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Abstract: Fire Service is the fundamental civic service to protect citizens from irrecoverable, heavy
losses of lives and property. Hotspot analysis of structure fires is essential to estimate people and
property at risk. Hotspot analysis for the peak period of last decade, using a GIS-based spatial
analyst and statistical techniques through the Kernel Density Estimation (KDE) and Getis-Ord Gi*
with Inverse Distance Weighted (IDW) interpolation is performed, revealing fire risk zones at the
city ward micro level. Using remote sensing, outputs of hotspot analysis are integrated with the
built environment of Land Use Land Cover (LULC) to quantify the accurate built-up areas and
population density of identified fire risk zones. KDE delineates 34 wards as hotspots, while Getis-Ord
Gi* delineates 17 wards within the KDE hotspot, the central core areas having the highest built-up
and population density. A temporal analysis reveals the maximum fires on Thursday during the
hot afternoon hours from 12 noon to 5 p.m. The study outputs help decision makers for effective
fire prevention and protection by deploying immediate resource allocations and proactive planning
reassuring sustainable urban development. Furthermore, updating the requirement of the National
Disaster Management Authority (NDMA) to build urban resilient infrastructure in accord with the
Smart City Mission.

Keywords: fire incidence; hotspot analysis; KDE; Getis-Ord Gi*; IDW interpolation; fire risk zones;
built-up areas; temporal analysis; sustainable development

1. Introduction

Structure fires are the fires involving the structural components of various types of
residential, commercial, educational, or industrial buildings. Structure fires have sub-
stantial consequences adversely affecting urban sustainable development threatening life
safety, property protection, continuity of operations, environmental protection, and her-
itage conservation. As per the International Association of Fire and Rescue Services, India
has accounted the average fire rate as 1.18 per 1000 inhabitants per year with an average
fire death of 1.04 per 100 fires for a period of five years from 2014 to 2018 [1]. The Indian
Risk Survey Report 2018 has listed fire as the third of the top five identified risks, with the
increased vulnerability causing tremendous losses to physical assets over the last three
years, and in 2019, fire risk was on the tenth rank. Hence, fire is of major concern [2].
The National Crime Records Bureau 2019 data of India has accounted for a total of 11,037
accidental fires, with 69% of these fires being in the structures of schools or commercial,
residential, and governmental buildings, and a total of 10,915 deaths, with 62% in structure
fires, and a total of 441 persons injured, with 78% in structure fires [3]. Hence, it is evident
that structure fires have an adverse impact on the sustainability of an urban built environ-
ment, affecting and disrupting the urban functionality with heavy losses of property and
lives [4]. Therefore, the fire incidence pattern of the urban agglomeration is to be assessed
delineating the hotspot area along with statistically significant fire risk areas for effective
and efficient mitigation [5].
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Urban agglomeration is an inevitable phenomenon in the process of urbanization
sheltering nearly 68% of the Earth’s population by 2050 and with its center of gravity in the
Asian cities of China and India [6,7]. Mckinsey and company have predicted the probability
of Indian urban agglomeration with an intense rise in population density accounting for
nearly thirteen cities with a population of more than four million and a million-plus
population in sixty-eight cities by 2030 [8]. With the rapid urban agglomeration, cities
are leading to have compact development and expansion by urban sprawl development
with land-use transformations resulting in a multitude of challenges by increased and new
fire risks [9–11]. In addition, the increasing demography increases the vulnerability of
fire risk, demanding a significant availability of fire service provisions for efficient and
reliable fire safety management [12]. As the urban growth develops, the provision of
fire service facilities becomes a priority to cope up with the alarming demand for fire
safety [13] and has to be strengthened by comprehensive and accurate information for
balanced decision making with an emergent response [14]. Therefore, understanding
the fire incidence pattern with its severity, particularly structure fires in the context of
sustainable urban development, is of great significance for the implementation through
systematic risk assessment by mitigating measures [15]. The planning of preparedness
of fire service on the basis of risk assessment can improve the emergency response and
thus enhance the efficiency of fire service. It is, therefore, recognized as an essential part of
fire prevention and signs to assess the fire risk zones, delineating hotspots based on the
historical fire incidences to understand the fire incidence pattern at the specific geographical
location, as the geographical characteristics vary globally.

Geospatial tools comprising Geographic Information Systems (GIS) and Remote Sens-
ing (RS) are powerful tools to evaluate the spatial fire distribution patterns integrating
the temporal data [16] and are widely adopted as an analysis system for urban infrastruc-
tures [17]. The spatial and temporal patterns of structure fires are of interest, integrating
the potential dimensions of space and time [15–21]. The fire distribution often has a
wide variation over space and time, and it is critical to categorize fire distributing under
uniform or random patterns with the changing challenges of the urban agglomerating
space [22,23]. The fire distribution pattern has a close association with human activities
and the surrounding built environment, as well as the demographic and socioeconomic
factors [11,24]. Built environments with high population densities reflect high human
activities with an increased risk of structure fires [15,20]. Fire risk has been researched
in residential fires associated with varied socioeconomic aspects [25–28]. The impact of
fire incidences was revealed with high risk to very young children and very old residents
of Canada [29]. Structure fire studies have analyzed the various causes of fire incidents,
integrating time in months and hours [30]. The temporal data analyses of fire incidences of
previous studies in Australia revealed maximum fire incidence frequencies on weekdays
and school holidays, establishing the close association between fire incidences and the
socioeconomic conditions of the urban areas [20,28], with an increased rate over the pace
of time [11]. RS integrated with GIS has many applications in the various fields of weather,
forestry, agriculture, surface changes, biodiversity, and many more [30]. In the urban
planning context for fire services, RS technologies can be used for detecting land use and
land cover (LULC) with active fires (hotspots) determining the physical properties of land
with accuracy and precision [11,31,32], quantifying the built-up land for allocation of fire
service resources and enhancing the efficiency of emergency responses with sustainability.

Previous studies quantified the fire risk correlating the various aspects of the socioeco-
nomic characteristics of neighborhoods in developed countries at macro-level spatial units
such as countries, states, and census tracks [15–18,33]. In South Asia, Indian cities have
undergone a rapid decadal transformation of the built environment, changing the urban
landscape with social structures accommodating the increasing population and resulting
in the urban agglomeration of a developing country [34,35], which are comparatively less
researched. The fire incidence pattern in urban areas at the micro-level of urban agglom-
eration in developed countries is a research topic of great interest and an emergent need
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as well [24,36]. Research on fire severity quantifying the losses to assess the impacts of
fire and identifying the fire risk areas for strategic interventions has become increasingly
popular in recent years [37]. Population density as well can be the final output and target
for resource allocation.

Hotspot analysis determines the dense concentration of events within a limited geo-
graphical area. Numerous statistical models such as descriptive statistics, Poisson regres-
sion, binomial regression, and Bayesian network models for hotspot analysis were adopted
in varied disciplines, dealing with the randomness of events in space and time [38–40].
Being statistical, these methods do not consider the spatial characteristics of the events.
GIS tools have advanced techniques to estimate and quantify hotspots identifying the high
concentration of events to detect areas with active fires inferring as high fire risk zones, re-
ferred to as a hotspot, represented by cartographic maps for visualization [41]. In addition,
Kernel Density Estimation (KDE) and Hotspot Analysis (Getis-Ord Gi*) HA(GOG*) with
Inverse Distance Weighted (IDW) interpolation are widely applied in varied disciplines of
geography, traffic safety management, and crime [42–44].

In India, a developing country, cities have undergone fundamental transformations in
an urban landscape and social structures, and the process of urbanization has increased fire
incidences and intensified consequences [2,35]. Fire service is a part of the responsibilities
of Urban Local Bodies (ULB) to provide fire safety of urban areas [45] and plays a significant
role in the success of all schemes by the Government of India carried out for the betterment
of citizen’s life and infrastructures integrating sustainable urbanization in the cities such
Atal Mission for Rejuvenation and Urban Transformation (AMRUT) [46], Pradhan Mantri
Awas Yojna (PMAY) [47], Urban Livelihood Mission, and Heritage City Development
and Augmentation Yojna (HRIDAY) [48]. The National Disaster Management Authority
(NDMA) has listed above 95% deficiencies in fire services throughout the country in
2012, with updating requirements of later date, which is still awaiting [49]. The spatial
accessibility of fire vehicles for emergency response was a major consideration for assessing
the deficiencies. Thus, the questions raised for considering the fire incidence pattern of
urban areas for updating and strengthening the deficiencies are as follows:

• Are fire incidences evenly distributed?
• Are the fire risk areas identified and quantified?
• Are the fire occurrences analyzed on the temporal scale?
• Are the causes of fire incidences assessed for the identified fire risk areas?
• Are urban and human activities responsible for fire occurrences? How so?

Therefore, to address the research questions, the objective of the study is hotspot
analysis delineating the fire risk zones to understand the fire pattern on a spatial and
temporal scale with cause-wise analysis on historical fire incidences. The results of the
study are to be integrated in the reassessment and restructuring of the fire service building
community in order to achieve a resilient and sustainable built environment. The continual
reassessment and restructuring of fire service provisions are essential in reducing fire
severity in terms of fire deaths, injuries, and property damage [50]. Resource allocations
for fire service involve a heavy budget investment and hence a long-term peak period
has to be assessed when updating the requirements. The study aims to assess structure
fire patterns in the urban agglomeration for a decadal period of historical fire incidences
from 2011 to 2020, delineating the hotspot areas with the quantification of the built-up
areas and population density under significant fire risk zones for effective and efficient
mitigation with proactive planning during the peak period. The study has the potential
to inform policy makers of other ULBs of similar cities to reassess and restructure fire
services, integrating Smart City Mission, assuring sustainability [51], overlapping with
the Sustainable Development Goals (SDG-11) [52] to develop a sustainable city, state,
and nation.
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2. Materials and Methods
2.1. Study Area

The urban agglomeration of Nagpur city of Maharashtra state is centrally located
in India with a zero-mile location at 21◦9′ N and 79◦5′ E coordinates. The population of
the city is 2.45 million as per the 2011 census and is ranked as the third most populated
urban centre in the state and thirteenth in the country, with an average population density
of 10,873 persons per km2, covering an area of 225.08 km2, merging two census towns
of Narsala and Hudkeshwar [53], and subdivided into 138 wards as shown in Figure 1.
Nagpur has a tropical savannah climate (Aw in Koppen climate classification) with dry
conditions throughout the year, where summer temperatures intensify up to 47.8 ◦C,
making it the hottest place in India [54] and suitable for the escalation of the fire frequency.
The winter temperature declines to 10◦ to 12 ◦C and has the average annual rainfall of
1161.54 mm [55].
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Figure 1. The geographical location of the study area with structure fires across the study period.

Structures refer to the urban functional confined spaces that have a significant impact
on human life and daily activities [56]. According to the Census 2011, 594,272 buildings
were housed for various purposes covering 52% of the built up land area of the city,
expanding to 73% in 2020. Out of these buildings, 82.24% are used as a residence; 2.79% for
residence-cum-other use; 8.60% for shops and offices; 0.31% for schools and colleges, 0.26%
for hotels, lodges, guest houses, etc.; 0.48% as hospital, dispensary, etc.; 0.90% as factory,
workshop, work shed, etc.; 0.58% as a place of worship; and 3.85% as other non-residential
use.

Census 2011 has accounted for the structures of the residences and residence-cum-
other by proportional building materials listed under roof, walls, and floors. The material
of walls comprised a maximum of burnt bricks with 65.5%, followed with concrete—11.2%,
Mud/unburnt—10.6, stoned packed—4.3%, stone not packed—3%, grass/thatch—2.2%,
wood—1.3%, plastic/polythene—0.5%, and any other—0.2%. Material of roofs comprised a
maximum of concrete with 62.6%, followed with galvanized iron/metals/asbestos—12.9%,
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machine-made 11.8%, hand-made—5.7%, stone/slate—2.5%, grass/thatch—2%, burnt
brick—1.1%, plastic/polythene—1%, and any other—0.3%. Material of floors comprised
a maximum of cement with 42.5%, followed by mosaic/floor tiles—40.3%, mud—8.6%,
stone—6%, burnt brick—1.5%, any other material—0.9%, and wood/bamboo—0.2%.

2.1.1. Data and Sources

Nagpur Municipal Corporation (NMC) administers the urban centre of Nagpur, and
the administrative data with regard to ward limits and the population was provided
by NMC in kml format. The decadal population growth rate for 2011 was 19.3% and
a growth of 20.9% is projected for 2021, 21.2% for 2031, and 20.7% for 2041 [55]. The
yearly population size from 2011 to 2020 was procured from World Urbanization Prospects
2018 [57] to analyze on a yearly basis.

Fire incidence data for the period of a decade from 2011 to 2020 was procured from the
Fire Service Department of NMC on a yearly, monthly, and daily basis, revealing the rise of
fire incidents with the population growth. The maximum incidences were observed in the
hottest month of May with a highest z-score value of 2.01 > 1.96 at a 95% confidence level as
shown in Figure 2, indicating the impact of climatic conditions on fire incidence frequency.
Therefore, the dataset for the hottest month of May with maximum fire occurrences is
researched cumulatively from 2011 to 2020 for hotspot analysis of structure fires.
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Figure 2. Monthly fire incidences.

Structure fire incident data of the city were considered for the study, with a cumulative
count of 570 fire events for the hottest month of May with maximum fire frequency from
2011 to 2020. The daily fire incidence data was in regional language in the daily call register,
including the addresses, date, call time, cause of the fire, and brief of occupancy type for
each fire event (such as house fire, shop fire, hospital fire, etc., for structure fires). For the
study, structure fires are grouped and classified by occupancy type based on the National
Building Code of India (NBCI), 2016 [58] and the proportion of each structure fire reveals
that the Residential fires have the highest proportion of 48% with next mercantile with 32%,
while industrial of 7%, business of 4%, assembly of 3%, storage of 3%, educational of 2%,
and institutional of 2%. The material of construction was not mentioned in the register and
hence the Census 2011 building material data is considered with the maximum of framed
structures with concrete and masonry.

2.1.2. Land Cover Data

Landsat-5 and Landsat-8 satellite images from the USGS Earth Explorer website were
procured with a minimum cloud cover of less than 5% (details described in Table 1) for
the years 2011 and 2020 to understand the urban expansion with built infrastructure
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accommodating the increased population. The images were classified using the false-color
bands of 7, 6, and 4 to develop the LULC maps of the city, and the land cover was classified
as built-up area, vegetation, fallow land, and water body. For analysis, only built-up areas
were delineated comprising the structures and other land covers were excluded.

Table 1. Details of Landsat-8 satellite imaginary used in the study.

Landsat
Satellite Sensor Scene ID Path/Row Acquisition

Date

Landsat-5 TM LT51440452011162KHC04 144/45 11 June 2011
Landsat-8 OLI_TIRS LC81440452020139LGN00 144/45 18 May 2020

2.2. Methods

The hotspot analysis of structure fires is performed with two spatial analyst techniques
of KDE and HA(GOG*) with IDW interpolation to arrive at fire risk zones. Administrative
data with population density are joined with the ward areas, and furthermore, the results
from these two methods are compared to assess the significant fire risk zones. The RS tool
is used to acquire the built-up areas to quantify the fire risk zones. Furthermore, population
density is estimated for each fire risk zones and ranked to reveal the fire risk due to
structure fires in the city for implications. The temporal analysis on yearly, weekdays, and
time, along with cause-wise analysis was also performed to reveal the association of urban
and human activities with the fire occurrences. The study is performed as represented in
Figure 3.
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2.2.1. Data Pre-Processing

The fire incidences were tagged in Google Earth Pro after acquiring the coordinates
physically using Epicollect5 and imported in ArcGIS for analysis. Before performing the
hotspot analysis, the data are combined using the ‘collect event’ tool to combine all the
events in the same geographical location with the new point feature class of ‘ICOUNT’ and
used as input for both methods.

2.2.2. Kernel Density Estimation (KDE)

The KDE identifies the dense areas based on the total count of the geographical events
over time and is helpful to rectify the spatial pattern with classified intensities of density
estimate values [56,59]. The KDE technique was adopted in the developed countries to
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reveal the occurrence of fire foci under different land uses in the State of Amazonas during
2005 [60] and to explore the spatial and temporal dynamics of fire incidents in South Wales,
UK [18]. The KDE method statistically represents the spatial smooth continuous surface
for intensities of the geographical event points over the space of the study area [61]. The
kernel is the circular area of the defined bandwidth radius around each event, indicating
the surrounding area under influence with a statistical value indicating the density per unit
area, and adding of all the values at all places gives a surface of density estimates. ArcGIS
10.6 is used for evaluation considering the default search radius (bandwidth) based on the
spatial configuration and number of input points [30]. The kernel density tool calculates
a magnitude per unit area from a point using a kernel function to fit a smoothly tapered
surface to each point. The surface value is highest at the location and diminishes at the
edge of the surface radius considering the distance decay effect [62]. KDE is performed by
the mathematical formula as in Equation (1) [61] as follows:

ˆ
f (s, b) =

1
nb2

n

∑
i=1

K
( s− sj

b

)
(1)

where n = total number of observations; b = smoothing parameter (bandwidth); s = coor-
dinate vector that indicates where the function is being estimated; sj = coordinate vector
representing each event point; and K = density function that satisfies the following condi-
tion given by Equation (2): ∫

K(s)ds = 1 (2)

2.2.3. Hotspot Analysis (Getis-Ord Gi*)–HA(GOG*)

A hotspot analysis by Gi* statistics was introduced by Getis and Ord for identifying
statistically significant spatial clusters of each area at the local level with clusters of high
values as Hotspots and low values as cold spots [41,63,64]. The HA(GOG*) technique
is widely adopted in varied disciplines of geography, traffic safety management, and
crime [56,64,65]. The vulnerable areas associated with high crime rate along with fire were
revealed for targeted fire prevention in the city of Surrey, British Columbia, Canada [27].
The G∗i statistic is a z-score at a local level, calculated by the mathematical formula as
expressed in Equation (3) [41,66]. A high positive GiZ score indicates hotspots while
negative low GiZ scores indicate cold spots and values near to zero indicates a random
distribution of clusters with significance, as follows:

G∗i =
∑n

j=1 wi,jxj − X ∑n
j=1 wi,j

S

√ [
n ∑n

j=1 w2
i,j−

(
∑n

j=1 wi,j

)
2
]

n−1

(3)

where xj is the attribute value for event j, wi,j is the spatial weight between event i and j, n
is the total number of events, X = mean is calculated by Equation (4), and S = standard
deviation is calculated by Equation (5).

X =
∑n

j=1 xj

n
(4)

S =

√
∑n

j=1 x2
j

n
−
(
X
)2 (5)

Hotspot analysis technique in ArcGIS is used to conduct a Gi* statistical significance
test identifying the clusters with high concentration values surrounded by high concen-
tration values indicating the clusters to be a hotspot and the low concentration values are
surrounded by low concentration values indicating the clusters to be a cold spot [67,68].
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Identification of hotspots is of particular operational interest, and with this goal in mind,
the count itself was an appropriate measure [44,65,69,70].

2.2.4. Inverse Distance Weighted (IDW)

The IDW interpolation method estimates the measured values by hotspot analysis
surrounding the prediction location [30]. The measured values closest to the prediction
location have more influence on the predicted value than those farther away. IDW assumes
that each measured point has a local influence that diminishes with distance. It gives
greater weights to points closest to the prediction location, and the weights diminish as a
function of distance, hence the name inverse distance weighted [30,42].

The IDW interpolation method is employed for demarcation of significant fire risk
areas representing the spatial distribution in the study area. The IDW interpolation output
was spatially joined with the census ward level of the city using a zonal spatial analyst
tool to estimate the significant fire risk zonal areas and population under the risk areas.
Furthermore, the IDW interpolation is used for predicting the high fire risk zonal areas
with the population under risk integrating urbanization for implications.

2.2.5. Built-Up Area Estimation from LULC

Land cover has been conducted in ArcGIS 10.6 employing maximum likelihood
with an image classification tool to measure the built-up area [71]. The land cover was
classified into four major classes of built-up area (structures, roads, and small open spaces),
vegetation (trees in forest areas, large open spaces, and wetland vegetations), fallow land
(remaining open or unutilized land), and water bodies (lakes and ponds) [72]. An accuracy
assessment was conducted for each classified image with ground truth data from Google
Earth Pro using overall accuracy (OA) and kappa coefficient (K) as shown in Equations (6)
and (7) [73]:

OA =
CD
TP
× 100 (6)

K =
P(o) − P(e)

1− P(e)
(7)

where CD = a total number of reference samples chosen; TP = total number of correctly
classified samples; P(o) is the observed proportion of agreement; and P(e) is the proportion
expected by chance [74].

The LULC map was used to assess the actual built-up areas for quantification of
population density under the risk of GiZ-score fire types. The built-up density is calculated
by using Equation (8), and population density by Equation (9) as follows:

BUD =
∑n

i=1 TBi

∑n
i=1 TAi

(8)

PD =
∑n

i=1 TPi

∑n
i=1 TBi

(9)

where BUD = Built-up Density; TB = Sum of the total built-up area of all wards; TA = sum
of the total area of all wards; PD = Population Density; and TP = sum of the total urban
population of the wards.

2.2.6. Temporal and Cause-Wise Analysis

Temporal data statistical analysis significantly evaluates the association with the
correlated variables responsible for fire incidences through the period of years, months,
weekdays, and hourly events [36]. The statistical methodology helps in the interpretation
of the parameters and, due to its simple application, is extensively applied at urban scale by
the decision makers for econometrics, financial inferences, and planning disciplines [75,76].
Temporal analysis on a yearly basis for the selected month is performed statistically, fire
index for the time series of the year is calculated using Equation (10), z-score for each year is
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calculated by using Equation (11), and the probability evaluation is performed using z-score
value to reveal the highest fire incidences. The ratio between fire incidences and population
size of the year is evaluated to understand the impact of urban activities with population
growth on fire incidences. Furthermore, the fire incidences are segregated on basis of
weekdays and hours to arrive at the maximum frequency by circular statistics represented
in radar charts. Pearson’s correlation is evaluated for the hourly fire frequencies using
Equation (12) and the sensitivity analysis is performed by Durbin–Watson (DW) statistic
using Equation (13) [77]:

FI = ∑n
i=1 X
X

(10)

Z =
x− µ

σ
(11)

R =
∑(x− x)(y− y)√

∑(x− x)2 ∑(y− y)2
(12)

d =
∑T

t=2(et − et−1)
2

∑T
t=1 e2

t
(13)

where FI is the fire index for the time series of a year, X is the number of fire incidents for
the time series of a year, and X is the mean value of the time series of a year. Z = standard
score, x = observed value, µ = mean of sample, and σ = standard deviation of the sample.
R = Pearson’s correlation coefficient and x and y are variables. T= Number of observations,
et = residual given by et = ρet−1 + vt, and ρ = null hypothesis.

Human and urban activities causing fire incidences on a yearly temporal scale were
investigated to relate with the fire severity [36,78,79]. Cause-wise categorization of the fire
incidences is performed, and percentage calculation helps to understand the fire cause
pattern due to urban and human activities in the identified fire risk zones for implications.

3. Results
3.1. Hotspot Spatial Analysis
3.1.1. Kernel Density Estimation Result

The KDE analysis is performed by applying a spatial analyst tool. The maps generated
are spatially joined with the ward map as represented in Figure 4. The output is classified
into four groups at the geometric interval as listed in Table 2. The intense area in red
color is the identified hotspot area categorized with a very high fire risk zone, with the
highest value comprising 9% of the total area and with the highest population density
located in the central core and extending towards the northern part of the city with high
rise development. The ranking of population density reveals the very high fire risk zone
with a maximum population under threat on the least percentage area, while the high fire
risk zone has the lowest population density covering the maximum of 54% of the city area
with a maximum of 33% of population size, spreading majorly towards the fringe area of
the city with low rise development
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Table 2. Fire risk zone classification for KDE outputs.

Geometric
Interval Values Fire Risk Zones Number of

Wards
Percentage

Area
Percentage
Population

Population
Density per

km2

Ranking Based
on Population

Density

3.43–24.48 Very High 34 9 20 29,860 1
−0.50–3.42 High 43 54 33 8339 4
−1.23–−0.51 Medium 25 21 22 14,268 3
−5.17–−1.24 Low 36 17 26 21,078 2

3.1.2. Hotspot Analysis (Getis-Ord Gi*)–HA(GOG*) Result

The local level HA(GOG*) was performed to identify the statistical spatial distribution
pattern after the process of collected events in ArcGIS to include all overlapping events, and
the evaluated GiZ-score varies from 3.07216 to −1.07437 as represented in Figure 5. The
results reveal that the hotspots with higher values of 3.07216 exceed the critical value of 1.96
at a 95% confidence level, indicating clusters with high fire event values are surrounded by
high fire event values. The lower value of −1.07437 > −1.96 is within the 95% confidence
level, indicating no cold spots in the spatial distribution pattern.
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3.1.3. Inverse Distance Weighted (IDW) Interpolation Result

The IDW Interpolation techniques are extensively performed for the generation of
HA(GOG*) outputs on spatial dimensions [30,42]. The hotspot analysis results were
spatially joined by a zonal statistics tool to the census ward map after IDW interpolation to
identify administrative areas for estimation and implications, as represented in Figure 6.
Fire disasters are not planned events and any fire incidence can be disastrous with heavy
losses. Therefore, every fire event has to be considered with significant risk. Therefore, all
GiZ scores at 95% confidence level are categorized under the four fire risk types as listed in
Table 3 and reveal the highest population density in the hotspot zones.
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Table 3. Fire risk zone classification for hotspot analysis (Getis-Ord Gi*) of census wards.

Z-Score Type Number of Wards Percentage Area Percentage
Population

Population
Density per km2

Ranking Based
on Population

Density

>1.96 Very High 17 5 10 25,526 1
1.96 to 0.65 High 43 19 28 20,313 2

0.65 to −0.65 Medium 34 52 29 7655 4
−0.65 to −1.96 Low 44 24 33 18,857 3

3.1.4. Built-Up Area Estimation from LULC

The Landsat Satellite images from the USGS Earth Explorer website were classified
through the maximum likelihood supervised classification tool in ArcGIS 10.3 to assess the
urban built environment of 2011 and 2020 to then estimate the significant fire risk areas.
Figure 7 represents the built-up areas of the city with structure fires from 2011 to 2020,
comprising 52% in 2011 and increasing to 73% in 2020, which is an increase of 21%. The
accuracy assessment of both the LULC maps has been performed using the ground truth
data marked in Figures A2 and A1 and as per the findings listed in Tables A1 and A2. The
overall accuracy for both years is 91%, and the Kappa coefficient is 85% in 2011 and 86% in
2020, satisfying the 85% limit for minimum accuracy [74].
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The quantification of the built environment with classified fire types is performed,
and the results are listed in Table 4. The spatial distribution for visualization is represented
in Figure 8, which reveals that the highest percentage of actual built-up areas is in the
Medium category with 46%, the highest built-up density percentage is in high fire risk
category with 91%, revealing the highest development in the built environment and the
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highest population density in very high fire risk category, while the lowest are in the low
category, indicating the impact of urbanization.

Table 4. Estimation of fire risk zones with significant z-scores.

Z-Score Type
Actual

Built-Up Area
Percentage

Built-Up Density
Percentage

Population
Density per km2 of

Built-Up Area

Ranking Based on
Population Density

>1.96 Very High 7 91 27,994 1
1.96 to 0.65 High 22 86 23,659 2

0.65 to −0.65 Medium 42 60 12,750 4
−0.65 to −1.96 Low 29 90 20,904 3

Total 73 18,508
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Figure 8. Built-up areas with structure fire risk zones.

Table 5 has the classified structures as per the NBCI, representing the percentage of
fires to understand the human activity from occupancy fires. The hotspot area with a very
high-risk zone in the central part of the city has a maximum of 39% fires in mercantile
occupancy, 35% in residential, 12% in industrial, and 8% in the business occupancy. While
other risk zones have maximum fires in residential class following with mercantile class of
structures.
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Table 5. Percentage of fires based on occupancy types in classified fire risk zones.

Occupancy Type Very High High Medium Low

Residential 35 43 59 53
Educational 1 1 3 2
Institutional 0 1 1 3

Assembly 0 3 3 5
Business 8 5 3 3

Mercantile 39 34 30 27
Industrial 12 11 1 3

Storage 5 2 1 3

3.1.5. Predictive Probable Fire Risk Evaluation Results

IDW interpolation techniques are extensively performed for the generation of hotspot
analysis outputs on spatial dimensions [30,42]. Figure 9 represents the predictive continu-
ous smooth surfaces classified into five different classes based on the quantile classification
method at the extreme limits considering the raising population due to rapid urbaniza-
tion with the predictive decadal population growth rate for 2031 as 21.2% and 2041 as
20.7% [55]. The very high fire risk zone is represented in red color with high values. The
results represented the central part of the city extending towards the lower eastern part
under predictive very high fire risk covering 19.20% area of the city as shown in Table 6,
and the higher three classes cover 58.69% of the city area, indicating proactive planning by
the resource allocation of fire services for the future decades.
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Table 6. Predictive probable fire risk zones.

Z-Score Type Number of
Wards

Percentage
Area

Percentage
Population

2031

Population
Density for 2031

per km2

Ranking Based
on Population

Density

>1.96 Very High 34 15 21 22,350 1
1.96 to 0.65 High 34 20 22 18,258 3

0.65 to −0.65 Medium 35 47 30 10,138 4
−0.65 to −1.96 Low 35 18 26 23,726 2

3.2. Temporal Analysis

Fire incidences and the population growth across the study period for the hottest
month are evaluated statistically and the output is listed in Table 7 revealing the highest
fire incidence frequency in 2019 with the highest Fire Index, z-score, and probability values,
while least is in the years 2013 and 2020. The urban activities were restricted in 2020 due to
the COVID-19 pandemic lockdown, resulting in a reduced fire incidence frequency. The
population growth has the rising trend as per the UN population projection in lacks [57]
and the ratio of fire incidences is revealed to be the highest in 2019 and lowest in 2020,
as shown in Figure 10. The output reveals the impact of urban and human activities on
fire incidences in a rising pattern during the normal conditions, but during the pandemic,
the ratio lowers down to the least throughout the decadal period, and furthermore, the
trendline of ratio is in a declining pattern with R square value 0.0024.

Table 7. Fire incidences and population matrices.

Year
Fire Incidence Matrices Population Matrices

Ratio
Fire Index Z-Score Probability PopulationIndex Z-Score Probability

2011 1.14 0.68 0.75 0.93 −1.54 0.06 2.59
2012 0.93 −0.34 0.37 0.95 −1.21 0.11 2.08
2013 0.70 −1.44 0.08 0.96 −0.88 0.19 1.54
2014 0.88 −0.59 0.28 0.98 −0.54 0.29 1.90
2015 1.04 0.17 0.57 0.99 −0.19 0.42 2.20
2016 0.93 −0.34 0.37 1.01 0.16 0.56 1.95
2017 1.23 1.10 0.86 1.02 0.52 0.70 2.53
2018 1.07 0.34 0.63 1.04 0.88 0.81 2.17
2019 1.39 1.86 0.97 1.06 1.22 0.89 2.77
2020 0.70 −1.44 0.08 1.07 1.58 0.94 1.38
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Figure 11a depicts the waterfall chart of the evaluated z-score of the fire incidence
pattern, as listed in Table 3, revealing the maximum increase in 2019 with a 1.86 z-score
and decreasing in 2020 for a pandemic reason. Figure 11b depicts the evaluated proportion
of the fire indexes reiterating the fact of maximum rise in 2019 with 39% above the mean
value with the trend line of R square value of 0.00292 indicating a very slow but rising
pattern.
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Figure 12 depicts the temporal data of weekdays and hourly fire incidences. The
weekdays dataset (as in Figure 12a) has the maximum fire frequencies on Thursday at
17% and a minimum on Monday at 12%, then the weekends. The hourly dataset (as in
Figure 12b) has the maximum fire events during the hot afternoon hours from 12:00 to 17:00
with a maximum of 7% indicating the impact of climatic conditions and the human urban
activities hours. The late hours from 19:00 to 21:00 correspond to dinner time, with the rise
in fires indicating human activities.
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The Pearson’s correlation between the hourly fire frequencies has the coefficient value
of 0.54, indicating a moderate correlation. The sensitivity analysis through autocorrelation
test by Durbin–Watson (DW) statistics with the null hypothesis states that fire frequencies
have no relation with the hour of the day at which they occur. The DW value ranges from
0 to 4 and the 0 to 2 value indicates a positive correlation and from 2 to 4 indicates negative
relation. The DW value nearer to zero indicates strong positive autocorrelation and nearer
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to 2 indicates no autocorrelation. The DW statistic test evaluated the value of d = 0.35
(nearer to zero) at p-value < 0.05, which rejects the null hypothesis indicating the positive
autocorrelation between the hour of the day and fire frequencies.

3.3. Cause-Wise Analysis to Understand Urban and Human Activities

Table 8 represents the causes of the fire in the fire risk zones across the study period,
classified in five types as gas cylinder leakage (14%), electric short circuits (31%), adjacent
garbage fire (2%), other causes (6%) including lamps, cooking, mechanical failure, and
electric press, and highest cause being unknown with 48% of total structure fires. All fire
risk zones have a maximum of unknown causes followed by electric short circuits and gas
cylinder leakages. The electric short circuit cause is generally due to increased load on
electricity causing voltage fluctuation due to the operation of electrical cooling devices for
comforting the confined spaces during the scorching hot May month, indicating the impact
of climatic conditions.

Table 8. Cause-wise percetage of structure fires in the fire risk zones.

Type Gas Cylinder Leakage Electric Short Circuit Garbage Fire Unknown Other

Very High 13 33 2 41 11
High 10 30 2 54 3

Medium 16 28 2 51 4
Low 17 31 2 42 8

Total 14 31 2 48 6

Figure 13 depicts the yearly cause-wise fires with the trendlines of the unknown
and electric short circuit causes showing a rise with an R2 value of 0.083 and 0.0333,
respectively, indicating a gradual rise, and the gas leakage cause has a declining trendline
with an R2 value of 0.0332. The unknown cause has to be studied in depth for identifying
the actual causes for intervention and implications.
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4. Discussion

The geospatial analyses approach connects the data to a spatial visualization map,
integrating location data with all types of statistical and descriptive information, providing
a foundation for mapping, and an analysis for urban planning, particularly for fire service
provision. The quantification of the built-up areas and populations under risk is essential
for efficient and effective mitigation. The historical fire incidence data of a decadal period
for the hottest month of May with maximum fire frequencies are analyzed with the spatial
analyst and statistics tools to identify the spatial variation of fire risk zones across the
study area with an increasing population under persistent threat. The fire risk zone
hotspot analysis through the KDE and HA(GOG*) is performed, compared, and estimated
statistically.

4.1. Result Overview

The detection by KDE identifies one hotspot area through the entire city area, in the
central core part of the city under a very high fire risk zone revealing the highest population
under persistent threat. The high population size indicates the rapid growth of urbanization
due to the prominent commercial and administrative activities associated with increased
urban and human activities, resulting in the development of high rises and compact
development that challenges the management of fire services. The KDE is a nonparametric
technique identifying the probability density estimate of event hotspots, revealing the
concentration of the fire events across the study period to identify the influenced areas.

The HA(GOG*) technique evaluates the fire risk zones statistically for the same data set
and helps to understand results with statistically significant z-scores in the study. The very
high fire risk class is the hotspot area above the critical value of 1.96 at a 95% confidence
level, identifying three hotspot areas within the single identified hotspot area of the KDE
analysis. The hotspot area comprises a total of 17 wards out of 34 wards of the KDE over
an area of 5% out of 9% of the KDE, with a population density of 25,526 persons per km2

out of 29,860 persons per km2. The high and medium fire risk classes have wide variations
influencing the varied population densities under respective threats. The results from
both techniques have wide variation, and the results of HA(GOG*) are more accurate with
statistical analysis than the KDE technique, helping decision makers to optimally and
sustainably utilize resources.

The built-up areas under the significant fire risk zones are estimated to quantify
the actual area and population size under persistent fire threats. The built-up density
reveals the development pattern with the influenced population density. The very high
fire risk zone has the highest population density at 27,994 persons per km2, whereas, at
the ward level, the population density is 25,526 persons per km2, indicating the compact
development. Meanwhile, the low fire risk zone has the second-highest built-up density,
revealing the compactness but comparatively with less population density of the third rank.

Structure fires are most frequent in mercantile occupancy structures followed by resi-
dential and industrial within the identified hotspot areas, while residential structure fires
are prominent in other fire risk areas followed with the mercantile class. The population
density indicates that human activities contribute to the fire incidences, integrating the
urbanization trend from the cause-wise analysis with the most common cause being the
unknown cause, followed by electric short circuits and gas cylinder leakages. The temporal
data analysis reveals that the maximum fire incidences occur on Thursday afternoons
during the hot hours rather than the early morning and sleeping night hours. The re-
sult indicates the impact of human activities of daytime and hot climatic conditions with
increased electrical load for cooling the confined spaces of structures.

4.2. Planning Implications

The geospatial analysis approaches are significantly useful for enhancing the efficiency
of the fundamental fire services. The outcomes are helpful to the decision makers for fire
disaster management purposes, both in terms of risk estimation [16,80,81] and impacts on
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the environmental services. The outcomes of the hotspot analysis provide evidence to the
decision makers for improving the provision of fire services. The hotspot maps are a useful
visualization tool for the policy makers implicating proactive planning with immediate
resource allocations in the potential fire risk zones. Proactive planning has the potential to
significantly minimize the losses and reduce the economic impact of fire hazards and is a
powerful tool for planners attempting to enhance the efficiency of fire service and increase
sustainability [82].

The temporal analysis reveals the maximum fire rates in the hot afternoon hours,
implicating the resource allocative actions. Awareness programs for fire safety can be
implemented regarding human activities to reduce fire incidence rates as assessed from the
cause analysis. The fire frequency with an unknown cause has to be controlled by alerting
the occupants about towards fire safety through public education. Fire safety behavior for
gas cylinder operation is to be conducted repeatedly. Continuous awareness for public
participation in prevention and suppression techniques to handle incipient fires through
fire safety practices is to be encouraged [83]. Fire prevention and preparedness programs
help to reduce the damages, promote the role of understanding in the community, and
reduce the adverse impacts of fire in the ecosystem [17]. The policy has to be effectively
planned and adopted at regular intervals with maximum participation considering the fire
risk zones.

The results of the study can help to enhance the effectiveness of the emergency
fire services over the potential spatial dimension with strategic proactive planning and
interventions to build community resilience continuing the urban functionality fulfilling
all the other fire safety objectives.

4.3. Limitations and Future Scope

The approach adopted for the study is with the data constraint limitations acquired
from the administrative authority. The impact of socioeconomic factors on spatial fire
incidence patterns can be researched with various interventions. −564. Secondly, the
open-source Landsat images used are of 30-m resolution in most bands (4.5 pixels per
acre) at a 16-day revisit cycle. The high-resolution images of 5-m have the potential to
differentiate the built-up areas comprising buildings and varied sizes of opens spaces
which are used as parks, gardens and open grounds enhancing to assess actual structural
areas improving the accuracy of the built-up areas and thus is a limitation. In addition,
visualizations in immersive virtual reality (VR) provide information in real-time and from
a first-person perspective, which can be adopted for conducting future studies in detail
at a smaller scale of the zone, ward, or neighborhood level, escalating the potential of fire
safety objectives with sustainability. Furthermore, an “environmental approach” for the
evaluation of the city is suggested due to the interdependence of various parameters to
supplement our analysis and fulfill the fire safety objective of environment protection.

4.4. Linking with Urban Development Schemes and City’s Vision

Urban agglomeration integrates the physical, institutional, and socioeconomic infras-
tructure challenging fire service management [35]. Fire Services are the responsibilities of
local bodies and play a significant role in the success of all governmental schemes of India
such as AMRUT [46], PMAY [47], HRIDAY [48] carried out for the betterment of citizen’s
life and infrastructure in the cities for sustainable urbanization. Nagpur City is achieving
urban transformation under the Smart City Mission [51], and the second Smart City Pro-
posal has additional convergence of the Solar City Programme, the Safe City Project Crime
and Criminal Tracking Network and System (CCTNS) Project, and the National River
Conservation Project [84]. The potential Transit-Oriented Development (TOD) due to the
Metro Rail project across the city encourages high density mixed development through FSI
of four or more along the Metro alignment, resulting in high rise development challenging
fire service management. Fire services’ responsibility safeguards the functionality of urban
centres, enhancing the quality of life and infrastructure. The study has the potential to
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inform policy makers and ULBs to reassess and restructure fire service targeting resource
allocation for vulnerable built environments integrating the Smart Cities Mission [51], and
is a significant preparatory tool for updating fire service in the country. This study output
acts as a foundational step to achieving the research goals in detail overlapping the Smart
City Goals [51], fulfilling the Sustainable Development Goals (SDG-11) [52], and helping
urban planners and policy makers to develop a sustainable city, state, and nation.

5. Conclusions

The study investigated the historical structure fire events of the typical urban agglom-
erating mid-sized Indian city for a decade from 2011 to 2020. The analysis for the peak
period of the year in the hottest month of May with the highest fire incidence frequency is
evaluated for extreme consideration, revealing the direct impact of climatic conditions on
fire incidence frequency affecting urban sustainable development.

The hotspot analysis delineates the areas with the highest vulnerability, along with
other significant fire risk areas and revealing the random distribution of fire events, thus
alerting urban planners to the need for the provision of appropriate fire services as fire
incidences are unplanned events resulting in irrecoverable heavy losses. Fire service is the
fundamental civic service to provide fire safety, fulfilling the objectives of protection to
citizen’s lives, property loss, continuity of operations, environment protection, and heritage
conservation, which also overlaps the goals of SDG 11, making cities resilient towards fire
hazards developing a sustainable city, state, and nation.

The geoinformation techniques implementing KDE provide the visual concentration
of the hotspot area, which is nonparametric, while the HA(GOG*) reveals the statistically
significant hotspots delineating vulnerability of fire risk zones, which are within the KDE
hotspot. The IDW interpolation of the hotspot analysis reveals the administrative zonal
area at the local ward level for proactive fire service planning enhancing the efficiency,
reducing the losses of life and property with clear visualization of risk areas. Remote
sensing dataset and GIS tool quantified the actual built environment under the significant
fire risk zones. The estimation of built-up area density and the population density reveals
the urbanization impact with varied human activities in the urban built environment
threatening sustainability concentrating in the central core part of the city. The cartographic
maps developed through the spatial analysis helps in clear visualization to sense the
severity of the structure fires in the city. Thursday of the weekdays had the maximum fire
frequencies, and the hourly analysis revealed that the highest fire frequencies occurred
during the hot afternoon hours of the day from noon to 5 pm and the hours of the waking
human activities up to 10 pm, while night hours had the minimum frequencies. The major
cause of electric short circuits, gas cylinder leakages, and unknown causes directly reflect
the heavy load on electricity in hot hours for cooling, and gas cylinder leakages in hot
hours emphasize the need for users’ awareness for minimizing the fire frequencies and
hence, the losses.

The spatial statistical technique of GIS is an effective and powerful tool for detecting
the significant fire risk zones from the historical dataset in urban planning contexts for
proactive resource allocations, and strategic planning for mitigation programs minimizes
the losses with the better use of finite resources, reducing the budgetary load on the
government as fire service involves high budget investment and management. The outputs
can be adopted for enhancing the potentiality of the fire services building community
resilience. In addition, the methodology can be standardized for evaluation of similar-sized
urban agglomeration of India quantifying the built environment upgrading the NDMA
requirement to build urban resilient infrastructure and in accord with Smart City Mission.
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Table A2. Accuracy assessment of LULC-2020.

LULC 2011 Built-Up Vegetation Fallow Land Water Bodies Row Total User’s Accuracy

Built-Up 12 0 1 0 13 92
Vegetation 0 7 1 0 8 88

Fallow Land 1 0 6 0 7 100
Water Bodies 0 0 0 5 5 100

Total 13 7 8 5 33

Producer’s Accuracy 92 100 75 100

Overall Accuracy 91

Kappa Coefficient 86
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