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Abstract: Early detection of smoke having indistinguishable pixel intensities in digital images is
a difficult task. To better maintain fire surveillance, early smoke detection is crucial. To solve the
problem, we have integrated the principal component analysis (PCA) as a pre-processing module
with the improved version of You Only Look Once (YOLOV3). The ordinary YOLOV3 structure has
been improved after inserting one extra detection scale at stride-4 specifically to detect immense small
smoke instances in the wild. The improved network design establishes a sequential relation between
feature maps of lower spatial information and fine-grained semantic information in up-sampled
maps via skip connections and concatenation operations. The testing of the improved model is
carried out on self-prepared smoke datasets. In digital images, the smoke instances are captured
in various complicated environments, for example, the mountains and fog in the background. A
principal component analysis (PCA) helps in useful features selection and abandons the involvement
of redundant features in the testing of the trained network hence, overcoming the latency at inference
stage. In addition, to process small smoke images as positive samples during training, new sizes of
anchors are calculated on small smoke data at a specified Intersection over Union (IoU) threshold.
The experimental results show the improvement in precision rate, recall rate, and mean harmonic
(F1-score) by 2.67, 3.06, and 5.59 percentages. The respective improvements in average precision (AP)
and mean average precision (mAP) are 1.66 and 2.78 percentages.

Keywords: improved YOLOV3; principal component analysis; early smoke detection; images pre-processing

1. Introduction

Out of the many reasons for a country’s economic and social instability, fire incidents
may be one of them that needs to be tackled at an earlier stage of its growth to avoid
undesired damage to property and human lives.

It is impossible to eradicate fire hazards. However, accurate and timely detection of
fire may reduce its damaging effects. Therefore, for fire safety applications, it is mandatory
to develop the most reliable and fast response fire detection systems.

Among the various fire signatures, smoke is one of the most prominent characteristics
of fire because it usually evolves earlier than flame [1]. Computer vision smoke detection
systems easily detect a large or medium columns of smoke because of large pixel intensity
values in digital images that are more distinguishable as compared to small smoke instances
in the wild.

On the contrary, detecting small or light smoke in digital images is a challenging
task where smoke features are indistinguishable from the complicated background. The
detection of such smoke instances occurs if the network includes those features in training
and testing. Therefore, a specific scale of detection must be added throughout the network
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specifically for the recognition of small smoke instances. In addition, to reduce the compu-
tational latency, the pre-processing module helps to filter out useful input features before
feeding to the network.

For example, in [2], for the recognition of small objects in a complex environment,
the feature maps are fused in a top-down and bottom-down fashion. The feature tensors
present in the earlier layers of the network concatenate with later layers to combine the low-
level information with highly refined semantic information. This modification is helpful
to recover the information that may vanish in feature maps present at bottleneck layers of
the network after extensive downsampling of the full-scale input images. In our improved
design, the detection occurs at the four stages throughout the network instead of three-scale
detection, and the fourth scale is added because of utilizing the small smoke information
present in feature maps of resolution 104 x 104. The top-down fusion strategy establishes
the sequential relation between the feature maps of 104 x resolution and the maps on the
top of the network downsampled by stride-4. The skip connections are inserted at the
fourth scale to directly fuse the information of extensive small smoke instances present
in high-resolution maps of dimensions 104 x 104, Figure 1. The upsampling of the maps,
which are downsampled by stride-4, is necessary before the concatenation to recover the
same spatial dimension as mentioned in [3]. This scheme enables a network to take leverage
of comprehensive information fusion for small smoke instances. The high-level features in
stridden maps and low-level features in high dimensional (104 x 104) maps are equally
important for small smoke instances because they strongly influence classification accuracy
and localization precision.
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Figure 1. Schematic of the improved method. First, the principal component analysis transforms
the random dimensions of smoke pixels into unique principal components in low space. The pre-
processed co-related groups of pixels then feed into an improved version of YOLOv3 with an extra
scale of detection.

Previous studies have also shown improvements in recognition of small smoke in-
stances via feature maps fusion schemes for example, feature pyramid network (FPN) [4].
In FPN, the fusion of feature maps occurs either in a bottom-up or top-down fashion. The
low-level spatial and refined semantic information is either concatenated or added by
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element-wise addition. The resultant feature maps can dramatically increase the detection
accuracy of the network for small smoke instances.

For example, in [5], author verifies, the combination of feature maps has the potential
to increase the overall detection accuracy of the deep neural networks, particularly for small
objects. In [6], the low-level and high-level features were concatenated and added by using
skip connections directly. They use a bottom-up module that downsampled the full-scale
images by convolutional pooling with varying kernel sizes. The concatenated feature maps
are normalized and used for final predictions. Another study [7] also adopts the fusion
strategy. The pooling layers first downsampled the input images. A deconvolution module
upsampled the processed images to regain the spatial dimensions. In [8], the author uses
the lateral connections for the fusion of highly semantic and contextual feature maps from
the top-down module and feature maps of general information from the bottom-up module.
Their experiment also proves the effectiveness of those fusion schemes. In [9], they utilize
a single shot multibox detector (55D) and FPN. The original features of the SSD network
fuse with the image features from the image pyramid network at four different scales. They
fuse the features from current and previous layers for local spatial information.

The domain-specific anchors also increase the classification accuracy and localization
precision of the network. The Intersection over Union (IoU) score would decide the positive
and negative samples from the training datasets. If the ground truth boxes overlap with
pre-calculated anchors at a given IoU threshold, the sample images of extra small smoke
instances would be involved in the training process. It helps to improve the classification
score and boost up the model’s generalization ability. Therefore, by running a clustering
algorithm on a dataset of a small, medium, and large smoke instances, the anchors are
calculated for each detection scale separately.

As part of the above-mentioned work, we integrate an improved version of a YOLOv3
with a pre-processing module named principal component analysis (PCA). The ordinary
structure of the network expands up to four detection stages to avoid the information loss
present at very earlier convolutional layers, while the numbers of anchor boxes for each
detection stage are calculated precisely on the available dataset of small smoke instances.
Due to the increase of the total number of detection scales, the total number of anchor
boxes has also increased from 9 to 12 boxes, i.e., three boxes per scale. The computational
cost of the improved network may increase after adding an extra detection scale for the
fusion of feature maps in a top-down fashion. Therefore, principal component analysis
as a pre-processing module is combined with the improved YOLOv3 to meet the real-
time processing speed. Similarly, PCA is helpful to avoid the loss of information during
backpropagation while updating the weights during training. An unsupervised PCA
module also reduces the dimension of smoke data. Hence, it reduces the computational
complexity present in the datasets. The network is more stable and deep enough to process
higher-level semantic and contextual information concatenated with lower-level features of
small smoke instances present in feature maps at the beginning of the network.

Figure 1 illustrates the flow diagram of the improved YOLOv3-PCA framework.

The motivation behind the network selection is that YOLOv3 [10] is lightweight and
provides the best balance between accuracy and speed by predicting smoke at multi-scales
through depth residual blocks (ResNet) [11].

YOLOV3 has a better inference time compared to YOLOv4 and is slightly less than
YOLOVS [12]. The integration of pre-processing PCA module with the improved YOLOv3
still makes it feasible to detect small smoke instances. YOLOv3 can generate the classifi-
cation accuracy and positioning coordinates of the target in one step and uses the idea of
multi-stage detection. Moreover, the mean average precision (mAP) of YOLOV3 is higher
than SSD [13]. The purpose of the fourth scale in the traditional YOLOV3 structure is to
compensate for the missed detections of positive samples of small smoke instances. The
reason is that the spatial information in the feature maps of resolution 104 x was ignored
by the three-scale YOLOV3 structure. With the downsampling of the input images, the
features related to small smoke instances may fade in low-resolution images. Therefore,
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it is required to consider those features present at the earlier layers of the network. The
strategy helps to generalize a network so it can detect smoke instances at their evolving
stages even in a complex environment.

More concisely, the following are our key contributions:

1.  Wehave improved a deep learning network, YOLOV3, to classify and localize small/light
smoke instances in the wild. We inserted an extra detection scale at stride 4 to process
the information of small smoke instances.

2. Toreduce the dimensional complexity present in the smoke datasets, we have inte-
grated an unsupervised dimension reduction module principal component analysis
(PCA) at the input of the improved YOLOv3. The input smoke and non-smoke images
are pre-processed first before feeding the network.

3. We have calculated the anchor boxes on smoke datasets for each detection scale
separately. At the detection scales of 1, 2, 3, and 4 with strides 32, 16, 8, and 4, we have
created the anchor boxes for large, medium, small, and extra small smoke instances.

The rest of the paper is arranged as follows:

In Section 2, we discuss the previous work carried out using convolutional neural
networks (CNNs) and the respective improvements in the existing networks for the purpose
of smoke detection. In Section 3, we briefly explain the improved design of the model
and PCA as a data pre-processing module. Additionally, this section explains the full
description of smoke datasets, their valid train-test splitting method, and complete working
environment. In Section 4, we provide experimental results and a discussion of training
and testing metrics. Finally, Section 5 concludes the manuscript.

2. Related Work

In previous work, many researchers used deep learning approaches to detect smoke
as a sign of fire. The smoke detection based on texture and color information may not
generate correct predictions. Many smoke detection methods based on convolutional neural
networks are present in literature, for example, smoke segmentation, smoke detection, and
integration of conventional machine learning methods with deep neural networks, i.e.,
hybrid systems.

2.1. Key Technologies & Networks Characteristics for Smoke Detection

Ref. [14] presents an improved dual-channel convolution neural network (IDCNN)
specifically designed for the classification of smoke images. Two separate networks combine
to build a whole architecture. The first CNN consists of max-pool and batch normaliza-
tion layers. The second network uses the skip connection to fuse the feature maps for
detailed information processing. The use of standard convolution increases the number
of parameters that consequently slows down the training and testing of the model. This
work presents an improved network replacing the operation of standard convolution with
depth-wise and point-wise convolution. They compare the efficiency of both the original
DCNN and the improved IDCNN. The use of depth-wise and point-wise convolution
decreases the number of channels and, as a result, reduces the total learnable parameters
of the network. The effect of network compression assists in reducing the total amount of
calculation, improving the operating efficiency. They compared their improvement with
DCNN and many other classifiers in terms of learnable parameters and the classification
performance of the network.

In [15], the author presents a channel-wise and spatial attention mechanism combined
with decision level and feature level modules. They redesign a lightweight CNN classifier,
Visual Geometry Group (VGG16). They establish a smoke dataset having smoke samples in
a fog environment and challenging negative examples. The attention mechanism helps to
focus on smoke instances in severe fog environments. The feature level and decision level
modules decide which feature maps carry information to fuse. Their network consists of
three convolutional layers where the mid-layer is a deep layer. The network uses skip con-
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nections to combine low-level information with semantic information. The implementation
of the framework can discriminate smoke from the fog in real-time.

Reference [16] implements a combined framework for smoke detection and segmenta-
tion in plain and hazy environments. A lightweight CNN network, EfficientNet performs
the task of smoke detection and atrous convolution-based DeepLabV3+ segments the
smoke pixels. The structure of EfficientNet makes it feasible to use for smoke detection on
memory-constrained devices. The main building block of the detector is mobile inverted
convolution layers with squeeze and excitation modules. The attention module is helpful
to distinguish smoke in the haze. The semantic segmentation is performed on the output
maps of EfficientNet by DeepLabV3+ followed by a softmax classifier. The architecture of
DeepLabV3+ utilizes an encoder-decoder structure with depthwise separable convolution
for semantic segmentation and softmax as a classifier to classify the individual smoke pixels.
Their experiment shows a notable gain in detection results with a decrease in false alarm
rate. Additionally, they report an increase in the global accuracy and mean Intersection
over Union value for the segmentation module.

Ref. [17] implements a novel unsupervised approach for discrimination and mapping
of smoke patterns based on the linear hyper-spectral un-mixing technique. Smoke is a
non-rigid object of deformable shape with a highly variable degree of transparency and
atypical motion. Therefore, the typical descriptors may fail for accurate detection of smoke
as they map only low-level visual features of smoke. Along with the visual attributes of
smoke, they suggest a new feature space and feature mapping to learn the smoke pattern.
Using the un-mixing approach, they map smoke features in the new feature space where
the vertices of the minimum volume simplex, which encloses all image pixels, represent
the new axes. They formulate the feature mapping as an optimization problem to find
the vertices of the minimum volume enclosing simplex as new axes of new feature space.
The similar smoke attributes constitute some new axes with large coordinate values while
others with low coordinates represent non-smoke axes. Their approach has the potential to
discriminate smoke regions from non-smoke patterns.

Ref. [18] implements a hybrid smoke classification system based on domain knowledge.
First, they segment and extract the suspected smoke regions from video frames. Then, a
CNN classifier employs to discriminate the smoke regions from smoke-like regions. In
the first stage, the author uses the Gaussian Mixture Model (GMM) to subtract the static
background and extract the moving smoke as a foreground. GMM extracts the motion
vectors of smoke and separates the smoke instances from the complex scenes. The employed
framework effectively classifies image patches of smoke instances from non-smoke objects
by a deep neural network.

We present the above studies to argue that the employed modifications may increase
the detection performance only. However, we explore another aspect of research where
the combination of traditional feature extraction methods and deep neural networks, i.e.,
hybrid systems. Our findings explain, the hybrid systems have the following benefits in
the domain of smoke detection: (a) the dimensional complexity of input data reduces,
(b) boost-up the generalization strength of the trained model, and (c) decreases the latency
and increases the inference speed.

2.2. Generalized Deep Networks in Smoke Detection

Low-dimensional feature maps are less computationally expensive to process. There-
fore, the deep layers of the neural network downsample the input images into number of
channels. This downsampling may lose the related information of small smoke instances
because of continuous reduction in spatial dimensions. In the literature, various techniques
are present to preserve the low-intensity features of small smoke instances. Here, we
summarize those methods in four categories as:

Firstly, the improved convolutional kernel operations have the potential to boost
up the performance of the network for the recognition of small smoke instances. For
example, the increase in kernel sizes may increase the network’s receptive field, which
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is helpful to process the contextual information of the small smoke instances. Sec-
ondly, top-down or bottom-up modules are employed to fuse the processed feature
maps with high-resolution feature maps. Thirdly, the network may restrict extensive
downsampling by substituting the residual blocks to process the features. In the last
option, the implementation of dataset pre-processing module is also helpful; for example,
small smoke instances are augmented. Hence, the datasets are more diverse, e.g., scale
transformation [19], and scale-dependent pooling [20].

For small-scale networks, the use of expanded convolution is not feasible because it
can degenerate the performance, and the convergence effect of the network may reduce
up to 3% points as mentioned in [21]. In [22], they replaced a two-step downsampling
convolution block in YOLOvV3 by double-segmentation and used a bilinear upsampling
module for features amplification. Additionally, they resolved the problem of gradient
fading by adding a residual network block at the output layer that is helpful to increase
the number of feature maps for small object detection. The mentioned modifications
may improve the detection performance for small smoke instances but the inference time
complexity issue is not addressed.

Similarly, [23] uses improved YOLOV3 and increases the number of detection scales
from three to five by adding two more convolution blocks to form a five-stage feature
pyramid structure. To capture and transfer the features of small objects conveniently,
they integrated a dense block. In [24], they improved the feature fusion tendency of
the YOLOvV3 by concatenating the low level and high-level features without increasing
the number of detection scales. They fused the feature maps of different resolutions at
three arbitrary scales to detect large, medium, and small objects. The training scheme
of the improved network is transfer learning that alone cannot address the problems of
gradient fading in a deeper network. Additionally, the solution of the problem of time
complexity is not mentioned.

In [25], the authors redesign the network from three-scales detection to two-scales de-
tection. They reduced the image downsampling by removing the convolution blocks. Their
method is suitable to attain a high speed of inference, but the accuracy is comparatively
low. Moreover, they fused the spatial information of a small object with the deep feature
maps by concatenation and up-sampling at the scales 1 & 2 with strides 32 and 16 only.
This scheme is feasible for fast detection but cannot capture the encoded information of
immense small objects present in high dimensional maps. In [26], the authors suggested
a transfer learning-based solution to increase the detection speed of the network. They
used a K++ means clustering algorithm to revise the anchor boxes. They performed a
multiscale fusion of feature maps at three scales with strides 32, 16, and 8. They focused
only on the training strategy without considering deep feature fusion at more than three
scales to include the basic low-level information of the target object. Therefore, this strategy
may improve the convergence rate of the network but not the detection accuracy for small
smoke instances.

3. Methodology

In this section, we present an improved design of the base model and the implementa-
tion of PCA as a pre-processing and feature extraction module. Meanwhile, we describe
the working of PCA integration with the tuned version of YoloV3. The dataset introduction,
train-test split methods and entire working environment have also been presented here.

3.1. Improved Design of the Base Network

Instead of three-scales traditional YOLOv3, we implemented a four-scales improved
architecture of YOLOV3 to detect particularly extra small smoke instances in the wild. The
detection performance of an extra-scale improved network is comparatively high due to
the fusion of the downsampled maps at scale-4. Downsampling at stride 4x produces a
greater number of feature maps of a full-scale image, which are combined with the feature
maps of resolution 104 x 104 at detection scale-4. In addition, the smaller grid cells of size
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Figure 2. The structure of 4-scales YOLOv3 network. Scales 1, 2, 3, and 4 detect large, medium, small
and immense small/light smoke instances in the wild with strides 32, 16, 8, and 4 respectively.

The increase in detection scales brings scale diversity in the feature maps of various
sizes. This improvement considers the very low-level spatial information with the high-
level semantic information at scale-4 that increases the recognition efficiency of the detector.
Because pixel intensities of small smoke instances are smaller enough. The 52 x 52 sized
grid cells cannot capture those pieces of information fully, but adding one more detection
scale with grid sizes 104 x 104 can process those extra small pixels efficiently.

Moreover, there are three bounding boxes for each grid cell. Adding an extra scale will
generate more bounding boxes. Thus, the network can accurately predict the bounding
box coordinates around small smoke instances. A 2D-upsampling layer is programmed to
recover the spatial dimension of 104 x 104 deep processed maps. The use of skip connection
between two-level pieces of information can avoid the gradient disappearance problem
and process the information in a feed-forward manner. The concatenation of feature maps
occurs at scale-1, 2, 3, and 4.

3.2. PCA Implemenatation & Calculation Process

PCA is a popular unsupervised algorithm in the field of image processing. It is
basically used for dimensionality reduction of image datasets, which actually reduces
the size of feature vectors for object recognition or classification of images. PCA can be
implemented either by using eigenvalues decomposition (EVD) or by using singular value
decomposition (SVD). Before implementing a PCA algorithm, data is transformed into a
single vector representation by a hot vector encoding scheme, and then PCA space reduces
the dimension or size of this single vector as shown in Figure 3.
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n =173,056/image L = 400/image
5
1-D vector of image pixels |:> PCA space |::>
= | P
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Figure 3. Single vector demonstration. Initially, pixels are thousands in numbers and randomly
co-related. Later, the PCA space reduces the length of the pixel vectors to 400 only. Those
400 principal components represent the unique dimensions for groups of highly co-related pixels.

In a raw dataset, the pixels of the image as variables are randomly arranged in the XY
plane where each data point is represented by a large value of X and Y. These data points
are highly correlated. This correlation can be observed if data points are viewed from a
highly informative viewpoint in the direction of a new principal vector u. This vector line
in the direction of data points with another orthogonal vector line v formed a new axis
system called the principal axis. we can achieve a more compact representation of the same
data along with this new principal axis system. The origin of this new axis system is located
at the mean of datapoints on the XY plane. Hence, the covariance of data along this new
axis system is much smaller to zero. It means the PCA finds the new axis system which
is defined by the principal directions of variance of a given set of data. The prime goal of
dimensionality reduction can be achieved by reducing the variations of data along the v
axis line. In this way, all datapoints would be assumed in the direction of the u axis line
and dimensionality would be reduced from 2 dimensions to 1 dimension.

3.2.1. Co-Variance Matrix

In a covariance matrix, the diagonal of the matrix represents the variance of data while
the non-diagonal values are covariance. In the case of XY axis system where data is highly
corelated than the new coordinate axis, the covariance values have higher magnitude along
the non-diagonal positions of the matrix but in the case of new principal axis system, the
variance along the diagonal have higher magnitudes. Hence, our objective is actually to
diagonalize the covariance matrix so that we can obtain less correlated data and then we
can find the orthogonal principal axis which is basically represented by the eigenvectors of
a covariance matrix.

3.2.2. PCA Implementation for a Set of Images Data

The general implementation of PCA is described first and then implemented for our
task in hand. If we have n number of images and variables in each image is represented
as {x1,xz,....x,} of dimension L x W. To convert all n images into a data matrix H, all
variables are transformed from 2D image to 1D vector and then arrange all images as a row
vector in the form of a matrix which is given as:

X11,X12,- - - - X1LW/
X X Lo X
H — 21,422, 2ILW (1)

Xnls Xn2s -+« -XnLW,

The next task is to find a new principal axis; therefore, we have to shift the origin of
the new axis system at the mean ‘m’ of the data, which is possible by finding the mean ‘m’
of data matrix H (column-wise) and by subtracting this mean from each row of matrix H.
Hence mean matrix of data matrix H is represented as (H;, = H — m) and the covariance
matrix of H, is calculated by the Equation (2):

<Hn]; i Hm>

€] = n—1

@
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Now for diagonalization of a covariance matrix C, we would get help of a transforma-
tion matrix M by using linear control system theory and is given as:

MICM = A 3)

where A is a diagonal matrix of the same size as the size of covariance matrix C and its diag-
onal carries the magnitude of eigenvectors A of covariance matrix C. Hence, transformation
matrix M can be found by the eigenvectors of matrix C, but the size of this transformation
matrix is still same as the size of a covariance matrix and just diagonalization occur until
now. Hence, the transformed representation T of the corelated data presented in data
matrix H can be achieved by using a transformation matrix M where all data is projected
to new principal axis system.

T = [H—m][M] @

Up to now, we just transformed the original data representation into a new repre-
sentation, but the dimensions of the dataset are same yet. Hence, the goal of dimension
reduction is achieved now by considering the specific eigenvectors of transformation matrix
M instead of using complete entries of M matrix. Those eigenvectors are selected which
have large eigenvalues A while the remaining eigenvectors or principal components are de-
composed. As a result, the dimensions of transformed data are reduced up to the numbers
of the particular principal components that have been selected out of total eigenvectors
while the number of images in a dataset would be the same.

3.3. Principal Component Analysis as a Dataset Pre-Processing Module

The principal component analysis (PCA) is selected as a pre-processing module to
reduce the dimensional complexity of smoke datasets.

PCA also provides an opportunity to compare results and test the performance
of the trained models because visualization of independent components becomes
extremely easy. The highly non-related principal components are helpful to boost up
the training process [27].

In the data analysis technique, multivariate data consists of various attributes and
variables. PCA is a fundamental pre-processing module to handle multivariate variables. It
can reduce the high-dimensional data to low-dimensional space and make its visualization
easier [28]. PCA generates groups of uncorrelated variables from highly correlated data
without any supervision. The groups of those uncorrelated variables are called principal
components. Those principal components are always orthogonal to each other. The magni-
tude of eigenvectors is equivalent to the total numbers of the uncorrelated components. The
independent principal components are always taken less in numbers than the multivariate
correlated variables.

Before transforming data into low dimensional space, first, PCA flattens the pixel
features into a single vector representation by a hot vector encoding scheme. Later, PCA
space will reduce the dimension or size of this single vector as shown in Figure 3.

3.4. Features Selection and Dimensions Reduction by PCA

The principal component analysis serves as a visualization tool for the pixels of smoke
and non-smoke instances as data points. PCA integrated with the improved YoloV3 as
a pre-processing module. Instead of using raw pixels of images data, we projected our
data into PCA space to transform it into a lower-dimensional space. In Figure 4a, the
scatter plot “a” represents raw pixels in multidimensional space. The scatter plot “b” shows
PCA transformed variables (pixels). In Figure 4b, total pixels are less in numbers than the
raw pixels. It proves that PCA selects the important features discarding the redundant
features. We have selected only 400 principal components showing only 400 dimensions of
the features. The cumulative explained variance is almost 95%. It shows the effectiveness
of the PCA module towards the input dataset.
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Scattered data plot Without PCA

Scattered data plot after PCA Implementation

0.010 A
0 0 PC2
0.4 1 1 1 PC1
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Unclear co-relation in the raw pixels since the

Unique Principal components arranged in 400 dimensions

principal components are random

(a) (b)

Figure 4. Scatter graphs (a,b) represent the random and unique dimensions of smoke and non-smoke
pixels. In plot (b), the total number of scattered pixels decreases because PCA selects the most
co-related pixels. The principal components represent the directions of each pixel. Those components
describe the total percentage of explained variance.

We have 9347 smoke and 4453 non-smoke 2D images. Each image is of resolution
416 x 416. The total dimensions of our dataset are 13,800 x 416 x 416. The size of the
data matrix is [H]13,800 x 416 x 416, thus the sizes of covariance matrix C and transformation
matric M are the same. This huge dimensional space increases latency in the training
and testing of the detector. To reduce the random dimensions of raw pixels, PCA se-
lects the minimum number of principal components with respect to the percentage of
explained variance.

Figure 5 shows the selection of independent components. The cumulative explained
variance selects the number of components. A total of 400 principal components re-
duce the dimensions of dataset variables as 13,800 x 400 and the cumulative explained
variance is 95.13%.

3.5. Experimental Settings

This section explains the specific details of datasets and test train split for experimen-
tation. In addition, it explains the hyper-parameters setting and working environment.

3.5.1. Dataset Description

The datasets contain 9347 smoke images extracted from high-definition videos. The
database also includes 4453 still images of non-smoke instances resembling smoke. Extra
small smoke instances are captured in the wild with mountains in the background with
various weather conditions i.e., in a fog, illuminations, and moving clouds. The camera
sensor mounted on the unmanned aerial vehicles (UAV) captures those smoke instances in
the surroundings of Huangshan, China.

Figure 6 represents some samples of smoke and non-smoke from the original database.
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400 principal components explain [95.13%] of the variance

02

Percentage explained variance

0.0

o 50 100 150 200 2%0 200 w0 400
Number of principal components

Figure 5. The graph represents the number of principal components and cumulative explained vari-
ance. The rising curve shows the selection of only 400 principal components describes approximately
95% variance. PCA selects 400 principal components without losing much information.

smoke samples non-smoke samples

Figure 6. A view of smoke samples. Smoke instances are extra small and of less density with
a challenging background. Non-smoke images are also challenging with moving trees, cars,
and persons.
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3.5.2. Training & Testing Division

The original database is divided into two sets, i.e., the trainval set, and the test set. A
test set accommodates 20% (or 2760) smoke and non-smoke instances out of 13,800 total
images. All the remaining 80% images are in a trainval set. From a trainval set, the network
automatically uses the next batch of a train set as a validation set. The trainval set serves as
training images and validation images. The validation set ensures the monitoring of the
network convergence and overfitting.

3.5.3. Hyper-Parameters Setting

The training parameters for the traditional and improved YOLOv3 are as follows:

We select the learning rate as 0.001 at the beginning of the training. The batch size of
the network training is 64, and the momentum decay is 0.9. We use stochastic gradient
descent (SGD) as an optimizer as it can optimize the network conveniently, i.e., converge
the network faster as compared to Adam.

One forward pass and backward pass makes two iterations and one epoch. In our
experiments, the total number of iterations is different for both networks. We marked all
images in PASCAL VOC format by an open-source labeling tool Labellmg to tag all images
as XML files.

3.5.4. Working Environment

All experiments are conducted under the experimental environment using deep learn-
ing open source framework Darknet, the operating system Ubuntu 16.04, Machine learning
library TensorFlow, CPU Intel Core i7-6850K CPU @ 3.60 GHz (x12), GPU (x3).

4. Experimental Results & Discussion

This section explains the evaluation criteria and the comparison of results from tradi-
tional and improved networks. A brief discussion presents the metrics calculation methods
and their high-level comparison.

4.1. Training Metrics Evaluation

Figures 7 and 8 represents the loss curves for ordinary YOLOv3 and improved YOLOv3
with the number of iterations. Both detectors trained on different numbers of iterations.
The reason is that the training iterations are not manually selected. The network terminates
the training procedure when the network observes the best weight with minimum loss and
maximum validation accuracy. Hence, in the case of ordinary YOLOv3 after 4000 iterations,
there is no regular increase in validation mAP and no significant decrease in average
loss. Therefore, ordinary YOLOV3 early stops the training after 4000 iterations. The tuned
version of YOLOV3 terminates the training process after 8000 iterations.
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Figure 7. Represents the relation between average training loss and validation accuracy as mean
average precision (mAP) for traditional YOLOv3. The training loss decreases consistently with
increase in number of iterations. The mAP for validation sets increases in the same trend.
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Figure 8. Represents the relation between average training loss and validation accuracy as mean av-
erage precision (mAP) for four scales YOLOv3-PCA network. The training loss decreases consistently
with an increase in the number of iterations. It shows that the loss is less than ordinary YOLOv3 and
the mAP of a validation set for improved YOLOV3 is 94% which is greater than ordinary YoloV3.

Test Metrics Analysis

The necessary result metrics to calculate and evaluate the detection accuracy and
sensitivity of the trained models are average precision (AP) or mean average precision
(mAP) and Fl-scores. The area under the PR curve calculates the AP metric. The precision
and recall rates determine the F1-score to evaluate the trained model. Figure 9 draws the
PR curves for ordinary YOLOv3 and improved YOLOv3.
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Figure 9. The area under PR curves for traditional model and improved YOLOvV3 shows average
precision at specific recall. The black curve covers more area that represents greater AP & mAP for
improved version of YOLOV3.

We have used 11 points method to draw PR curves for both models. We can see the
area under the curve for improved YOLOv3-PCA is greater than the traditional YOLOvV3.
The endpoint of PR-curve in the case of an improved model is at a higher precision value.
Therefore, due to the more precision rate of the improved model, its PR-curve covers more
area. As a result, its average precision is more than the traditional model. The AP for an
improved model is 95.60%, and the AP for a traditional YOLOV3 is 94.01%.

The total number of true positives (TP), false positives (FP), and false negatives (FN)
compute the precision rate and recall rate. True positives and false positives are responsible
for the precision rate. True positives and false negatives are responsible for the recall rate of
the detectors. Fl-score of the model determines its overall efficiency showing the accuracy
for foreground object and sensitivity of the model for background object. Intersection
over Union (IoU) threshold and probability threshold decides the values of test metrics.
The total number of correctly detected samples and the total detected samples changes
with the change in the two threshold values. In conclusion, the variation in probability
threshold changes the precision rate and recall rate. The IoU threshold brings variation in
the AP and mean average precision (mAP) metrics. Hence, 11 values of precision and recall
draw PR curves for both models. For a best_weights of ordinary YOLOv3 and improved
YOLOV3, we calculate their respective recall and precision rates at 11-probability threshold
values keeping IoU = 0.35, Tables 1 and 2. Our experiments also calculate the mean average
precision (mAP) for both detectors. The mean of AP values at five IoU thresholds, i.e.,
{IoU = 0.3, 0.35, 0.4, 0.45, 0.5} gives mAP while keeping the probability threshold fixed at
0.35. Tables 1 and 2 shows the test metrics at different probability thresholds.
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Table 1. Test metrics for improved YOLOv3-PCA model at different values of probability threshold
while keeping intersection over union constant at IoU = 0.35.

Network AP% Precision(P)  Recall(R) F1 Probability Threshold
0.90 0.91 0.91 0.1
0.95 0.83 0.89 0.2
0.96 0.79 0.87 0.25
0.97 0.75 0.85 0.3
0.98 0.73 0.83 0.35
YOLO-PCA 95.60 0.98 0.68 0.81 0.4
0.99 0.60 0.75 0.5
0.99 0.52 0.68 0.6
0.99 0.43 0.60 0.7
1.00 0.34 0.50 0.8
1.00 0.23 0.38 0.9

Table 2. Test metrics for traditional YOLOv3 model evaluated at 11- probability threshold values
while keeping IoU = 0.35.

Network AP% Precision(P)  Recall(R) F1 Probability Threshold
0.78 0.93 0.85 0.1
0.90 0.87 0.88 0.2
0.93 0.82 0.87 0.25
0.94 0.77 0.85 0.3
. 0.95 0.73 0.82 0.35
Traditional 94.01 0.97 0.68 0.80 0.4
YOLOv3 0.98 0.57 0.72 05
0.98 0.46 0.63 0.6
0.99 0.35 0.52 0.7
1.00 0.26 0.41 0.8
1.00 0.16 0.27 0.9

4.2. Discussion

As the recall, precision, and F1-score, all these metrics vary with the number of true
positives, false positives, and false negatives. The following formulas calculate the precision
rate, recall rate, and Fl-score.

TP
P_TP+FP ©®)
TP
R=—"
TP+ FN ©)
TP
F1=2x — 7
“TP+FP @)

TP = When there is smoke and it detects as smoke
FP = When there is no smoke and it detects as smoke
FN = When there is smoke and it detects as no smoke

The constant IoU threshold affects both precision and recall. We can see in Tables 1 and 2,
when precision increases with an increase in probability threshold, recall decreases. It is
precision that decides the area under the PR curve. It means the precision rate directly
affects the AP.

In simple words, precision means the quality of the results, and recall shows the
quantity of relevant or irrelevant results. At a high probability threshold, the quality
improves i.e., precision improves because only the most relevant results are retrieved while
discarding the others.

We compare the ordinary YOLOv3 and improved YOLOv3-PCA models in high-level
percentages instead of percentage points. Because, at 11-points of the probability threshold,
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we calculate the precision and recall rates. Therefore, we can compare both models in
high-level percentages by computing the average of all precision rates, recall rates, and F1-
scores. After calculating the average of all metrics, it is possible to determine the high-level
percentages of precision, recall, mean harmonic, average precision (AP), and mean average
precision (mAP) by the following formula.

_ MIM - MOM

MP MIM

100 ®)
MP = metric percentage

MIM = mean of improved metric

MOM = mean of ordinary metric

The experimental results have improved with precision rate, recall rate, and mean
harmonic (F1-score) by 2.67, 3.06, and 5.59 percentages. The respective improvements in
average precision (AP) and mean average precision (mAP) are 1.66 and 2.78 percentages.

Table 3 shows the average (mean) of precision rate, recall rate, and F1 for improved
YOLOvV3-PCA and ordinary YOLOv3.

Table 3. The mean of improved metrics and ordinary metrics.

Networks Mean(P)%  Mean(R)% Mean(F1)% IoU Threshold Probability
Threshold

Traditional
YOLOV3 94.7 60.0 69.2 0.35 [0.1...09]
YOLOvV3-PCA 97.3 61.9 73.3 0.35 [0.1...09]

The mean of AP values at different IoU calculates the mAP metric for both detectors.
The mAP is the measure of the overall detection performance of a model. From Table 4, the
mAP for an improved model is increased up to worth noting.

Table 4. Table shows the Average precision (AP) at different IoU thresholds. The mean of “AP”
values gives mean average precision (mAP).

AP% AP% AP% AP% AP% .
Networks  y 1;_03 10U=035 IoU=04 IoU=045 IoU=05 TAP%
Traditional
Volov3 94.01 93.06 91.69 89.30 85.16 90.64
YoloV3-PCA 95.60 94.67 93.65 92.26 90.04 93.24

Figure 10 shows the visual comparison for the testing of 3-scale YOLOvV3 and 4-scale
YOLOvV3-PCA algorithms. Figure 10 illustrates the detected samples by improved YOLOv3-
PCA network while out of them, the traditional YOLOv3 detects a few correctly. The reason
is that in those samples the smoke instances are immensely small. Additionally, in some
samples the smoke is very thin, i.e., appeared as low-density smoke.

We have presented the visual comparison for both detectors. We selected challenging
smoke instances from test set and tested by the both detectors. The improved YOLOv3
detects all samples correctly while out of them traditional YOLOvV3 detects a few correctly
while the rest are missed.

Figure 11 represents missed detection by the improved YOLOv3-PCA model in suc-
cessive frames in videos. Out of a few reasons for missed detection by the improved
YOLOv3-PCA model is a severe atmospheric condition that may cause a sudden change in
the shape of the smoke. Similarly, when the motion trajectory for smoke movement changes,
the model changes its decision. The improved model may predict samples precisely if we
add the motion vectors of smoke. In the future work, we will present a more generalized
network where we will add motion features in the training phase of the network.
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Figure 10. The visual comparison for the testing of 3-scale YOLOv3 and 4-scale YOLOvV3-PCA
algorithms. Figure 10 illustrates the detected samples by improved YOLOv3-PCA network while out
of them, the traditional YOLOvV3 detects a few correctly.

Video-15

Video-29

Video-33

Video-50

Figure 11. An improved model ignores a few smoke instances in successive frames in videos. Overall,
Figure 11 shows a satisfactory performance of the extra-scale YOLOv3 model, also showing space for
further improvements.

5. Conclusions

This paper integrates Principal Component Analysis as a simple data pre-processing
module with an improved version of YOLOv3. The implementation purpose of the entire
framework is to evaluate the detection results of immense small smoke instances in actual
aerial images captured in the wild.
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To boost up the network predictions for correct smoke labels and localization of smoke
instances in the wild, we add an extra scale of detection in the actual structure of the
traditional YOLOV3.

Principal component analysis pre-processes the raw datasets to extract the most useful
features in less dimensional space. It discards the redundant features present as raw pixels
in the original datasets. Additionally, it makes the visualization of results explicit.

The improved network evaluates our self-built datasets containing smoke images in
challenging environments and non-smoke instances similar to smoke.

Our experiment reports a notable gain in mAP for improved YOLOv3-PCA combi-
nation. In addition, the other metrics such as precision and recall rates are also high. The
hybrid scheme may prove to be of great interest for fire managers to detect forest fire on
time and for firefighters to locate the exact position and growing nature of fire.
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