.org/10.1016/j.advengsoft.2003.11.002
http://doi.org/10.1177/1094342004041296
http://doi.org/10.1016/j.amc.2013.01.060
http://doi.org/10.1007/978-3-319-42294-7_53
http://doi.org/10.1016/j.laa.2011.03.035
http://doi.org/10.1016/j.fuel.2016.10.049

Fire 2022, 5, 71 17 of 17

31. Qin, Y.P.; Sun, Q.; Yang, X.B.; Zhang, G.Y. Analysis of Four Finite Volume Schemes for Plane Stress Problems. Appl. Mech. Mater.
2012, 204–208, 4635–4642. [CrossRef]

32. Qin, Y.-P.; Liu, W.; Yang, X.-B.; Luo, W.; Hao, Y.-J. Numerical simulation of impact of non-Darcy seepage on spontaneous
combustion in goaf. J. China Coal Soc. 2012, 37, 1177–1183.

http://doi.org/10.4028/www.scientific.net/AMM.204-208.4635

	Introduction
	Structural Analysis of Coefficient Matrix
	Compressed Storage and Solution Method
	Compressed Storage of Coefficient Matrix
	Solution of Coefficient Matrix

	Engineering Application
	Discussions
	Conclusions
	Appendix A
	References

