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Abstract: In this study, a time-dependent investigation has been conducted to numerically analyze
the impact of wind-driven surface fire on an obstacle located on sloped terrain downstream of
the fire source. Inclined field with different upslope terrain angles of 0, 10, 20, and 30◦ at various
wind-velocities have been simulated by FireFoam, which is a large eddy simulation (LES) solver
of the OpenFOAM platform. The numerical data have been validated using the aerodynamic
measurements of a full-scale building model in the absence of fire effects. The results underlined
the physical phenomena contributing to the impact of varying wind flow and terrain slope near the
fire bed on a built area. The findings indicated that under a constant heat release rate and upstream
wind velocity, increasing the upslope terrain angle leads to an increase in the higher temperature
areas on the ground near the building. It is also found that raising the inclined terrain slope angle
from 0 to 30◦, results in an increase in the integrated temperature on the surface of the building.
Furthermore, by raising the terrain slope from 0 to 30◦, the integrated temperature on the ground for
the mentioned cases increases by 16%, 10%, and 13%, respectively.

Keywords: wildfire; LES; wildland–urban interface; wind–fire interaction; terrain slope; wind
structure

1. Introduction

Bushfires are inevitable natural disasters which have enormous negative environmen-
tal and economic impacts. It is widely known that complex terrains have major effects on
the dynamic of the wind flow, which in turn influences the fire dynamic’s behavior.

The wind and topography are widely recognized as the dominant factors affecting
forest fire behavior [1]. Several studies examined the impact of wind on the geometrical
parameters of the flame such as flame length and tilt angle [2–5]. These studies suggested
that having a higher wind speed results in an increase in the flame length, which then drops
off. In some other studies, it is also reported that terrain slope has major contributions on
the rate of spread of the fire in the inclined fields [6–8]. Overall, terrain slope is a crucial
element in fire behavior [9], including the rate of spread [10] due to the complex interaction
between wind and fire in inclined and complex terrains [11]. Another major challenge
in understanding wildfire behavior and fire spread rate is wind and the anomaly of its
interaction with fire [12]. The impact of terrain slope and wind on wildfire behavior has
been explored in some recent studies [11,13,14]. The authors showed that by increasing
terrain slope, the rate of fire spread increases. In other investigations, it is reported that in
windward inclined terrain, air flow acceleration leads to greater fire propagation [15,16].
Hilton and Grag [17] compared the two-dimensional and three-dimensional methods of
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simulating wildfire behavior considering wind–terrain interaction and experimentally mea-
sured datasets. They found a good agreement between the two-dimensional model and the
experimental data and proved that a two-dimensional model requires no parametrization
or fitting term, unlike the 3D model. A numerical study of terrain slope effects on wildfire
behavior was conducted by Linn et al. [18]. In the study, six numerical simulations using
three different fuel beds on flat and upslope terrain were carried out, and it was shown
that terrain slope has a significant effect on the spread rate and spread pattern. They also
demonstrated that there are differences in the wind movement around the fire on sloped
terrain. The mentioned differences in air movement affect the convective and radiative heat
transfer. An experimental study on the effect of terrain slope on heat transfer of wildfire
was also run by Clements and Seto [19]. The investigation highlights the complex inter-
action of fire, meteorology, and topography that affects fire behavior in complex terrain.
The authors proved that simulations using coupled fire–atmospheric models should be
conducted to better understand the dynamic mechanisms of the observed thermodynamic
and kinematic structure reported from this field experiment. Abouali et al. [1] conducted
a computational and laboratory investigation on wind flow and fire behavior over an
isolated inclined ridgeline laboratory-scale terrain for the different terrain slopes. The
results indicated the importance of interaction between terrain-modified flow mechanisms
and fire, which results in accelerated flows that drive the indicated unexpected behavior.
A detailed investigation on bushfire risk and fire behavior on mountains was carried out
by Sharples [20]. These authors conducted a study of mountain meteorology parameters
and the role they may play in bushfire behavior prediction. The authors reported that the
flame’s streamwise velocity profile and fire-induced flow are associated with the terrain
slope. Mendes-Lopes et al. [21] conducted a set of experiments on changing the terrain
slope and wind velocity. Flame height, flame length, flame angle, and temperature were
measured. The results revealed that the rate of spread is enhanced with terrain slope for
up-hill propagation. In addition, it is shown that flame angle and height depend on terrain
slope. In another work, the effect of terrain slope and wind were experimentally and math-
ematically investigated by Viegas [22]. This study was conducted in a homogenous and
plane fuel bed under uniform wind and slope conditions. The effect of terrain slope on fire
behavior was studied in the work of Dupuy and his co-authors [23]. In this work, 109 ex-
periments were conducted to obtain the impact of slope (0◦, 10◦, 20◦, 30◦) on fire behavior
parameters such as temperature and flame geometry. It was shown that by increasing
the terrain slope, the flame residence time increases. Some wind-slope models based on
wind vectors and topographic terrain slope were developed by Sharples [24]. The author
presented a review of using slope corrections in simulating the rate of spread. The effect of
terrain slope on fire spreading toward a fuel break was investigated by Dupuy et al. [25].
They used a multiphase physical model to simulate wildfire spread through a pine stand.
The results showed that the method was fully capable to simulate the propagation of a
crown fire and to estimate the efficiency of a fuel break. A numerical and experimental
study on fire plume and slope effect was conducted by Wu et al. [26]. The effect of the
surface conditions such as slope and fire heat release rate on the plume as well as the
critical inclination angle were investigated in this study. The results showed that the critical
inclination angle is not related to the fire heat release rate or surface conditions.

One important aspect of wildfire research is directed towards the analysis of thermal
and aerodynamic impacts of fire-enhanced wind on building structures in urban envi-
ronments. The lack of enough research in analyzing the impact of wildfire on wind and
buildings with mesh sizes smaller than the boundary layer thickness can be seen in the work
of He and his co-authors [27]. Richards et al. [28] reported an experimental and numerical
investigation on the mean pressure of cube-shaped building and reported an important
sets of data on the aerodynamic behavior of a building in the wind flow. Hostikka et al. [29]
carried out an investigation on fire behavior at the wildland–urban interface. Their work
focused on the numerical simulation and shed a light on understanding the thermal impact
of bushfires on building. Their results indicated that a mesh size of 0.25 m is appropriate for
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the numerical simulation of thermal radiation. A new dynamic modelling on the radiation
heat transfer of wildfires on the building in urban area was proposed by Hilton et al. [30].
The fire spread rate was simulated with a quasi-steady model that was unable to present
adequate insights on dynamic behaviors of the fire. Fryanova and Perminov [31] studied
the effect of fire intensity and wind speed on the ignition probability of building structures.
Thermal and hydrodynamic effect of wind flow on building were explored. Mell et al. [32]
explored the wildland–urban interface phenomenon and their challenges. They reported
that fire behavior can be predicted in a near realistically broad range by physics-based
models under a variety of atmospheric and terrain slope conditions. These models, with
supporting experimental data, are very useful to develop risk assessment and mitigation
strategies for realistic WUI fuels and environmental conditions.

Previous works provide indispensable numerical data into the impact of a wind-
driven surface fire on fire dynamic behavior and temperature profile downstream of the
fire source. However, the fundamental mechanisms of how the interaction of horizontal
wind flow with a line fire changes the velocity profile around a building located on a sloped
terrain and the surface temperature of the building downstream of the fire source still
requires further study. Such studies emphasize the necessity of further development of
wildfire risk management strategies, together with improved urban planning policies.

This work aimed to fill the gap by providing quantitative and systematic analysis
into the factors contributing to the alteration of velocity profile, surface temperature, and
heat flux on a building located on sloped terrain with various slope angles. Although fire
behavior on upslope and downslope terrains has been studied by many researchers, the
combination of topographic effects and weather impact, such as wind velocity, on a built
area has not been investigate in detail. The outcomes of the current work helps to mitigate
the wildfire damages and measure the risk managements, such as the one in Australian
Standard AS 3959 and Construction of Buildings in bushfire-prone areas [33].

This paper is an initial attempt to simulate the wildland–urban interface with an
idealized building structure on a sloped terrain using the FireFOAM solver.

A time-dependent analysis of the interaction between wind, terrain slope, and wild-
fire and their effect on building structure in terms of thermal load, both convection and
radiation effects, and the aerodynamic behavior of the fire downstream of the fire source
are examined and reported in detail.

2. Geometrical Model and Boundary Conditions

In the current study, a cubic structure with a size of 6 × 6 × 6 m is used to replicate
an experiment.

The dimensions of the current geometry are the same as the dimensions of the cubic
structure of Silsoe building in an experimental study [28]. As shown in Figure 1a, the build-
ing is in the 50 ×30 × 25 m computational domain. In the current study, the boundaries of
the considered domain are far enough from the building to avoid happening the adverse
boundary condition effects [34].

The structure is placed in various wind streams near the fire bed to analyze the impact
of wind-fire interactions on an urban area with different terrain slopes. To have more
accurate thermal/aerodynamic data around the cube and downstream of the fire, a near-
wall regions sized in 22 × 20 × 12 m is considered as a high-resolution mesh subdomain
(See Figure 1b).

As shown in Figure 1a, the computational domain is dimensioned at 50 × 30 × 25 m.
A 3 m width fire bed is placed 20 m upstream of the building [35], and a heat release rate
(HRR) equal to 180 MW is considered, which is provided by burning methane with the
rate of 3.96 kg/s and heat of combustion equal to 45,435 kj/kg [36] as a fuel to provide fire
intensity [37] of 6 MW/m, which is equivalent to a wildfire with a spread rate of 0.75 m/s
and a fuel load of 0.4 kg/m2 in grassland.
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Figure 1. Schematic of computational domain and the location of the building. (a) Total geometry and (b) high-resolution
mesh subdomain.

To reconstruct the turbulent flow fluctuations, the random noise with the mean flow
velocity is applied at the domain inlet. In addition, at the domain inlet, a velocity profile of
power-law inflow is used as given in Equation (1).

To decrease the simulation cost for the transition process, simulation of spatially
evolving turbulent flow starts with an inflow boundary that is moved to a smaller distance
upstream of the domain [38]. Having accurate inflow conditions at the boundary similar
to the real condition is not achievable unless the inflow boundary moves toward to the
upstream to let error relaxation assist in estimating the inflow conditions. This “develop-
ment section” can raise the cost of the simulation [38]. In order to decrease the simulation
cost and to have an effective inflow data and turbulent inflow condition, the method of
superposing random fluctuations on a considered mean velocity profile is used [39]. In
spite of its simplicity, the random fluctuation approach to simulate perturbations in the
flow has been applied with different degrees of success [40,41].
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The boundary layer at the atmosphere has been applied using a power-law velocity
profile as shown in Equation (1):

U(Z) = Uref

(
Z

Zref

)α

, (1)

where Zref is the reference height equal to the building’s height (6 m), and Uref is the
reference velocity, which, in this paper, is considered as different value ranges of 4.5 m/s,
6 m/s, and 7.5 m/s. α is specified based on the terrain category of the experimental
study [42] and considered as 0.16.

A conventional atmospheric pressure (101 kPa) for inlet, outlet, initial internal field,
and top boundaries is applied, and the slide boundaries are considered as a free slip
boundary. The wall model proposed by Launder and Spalding [43] is used to have the
near-wall treatment of turbulent flow. The used self-adapting wall function contributes
to having higher-resolution near-wall eddies for a fine wall grid corresponding to the
dimensionless wall distance parameter of less than 5 (y+ < 5 m). This means that the
turbulent boundary layer is fully resolved up to the viscous sublayer. The y+ parameter
shows the first cell size near the wall [44]. More information about the implementation of
boundary conditions can be found in references [45–47].

The horizontal slope (domain attack) angle, θ, is considered as the angle of gravita-
tional acceleration to the z coordinate of the computation domain, which is defined as two
non-zero components:

gx = −g sin (θ) and gz = −g cos (θ), (2)

The initial temperature and velocity of the domain are considered as 300 K and power-
law velocity profile, respectively. In this paper, the domain attack angle is assumed at four
different upslope angles (θ = 0◦, 10◦, 20◦, and 30◦).

3. Numerical Modeling

In order to solve the equations governing the problem, the FireFoam [48] solver
of OpenFoam, which is an open-source software, is used. FireFOAM is designed and
developed for solving turbulent buoyant flows and diffusion flames and more specifically
for simulating dynamic of fire behavior. FireFOAM has also been shown to be an efficient
tool in wildfire modelling [49].

To obtain the wind velocity and terrain slope effects and their interaction with un-
steady fire plume on a building, all the cases are simulated considering the factor of ignition
time. The unsteady problem is taken into account, and the simulations from the ignition
time to steady state condition have been carried out.

To simulate turbulent flows, the Large Eddy Simulation (LES) method is applied. The
Favre-filtered formulation of the Navier–Stokes equations representing the fire dynamics
is written as a set of momentum conservation equations of mass, energy, and chemical
species mass fraction.

Continuity, momentum, energy, species, and state equations [35] are presented in
Equations (3)–(7):

∂ρ

∂t
+

∂(ρũi)

∂xi
= 0, (3)

∂(ρũi)

∂t
+

∂
(
ρũiũj

)
∂xi

=
∂

∂xj

[
ρ(υ+ υt)

(
∂(ũi)

∂xj
+

∂
(
ũj
)

∂xi
− 2

3
∂(ũk)

∂xk
δij

)]
−

∂
(
P
)

∂xi
+ ρ gi, (4)

∂
(
ρh̃
)

∂t
+

∂
(
ρũjh̃

)
∂xj

=
DP
Dt

+
∂

∂xj

[
ρ

(
αt +

υt

Prt

)(
∂h̃
∂xj

)]
+

.
q′′′ −∇.

.
qr
′′ , (5)
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∂
(
ρỸm

)
∂t

+
∂
(
ρũjỸm

)
∂xj

=
∂

∂xj

ρ(Dc +
υt

Sct

)∂
(

Ỹm

)
∂xj

+ωm, (6)

P = ρRT̃, (7)

where “¯” and “~” show spatial and Favre filtering, respectively, p is the static pressure,
h represents the total enthalpy, Ym is the mass fraction of species m, and g represents
the gravitational acceleration. Prt, Sct, Dc, υ, υt, P, R, αt, δ and ωm are the turbulent
Prandtl number, turbulent Schmidt number, laminar diffusion coefficient, laminar viscosity,
turbulent viscosity, density, gas constant, thermal diffusion coefficient, Kronecker delta,
and production/sink rate of species m due to gas reaction, respectively. Coupled velocity
and pressure is applied in PIMPLE scheme, which is used by FireFoam. In the current
numerical model, the Eddy Dissipation Model (EDM) was used. The differencing scheme
of first order upwind was applied. Equation (4) can be written in the flow acceleration
form as derived in Equation (8):

→
a =

D
→
u

Dt
=
−∇p
ρ

+
→
g +

Φ
ρ

, (8)

where
→
a represents the acceleration of the flow, u represents the flow velocity, ∇p is the

pressure gradient, and Φ is the viscous shear stress.

4. Validation

To validate the numerical model, a detailed comparison between the mean pressure
coefficients of the present study and two sets of experimental measurements and a numeri-
cal simulation is made and shown in Figure 2. The first experimental investigation is of
Richards and Hoxey [28,50]. They measured the pressure along the vertical and horizontal
centrelines of the Silsoe cube. The second empirical study used to validate the current
numerical simulation is Castro and Robins [51] on testing the irrotational and sheared
turbulent flows around a cube. In addition, the numerical study on interactions between
bushfires, wind, and building structure, conducted by He et al. [27], is used as part of our
verification presented in Figure 2. In their study, He and his co-authors [27] modeled the
pressure coefficient distribution around a building under no-fire conditions and compared
their findings with other experimental studies.

It is worth noting that the validation of the numerical model is performed in the
absence of the fire effect by comparing the results to those of the full-scale Silsoe cubic
building calculated by Richards and Hoxey [50]. As the Eddy Dissipation Concept (EDC)
is mainly regulated by turbulent mixing, the characteristics of the fire dynamic are tightly
linked with the building aerodynamics. Therefore, the pressure distribution along the
building in a no-fire scenario is an applicable gauge indicating the accuracy and validity
of the numerical findings. As seen, in Figure 2, the results of the presented model and
experimental published data are consistent, and an acceptable agreement is observed. The
maximum error is accrued in location 1.25, which is about 18%.

The grid independence study is conducted for three structure meshes of 4,600,000,
7,800,000, and 9,500,000 into the domain. The results indicate that increasing the number of
the grid cells initially leads to an increase in the mean pressure coefficient while a further
increase in the number of cells marginally affects the temperature profile.

Another comparison between the present study and Morvan [52] is also made to
validate the thermal phase of the present investigation, which is presented in Table 1. In the
table, the flame height for three different wind velocities is presented. As seen, the present
results are considerably close to the study of Morvan [52] with a maximum error of 8%.
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Table 1. Comparison of the flame height, as functions of the wind velocity, between published
data [52] and the present study.

Published Data [52] Present Study

Flame height (wind velocity 4.5 m/s), m 1.4 1.5
Flame height (wind velocity 6 m/s), m 1.25 1.15

Flame height (wind velocity 7.5 m/s), m 0.85 0.8

5. Result and Discussion

The present study investigated the simulated effect of terrain slope at a dynamically
changing wind-field on a stationary source of fire, representing a line fire in WUI configu-
ration. The simulations investigated the time-dependent (transient) fire behavior, from the
ignition time to the steady state condition, that could be expected on an idealized building.

Figure 3 presents the effect of terrain slope on temperature distribution caused by
the fire bed in the domain at Uref = 4.5, 6, and 7.5 m/s. As can be seen in this figure, by
increasing the terrain slope, the flame tilt angle caused by buoyancy force increases, and the
temperature near the building goes up. This is mainly due to the generation of a component
of the buoyancy force in the cases with higher terrain slope, which intensifies the tilt angle
and ends up having a higher flame temperature closer to the ground. Another parameter
that enhances the flame tilt angle is a higher wind velocity. Combining the effect of terrain
slope and wind velocity results in a higher temperature in the vicinity of the building
structure in these scenarios. The higher flame tilt angle, caused by the aforementioned
reasons, the lower the distance between the flame and the building structure. Looking at
the temperature distribution, it can be concluded that the buildings at the up-slope terrains
are at higher risk of wildfire damages.

The terrain slope and wind velocity parameters which cause the flame to become
tilted counteract each other if the building is being built on a down-slope terrain.

Looking at the results presented in Figure 3 in more detail, the flames are reach a
steady state after the first 12 s of ignition. From 12 s to 96 s at all set slopes and reference
velocities, the flame fluctuates due to the changing in the density of the air in the vicinity of



Fire 2021, 4, 94 8 of 23

the flame, which is caused by convection heat transfer. The denser air (cold air) is replaced
with the lighter air (hot air) and makes a circulation in the downstream. This is mostly the
reason behind the fluctuated movement of the flame.
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Figure 3. Temperature distribution for the reference velocity (A,B) Uref = 4.5, (C,D) Uref = 6, (E,F) Uref = 7.5 m/s in various
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One of the important parameters which plays a key role in fire spread is the flame tilt
angle [53]. Figure 3 emphasizes two aspects associated with the increasing flame tilt angle,
namely, terrain slope and wind velocity.

It is evident that the presence of buildings on an upslope terrain results in a higher
altitude from the sea level.
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On the one hand, it is known that the buoyancy force results in having higher temper-
atures at higher altitudes above the flame bed because of the lower density of the hot air
compared with the cold air. On the other hand, as it is discussed, the up-slope terrain leads
to an increase in the flame tilt angle toward to the building.

Given the mentioned facts, structures built on the positive inclined terrains will be at
higher risk of damage caused by fire intensity compared to the equivalents placed on the
flat ground or down-sloped terrain.

Wind velocity is also another reason for increasing flame tilt angle. The pressure
drops between the upstream before the flame and downstream after the flame, resulting
in making the flame positioned towards the wind direction, and this creates a higher
temperature field downstream of the fire.

The incident radiation heat rate on the building surface for three different reference
velocities of 4.5, 6, and 7.5 m/s and a terrain slope from 0 to 30◦ is shown in Figure 4. As
can be observed, by increasing the terrain slope, the absorbed heat rate by the building
surface increases. This is due to the increase in the flame tilt angle, the subsequent increase
in the view factor between the flame source and the building surface, and, finally, the
increase in the radiation heat transfer. The incident radiation heat rate on the building
located at the downstream of the fire in the terrain with a slope of 30◦ is equal to about
5800–6100 kW, which is quite higher than that in flat terrain.
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Figure 5 shows the average flame tilt angles for three different reference velocities of
4.5, 6, and 7.5 m/s and a terrain slope from 0 to 30◦. The flame tilt angles are obtained
using temperature contours. It is defined as the angle between the normal to the ground
and the intersection of the flame axis and the front of the isotherm curve [53]. As can be
seen, the average flame tilt angles for Uref = 4.5, 6, and 7.5 m/s and terrain slope 0◦, 10◦,
20◦, and 30◦ are shown in Figure 5, aligned with the trend observed in Figure 3.
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Figure 5. Average tilt angle for Uref = 4.5, 6, and 7.5 m/s and terrain slope 0◦, 10◦, 20◦, and 30◦.

By increasing the terrain slope and reference velocities correspondent with the wind
intensity, the flame tilt angle increases. Evidently, the difference between the flame tilt
angles of each curve (∂θ) decreases with the increasing terrain slope. On the other hand,
the sharper the terrain slope, the lower the effect of Uref enhancement on the increase in
flame tilt angle will be. This is due to the decrease in the Ux component of wind velocity
with the increase in terrain slope.

Figure 6 shows the contours of vertical transects of instantaneous streamwise velocity
component (Ux = velocity component in X direction) and corresponding velocity vectors on
the terrain without slope (θ = 0) and three inclined terrains (θ = 10, 20 and 30◦) for various
reference velocities, Uref = 4.5, 6, and 7.5 m/s. As shown, the flame is tilted windward
downstream of the fire. By increasing wind velocity, the tilt angle is also increased. The
main reason behind this observed trend is having a low-pressure region behind the fire bed
which is created by the air entering the domain. This accelerates the fire plume downstream
of the fire bed.

The non-uniform region with a random movement of the fire plume can be observed
in Figure 6. It is caused due to the lack of balance between buoyancy force and inertial
wind flow from upstream toward to the downstream of the domain. As can be seen, by
time, the fire–ground attachment area is extended by the fluctuating behavior of the fire
plume. Downstream of the fire, behind the building, a recirculation region as a result of
the reverse flow can be seen. This is due to having a pressure drop and wake as well as a
buoyant instability [54] phenomenon which leads to the creation of a higher temperature
air region behind the building. The above phenomenon increases with the increment in
the terrain slope due to the increase in the buoyant instability as a result of changes in the
buoyancy force direction.

Figure 7 demonstrates the average vertical component of flow velocity downstream
behind the flame versus the terrain slope for three different Uref = 4.5, 6, and 7.5 m/s.
Figure 7’s trend is aligned with the findings presented in Figure 6. As discussed, having
steeper slope leads to leaning the flame towards the downstream and causes an increment
in the flow velocity.
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The Froude number distribution of the domain for different terrain slopes 0◦, 10◦,
20◦, and 30◦ and Uref = 4.5, 6, and 7.5 m/s are shown in Figure 8. The dimensionless
Froude number can be used to specify the ratio of the inertial force and thermal buoyancy
in fire [55]. The Froude number is defined in Equation (9) [56,57]:

Fr =
Ux√
gLw

, (9)

where g is the gravity acceleration, and Lw is equal to the width of the fire bed perpendicular
to the wind. The effect of slope on the Froude number can be seen in the air flow velocities’
variation corresponding to the fire plume, which depends on the air temperature.
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As can be seen, increasing velocity results in an increase in the Froude number. In
cases with a lower value of Uref, the velocity magnitude of the flow in the fire region is
higher than in the other cases due to having velocity components other than the X-direction.
By increasing the Uref values, the X-direction of the flow downstream of the fire increases.

Figure 9 shows the contours of temperature distribution on the ground, in the vicinity
of the building, and downstream of the fire. As can be seen, the increasing terrain slope
leads to an increase in the area with higher temperature toward the building. This is due to
the combination of two main parameters: First, the negative pressure gradient increases
with the increment of the buoyancy force caused by the upslope terrain, and as a result, the
wind enhancement happens.
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Given this, in steeper slopes, the Coanda effect [26] increases. In other word, in
addition to the wind force, the buoyancy force intensifies the wind velocity and contributes
to the Coanda effect, which increases the flame tilt angle and the attachment of the flame to
the ground. The second parameter is the increment of view factor between the fire plume
and the ground. An increase in the tilt angle increases the view factor, and finally, the
radiation heat transfer between the fire flames and the ground increases, which, again,
intensifies the temperature.

Above and beyond the increment in the wind reference velocity can contribute to the
increase in the higher temperature fields’ length by increasing the tilt angle.

Figure 10 indicates the integrated temperature on the ground and at the domain for
three different reference velocities of 4.5, 6, and 7.5 m/s and terrain slopes 0, 10, 20, and
30◦. The integrated temperature of the ground is defined as the mean temperature of
the whole ground surface. Due to the fact that each point of the surface has a different
temperature, the integrated temperature is calculated in these simulations. As seen, the
three cases have different trends. This is associated with the fluctuating behavior of the
fire plume caused by the imbalance between the buoyancy force and the inertial wind
flow. The overall trend observed in the cases shown in Figure 10 is aligned well with
Figure 9’s description, in that by increasing the terrain slope and Uref values, larger areas
with higher temperatures on the ground are observed. Increasing the terrain slope from 0
to 30◦ raises the integrated temperature on the ground by 16%, 10%, and 13% for the cases
with Uref = 4.5, 6, and 7.5 m/s, respectively. Looking at Figure 10 in more detail, there is
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no linear relation between the terrain slope and the integrated temperature of the ground,
and it can especially be seen that in slopes more than 20◦, the value of ground temperature
for the case with Uref = 4.5 m/s is more than that of the case with Uref = 6 m/s. However,
overall, the Uref values and the integrated temperature of the ground have a direct relation.
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Shown in Figure 11 is the temperature distribution at the surface of the building for
different terrain slopes and reference velocities. Quite obviously, the front surface of the
building has the highest temperature; this is due to having the highest view factor for the
radiation heat transfer from the fire source. By increasing the terrain slope, the maximum
temperature on the building surface increases. The random appearance of the provided
contours is caused by instability between the buoyancy force and inertial wind flow, which
results in a turbulent flame.

The graph of the integrated temperature on the building surface for Uref = 4.5, 6, and
7.5 m/s and terrain slope 0◦, 10◦, 20◦, and 30◦ is shown in Figure 12, and it is calculated
in the same way as before, so that the integrated temperature is defined as the mean
temperature of the whole surface. Increasing the terrain slope from 0 to 30◦ increases the
integrated temperature of the building surface for the cases with Uref = 4.5, 6, and 7.5 m/s
by 14%, 15%, and 21%, respectively. Furthermore, by increasing the terrain slope, the slope
of the curve decreases. This is associated with the decrease in the derivative of the view
factor by increasing the terrain slope.
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6. Conclusions

In the present study, the effect of inclined terrain with different slope angles on a
wind-driven surface fire and its downstream temperature distribution and velocities in the
presence of an idealized building is numerically investigated. The slope angles of 0, 10, 20,
and 30◦ at various wind-fields with reference velocities of 4.5, 6, and 7.5 m/s are considered.
All the cases are simulated on a building, considering the factor of ignition time to obtain
the wind velocity and terrain slope effects and their interaction with unsteady fire plume.
The main outcomes of the study are summarized as follows:

• The simulated results show acceptable agreement with the experimental measure-
ments for cold flow. The maximum error between the numerical obtained data and
experimental results is 18%.

• For the inclined fields, corresponding to an increase in the upslope terrain angle, the
tilt angle of the flame increases due to the buoyancy force, which results in increasing
the temperature at the vicinity of the building.

• The created low-pressure region behind the fire bed accelerates the fire plume down-
stream of the fire bed and increases the tilt angle.

• Increasing the terrain angle leads to an increase in the area with higher temperature
on the ground near the building.

• By raising the terrain slope from 0 to 30◦, the integrated temperature on the ground for
the cases with Uref = 4.5, 6, and 7.5 m/s increases by 16%, 10%, and 13%, respectively.

• Raising the inclined terrain slope angle from 0 to 30◦ results in an increase in the
integrated temperature of the building surface so that for cases with Uref = 4.5, 6, and
7.5 m/s, the increments are 14%, 15%, and 21%, respectively.
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Nomenclature

g acceleration of gravity Zref Reference height equal to the
building’s height

P Pressure Uref Reference velocity
T Temperature Ym Mass fraction of species m
Lw Width of the fire bed perpendicular to the wind Tmax Maximum temperature of flame
ui Component of velocity in the i direction h Enthalpy
Yk Species mass fraction Prt Turbulent Prandtl number
Sct turbulent Schmidt number Dc Laminar diffusion coefficient
R Gas constant Fr Froude number
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Greek symbols
υ Laminar viscosity

.
ωk Average values of mass

conservation
.

ωT average values of combustion reaction rates αt Thermal diffusion coefficient
θ Terrain slope a Acceleration of the flow
φ Viscous shear stress δ Kronecker delta
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