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Abstract: Wildfire size and frequency have increased in the western United States since the 1950s, but
it is unclear how seeding treatments have altered fire regimes in arid steppe systems. We analyzed
how the number of fires since 1955 and the fire return interval and frequency between 1995 and
2015 responded to seeding treatments, anthropogenic features, and abiotic landscape variables in
Wyoming big sagebrush ecosystems. Arid sites had more fires than mesic sites and fire return
intervals were shortest on locations first treated between 1975 and 2000. Sites drill seeded before
the most recent fire had fewer, less frequent fires with longer fire return intervals (15–20 years) than
aerially seeded sites (intervals of 5–8 years). The response of fire regime variables at unseeded sites
fell between those of aerial and drill seeding. Increased moisture availability resulted in decreased
fire frequency between 1994 and 2014 and the total number of fires since 1955 on sites with unseeded
and aerially pre-fire seeding, but fire regimes did not change when drill seeded. Greater annual grass
biomass likely contributed to frequent fires in the arid region. In Wyoming big sagebrush steppe,
drill seeding treatments reduced wildfire risk relative to aerial seeded or unseeded sites.

Keywords: Agropyron cristatum; Agropyron desertorum; Elymus wawawaiensis; Bromus tectorum; drill
seeding; aerial seeding; Wyoming sagebrush; Artemisia tridentata subsp. wyomingensis

1. Introduction

Fire regimes have changed considerably since the 1980s with increases in wildfire size
and frequency across multiple ecosystems [1,2]. Climate change has led to shorter winters,
decreased snowfall, shifts in precipitation regimes, and extended periods of drought,
contributing to longer periods of fire risk [3–5]. Historical overgrazing and seed dispersal
by livestock in arid lands and forests have contributed to annual grass invasions [6,7],
and anthropogenic features, such as fuel breaks [7], roads, and utility lines [8], act as
dispersal corridors. Global change has shifted many native plant communities to invasive-
dominated communities, which promote fire [9,10]. Thus, climate change and annual
grass cover increases have contributed to the increased numbers of large wildfires in the
western United States [11,12], especially during periods of severe weather, such as dry
lightning and strong winds [4,13]. Interactions among topography, climate change, fire
history, invasive plants, and the difficulty in identifying vegetation with remote imagery
provide uncertainty [14]; models predict increases in fire number, size, and fire season
length [3,15–17] in the western United States. Fuel treatments may become insufficient to
reduce future wildfire size, particularly during dry, windy conditions [4].

Sagebrush-dominated communities in the western United States once covered an esti-
mated 38 million to 109 million ha [18]. Land use has converted 20% of these systems into
private land, and grazing has impacted nearly all of the remaining sagebrush [19]. Invasive
species also threaten the sagebrush steppe by altering the historical fire regimes [12,20,21].
In the United States’ Great Basin, fire regimes in sagebrush steppe ecosystems vary based
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on dominant sagebrush species. Within a sagebrush species, estimates of fire rotation or
fire return vary due to the ranges of elevation found and regional climate variation [22].
For instance, one study estimated fire rotation for Artemisia arbuscula communities was
325–450 years [23] but could range from 93 to 187 in the Columbia Plateau and >1000 years
in more xeric sites [22]. Artemisia tridentata subsp. vaseyana communities have a fire rota-
tion of 70–217 years [23,24], but the lower elevation Artemisia tridentata subsp. wyomingensis
ecosystems have fire rotations of 100-342 years [23,24]. Historical fires in Artemisia tridentata
subsp. wyomingensis communities were larger, more continuous, stand-replacing fires than
in Artemisia tridentata subsp. vaseyana communities [24].

Shifts in climate have favored a range expansion of the winter annual grass, Bromus
tectorum (cheatgrass), an invasive species in the Intermountain West [25]. Consequently,
B. tectorum has altered the historical fire regime in the Great Basin, leading to profound
changes in fire size, frequency, and duration [12,21,26]. After a fire or other disturbance,
B. tectorum takes advantage of the newly cleared space to recruit rapidly, increasing density
and cover [10,27–29]. Even low B. tectorum cover will increase the chance of adjacent,
non-invaded habitat burning in subsequent fires [26]. Models suggest climate change will
increase the risk of B. tectorum invasion in Idaho, Montana, and Wyoming [25], making
B. tectorum cover reduction by creating resistant plant communities an important goal of
many fuels and post-fire rehabilitation treatments in the region [23,30].

Seeding treatments are commonly applied in the Great Basin to increase forage pro-
duction, improve wildlife habitat, stabilize sites, and rehabilitate burned areas. Seed may
be applied aerially from aircraft to avoid soil disturbance but may drop seeds in unfa-
vorable habitat and decreases soil-seed contact limiting the likelihood of successful plant
recruitment [31]. Drill seeding uses modified tractors to till the soil while simultaneously
sowing seed [31]. Tilling soil may create microhabitats that promote desirable species
recruitment, but the disturbance may also enhance B. tectorum recruitment [7,32]. Man-
agers also combine aerial and drill seeding to enhance diversity and improve recruitment
likelihood [31,33].

The plant species used in aerial and drill seeding treatments have changed since
the mid-twentieth century. In the 1940s, nonnative bunchgrasses, typically Agropyron
desertorum or A. cristatum, were drill seeded in monoculture or low diversity mixes to
increase cattle forage throughout the sagebrush steppe [18,34,35], but aerial seeding was
used infrequently [36,37]. In the mid-1980s, the United States Bureau of Land Management
(BLM) switched to using the “Hycrest” crested wheatgrass cultivar (Agropyron desertorum
X A. cristatum) in rangeland seeding treatments [36,38], which created larger plants with
more blades and greater fecundity than either parent species [39]. During the 1970s in
the Great Basin, the number and size of fires increased and half the seeding treatments
were conducted after wildfires as part of rehabilitation efforts [36]. After 1990, the BLM
conducted drill and aerial seeding treatments predominately after wildfires in the Great
Basin [36]. In the nineties, the most common species used in rangeland seeding treatments
were either Hycrest or Agropyron fragile (Siberian wheatgrass) [36]. The proportion of
seeding treatments using native grasses, forbs, and Artemisia tridentata was limited before
1990 [36] but increased considerably after 2000 [36,40] in response to Executive Order
13112. The order required federal land management to use native rather than nonnative
species, when possible. After 2000, the BLM also increased the agency’s use of native
grasses and forbs in seeding treatments. [41]. Before 1990, the number of drill seeding
treatments in the Great Basin was four times greater than aerial seeding treatments [36].
In the 1990s, the number of aerial and drill seedings were roughly equal [36]. Since
2000, managers used aerial seeding twice as often as drill seeding treatments [36]. Since
1980, the proportion of treatments using Artemisia species has doubled, and treatments
including native grasses have quadrupled in the Great Basin [36]. The use of native species
has created habitats more suitable for sagebrush obligate species, such as Centrocercus
species (sage grouse), Brachylagus idahoensis (pygmy rabbit), and Artemisiospiza species
(sparrows) [42–46] compared to sites dominated by nonnative species [47].
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Increasing wildfire number and size in the sagebrush steppe requires a better un-
derstanding of the impact of environmental variables and land management practices
on natural recovery, annual grass invasion, and rehabilitation efforts after fire [48]. For
example, fuel breaks, green strips, and prescribed fires create disturbances that can provide
suitable habitat for B. tectorum to establish [7,49] and invade into an intact habitat. Distur-
bances along roads and power line corridors provide suitable habitat and corridors for
B. tectorum dispersal [8]. Studies suggest that livestock grazing can facilitate B. tectorum
invasion by transmitting seeds and clearing or damaging existing vegetation through
preferential grazing [50,51]. Increasing B. tectorum would lead to more frequent annual
grass fires resulting in further shifts in the fire regime [12,21]. Few studies have examined
the effects of seeding treatment practices on fire regimes in rangelands [52,53]. Recent
studies have examined the effect of post-fire seeding treatments in the sagebrush steppe
at large scales [40,47], but those efforts focus on sites with recovery after a single fire. It is
unclear what effect multiple fires and management actions over decades might have on
invasive species, plant communities, and/or shifts in fire regime attributes.

We examined the relationships among fire history, seeding treatments, and environ-
mental characteristics to test the effect of those predictor variables on the response of fire
regime variables. The fire regime variables we used as response variables included (1) the
number of fires between 1955 and 2015, (2) the mean fire return interval between 1995 and
2015 (time between fires), and (3) the fire frequency between 1995 and 2015 (number of fires
per unit time) [54]. Though the fire return interval and fire frequency are correlated, there
are distinctions. Fire return interval, or mean fire return interval, is the average number
of years between fires [55], which indicates the time available for species to recruit and
establish communities between fires [36,37,56,57]. Fire frequency is the recurrence of fire
in a given area over time [55] and is used in modeling [12,58–61] because it reflects the
probability that a fire will occur in any one year. Our objective was to understand how
climate, environmental characteristics, proximity to roads and private land (potential dis-
persal corridors of B. tectorum and sources of ignitions), and seeding treatments affect the
fire regime characteristics; namely the total number of fires since 1955, as well as fire return
interval and fire frequency between 1995 and 2015. We hypothesized that seeded sites
would have (1) fewer fires, (2) longer mean fire return intervals, and (3) less frequent fires.

2. Materials and Methods
2.1. Site Description

The study area was 209,000 ha, located in southern Idaho, U.S.A., south of the Snake
River (42.5◦ N, −115.4◦ W, Figure 1). Elevation in this region ranges from 750 to 1800 m
increasing in elevation southward. Precipitation and snowfall increased as elevation
increased (Figure 1). Climate data from Remote Automated Weather Stations (RAWS)
in the study region show an increase in temperatures from 1962 to 2012; the timing and
amount of rain and snow have also changed (Figure 2). Snow at all elevations has decreased
since 1962. Precipitation has increased during the spring months across all elevations and
decreased during summer months at near 800 m and in June near 1600 m.

The dominant shrub in the study area was Artemisia tridentata subsp. wyomingensis
Beetle and Young (Wyoming big sagebrush). Artemisia thinning and removal from 1940 to
1980 to increase cattle forage and wildfires 1980-present have impacted the once-dominant
vegetation, though some isolated patches remain [62]. The most common grass species
were Poa secunda J. Presl (Sandberg bluegrass, hereafter Poa), Agropyron cristatum (L.)
Gaertn (crested wheatgrass, hereafter Agropyron), and Bromus tectorum L. (cheatgrass or
downy brome, hereafter Bromus). Other native bunchgrasses included Pseudoroegneria
spicata (Pursh) Á. Löve (bluebunch wheatgrass), AchnatherumAchnatherum thurberianum
(Piper) Barkworth (Thurber’s needlegrass, hereafter Achnatherum), and Elymus elymoides
(Raf.) Swezey (squirreltail, hereafter Elymus). Poa cover was >15% at 70% of our sites and
co-dominated with either Agropyron or Bromus. The historical fire rotation for Artemisia
tridentata subsp. wyomingensis is estimated between 100 and 342 years, depending on the
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method used to estimate fire return [23,24]. Fires have burned most of the study area at
least once, while other regions have burned up to seven times in the past 65 years [63].

Seeding treatment data was acquired from the Land Treatment Digital Library [38]
and the Bureau of Land Management (BLM) [64,65]. Seeding treatments included aerial,
drill, combined seeding, and unseeded treatments. Seeded species varied by treatment and
year (see Section 1) [38,65]. As the number and size of wildfires increase in the 1980s [63],
the BLM stopped thinning Artemisia stands and focused both aerial and drill seeding
treatments on post-fire rehabilitation [38,64]. Seeded species for drill seeding treatments
before 2000 were primarily low diversity seed mixes dominated by nonnative Agropyron
species. After 2000, the proportion of seeding treatments using native grasses exceeded
the use of nonnative grasses. Seeding treatments rarely included Artemisia tridentata prior
to 1990, but 70% of seeding treatments included Artemisia after 2000. In our study area,
aerial seeding was used primarily to seed shrubs species, although a small percentage of
aerial seed mixes also included grasses and forbs when seeded on Wilderness Management
Areas or rocky sites.
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precipitation gradient (n = 67). We indicate the location of weather stations used in examining regional climate: Bruneau
(a,b), Muphy Hot Springs (MS), and Three Creek (3C).
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Figure 2. The 25-year mean (±SE) monthly climate data for the low and high elevation sites in our study area. The snowfall
(a,b) and precipitation (c,d) near low (a,c) and high elevation (b,d) sites. The average monthly mean low temperatures (e) and
high temperatures (f) for low and high elevation sites. Low elevation climate data from Remote Automated Weather Stations
in Bruneau, Idaho (770 m, station ID 101195); high elevation climate data for 1962–1987 from Three Creek, Idaho (3C, 1655 m,
station ID 109119) and after 1987 from Murphy Hot Springs, Idaho (M, 1572 m, station ID 106250). We downloaded data from
the Western Regional Climate Center at the Desert Research Institute (https://wrcc.dri.edu/summary/Climsmsid.html
(accessed on 1 March 2015)). The Bruneau RAWS recorded data from 1962 to 2012 with the mean monthly averages based
on a sample size of 23–25 years for each period. The Three Creek RAWS site was discontinued in 1987; the monthly average
was based on a sample size of 20–25 years. The Murphy RAWS was the nearest location to Three Creek and established in
December 1987. Missing data between 1987 and 2012 resulted in a smaller sample size (n = 12–15 years); we include data
from 1987 to 2019 to increase the sample size (n = 20–23 years), so the data would be based on similar numbers of years as
both Bruneau and Three Creek.

2.2. Data Extraction

We used ArcMap 10.3 software (ESRI) to generate 4000 random points across our study
site with a minimum of 1 km distance between points. We eliminated points on features
BLM land managers would never treat such as roads and highways [66], water features
(e.g.- rivers, ponds, reservoirs) [67], and land owned not owned by the agency [68] by
reviewing data extracted using the Intersection tool. We then removed points not located
in pixels designated as “Wyoming Big Sagebrush-Wheatgrass” in “Group Name” category

https://wrcc.dri.edu/summary/Climsmsid.html
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of LANDFIRE Environmental Site Potential Biophysical Settings raster [69]. The points
were then verified using 1 m resolution orthorectified aerial imagery with a 6 m horizontal
accuracy [70]. The result was 573 points (Figure 1a) used to extract data from polygon and
raster layers. The response variables (fire number between 1955 and 2015, mean fire return
interval 1995–2015, and mean fire frequency from 1995 to 2015) were derived from BLM
fire polygon shapefiles [63]. Prescribed fires in the sagebrush steppe are much less common
than wildfire, but we included prescribed fires when calculating the number of fires, if
they occurred. The increased number and size of wildfires in the sagebrush steppe makes
understanding the impact of environmental variables, seeding treatments, and potential
sources of anthropogenic ignition sources on natural recovery and rehabilitation efforts
after a fire imperative [48]. To address these concerns, we used information on seeding
treatment history [64,65,71], climate [72], elevation [73], and proximity to anthropogenic
features on the landscape [66,68] as explanatory variables. For a complete list of the
99 explanatory variables, see Table S1. Data extraction included unburned and burned
sites. Unburned locations were typically unseeded or drill seeded, while burned areas
could be unseeded or seeded via aerial, drill, or both methods.

2.3. Field Collection

Using 67 field sites from a concurrent field study conducted in 2014 and 2015, we
collected standing herbaceous and woody biomass along the environmental gradient
(Figure 1b). There were 11 unburned sites and 56 sites that burned one, two, three, or six
times. We divided sites into the most recent treatment type (drill seeded, aerially seeded, or
unseeded sites) nested within the number of fires that had occurred since 1950. The project
did not include locations with both aerial and drill seeding conducted at the same time.
Biomass was collected from six randomly placed 1 m2 quadrats within a 180 m2 location
and classified into one of four functional groups: perennial bunchgrass, annual grass, forb,
and shrubs. Biomass was air-dried in a closet for over a year.

2.4. Statistical Analysis

According to historical fire data from the BLM [63], there were few fires in our study
area between 1900 and 1950. We defined fire number as the number of times a site burned
in between 1955 and 2015. To determine how past vegetation management, fire history,
and environmental conditions shaped the current fire regime characteristics, we defined
fire return interval as the average number of years between fires from 1995 to 2015. We
assigned sites that had burned only once during the 20-year period a fire return interval of
20 years. We labeled places that did not burn between 1995 and 2015 a fire return interval
of 25 years. Fire frequency was determined by dividing the number of fires on a site over
the twenty years from 1995 to 2015 by twenty.

We used a Nonparametric Multiplicative Regression (NPMR) in HyperNiche 2.3 [74]
to determine how climate, seeding treatments, fire history, and proximity to anthropogenic
features predicted the total number of fires since 1955, as well as the fire return interval and
fire frequency between 1994 and 2014 (Table S1). The NPMR. evaluates how explanatory
variables interact in nonlinear and multiplicative ways to alter the dependent variable and
allows for the detection of nonlinear but significant relationships among explanatory and
dependent variables. While Generalized Additive Models, Generalized Linear Models, and
Multiple Linear Regression can analyze the relationship between response and explanatory
variables, they can only handle a few potential explanatory variables. The accuracy of
those analyses is limited to linear relationships. NPMR analyzes relationships between
more variables and yields models that reflect nonlinear relationships [75].

Our NPMR used a quantitative local mean Gaussian weighting model. We assessed
model fit using cross-validated R2 (xR2, Equation (1)), which a measure of the relationship
between the residual sum of squares (RSS) and the total sum of squares (TSS) such that:

xR2 = 1 − RSS
TSS

(1)
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The xR2 uses a “leave-one-out” cross-validation and does not require withholding data
for validation purposes [76]. To control overfitting, we set the model improvement criteria
to a data-to-predictor ratio of ten, and a minimum of a 2% improvement was required to
increase the number of variables in a model by an additional variable. Bootstrap resampling
(each dataset resampled with replacement 100 times to generate 100 new datasets, each
with n – 1 plots) was used to assess model stability against the inclusion of particular
plots in a given analysis by providing an average xR2 (±SE) between the final model
and 100 resampled datasets. We selected the models with the highest xR2 value, average
neighborhood size (>10), and an improvement criterion of 2% [76].

Unlike traditional regression, NPMR does not fit coefficients in an equation. Instead,
NPMR reports tolerances—the standard deviations used in the Gaussian smoothing. High
tolerance values, relative to the predictor range, indicate a greater distance among points
targeted for estimation. We report the average neighborhood size and sensitivity for each
model. Neighborhood size is the average number of sample units contributing to the
estimate of occupancy at each point on the modeled surface. Sensitivity indicates the
relative importance of each quantitative predictor in the model. A sensitivity of 1 means
that, on average, the percent change in the value of a predictor will result in a similar
percentage change in the estimate of the response variable. In contrast, a sensitivity of 0
indicates the predictor does not affect the response variable. Since tolerance and sensitivity
indicate how much the dependent variable changes in response to a predictor variable,
sensitivity can only be calculated for continuous variables.

We examined the effect of 99 explanatory variables (Table S1) on fire regime character-
istics (fire number, fire return interval, and fire frequency). We evaluated the models with
the 100 greatest xR2 values, and we selected two to three models based on the predictor
variables that appeared most frequently. We analyzed the sensitivity of the predictor
variables and selected the model with the greatest sensitivity.

In the Great Basin, fire frequency and return interval are affected by the types and
amount of available fuels, particularly annual grasses such as B. tectorum. We analyzed
fuels composition (i.e., the types of fuels) and amount by collecting biomass in four func-
tional groups (perennial bunchgrass, annual grass, forb, and shrubs). We analyzed the
composition of functional group biomass using a Multi-Response Permutation Procedure
(MRPP), a multivariate approach that analyzes the relationship among dependent variables
(the biomass of four functional groups) and determines if there are differences among
groups while allowing for an unbalanced design [77]. The MRPP compares the observed
data to a randomized data. The MRPP measures the degree of separation among predeter-
mined groups using the test statistic, T, which is the difference between the observed and
expected weight mean within-group distance divided by the variance of the expected mean
within group distances. A greater negative value of T indicates greater separation among
groups. In MRPP, the A-statistic is the effect size of within group similarity compared
to the expected similarity based on the randomized data. When A > 0 groups are more
homogenous than chance by chance; A < 0 indicates groups are more heterogeneous than
expected. The MRPP includes a pairwise comparison of individual groups but does not
correct for multiple comparisons automatically. We used the Benjamini and Yekutieli
false discovery rate (FDR) method described by Narum [78] to establish a conservative
threshold for significance for the multiple comparison test (α = 0.0115). We conducted three
MRPP analyses using predetermined groups based on (1) seeding treatment (aerial, drill, or
unseeded), (2) four 250 m elevation ranges: low (770–1020 m), medium low (1021–1270 m),
medium high (1271–1520 m), and high (1521–1780 m) and (3) seeding treatment nested
within elevation bands [79]. Though the NPMR. data includes sites that received both
aerial and drill seeding in the same treatment, the 67 sites used for acquiring biomass data
used in the MRPP did not include such treatments. There were 11 unburned sites and
56 sites that burned one, two, three, or six times. Sites were divided into the most recent
treatment type (drill seeded, aerially seeded, or unseeded sites) nested within the number
of fires that had occurred since 1950. If one variable’s values are orders of magnitude
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greater it can skew the analysis, yielding results based primarily on that one variable. In
our data, woody biomass was much greater than the biomass of the other three groups. To
normalize data, biomass was square root transformed. We used a Jaccard distance measure
to further decrease the influence of shrub biomass.

We used a Nonmetric Multidimensional Scaling (NMS) ordination with a Jaccard
distance matrix to visualize relationships among MRPP groups (e.g., elevation, seeding
treatment) within the ordination space determined by biomass. Drill seeded sites at
770–1020 m and 1521–1780 m had only one representative site each and were dropped
from the analysis. Stress was determined by comparing observed data to randomized data
50 times using a stability criterion of 0.0001. We used an analysis of variance in MyStat 12
(Systat Software Inc) to evaluate if the biomass in one or more plant functional groups were
different among elevation and treatment groups. Shapiro–Wilks test determined if the data
was normally distributed and a Levene’s test was used to test for homoscedasticity. When
biomass variables did not meet the assumptions for a parametric ANOVA, we used the
Kruskal–Wallis Test.

3. Results

The number of fires since 1955 ranged from unburned to seven fires (Table 1). The fire
return intervals ranged from 3 to 20 years, with 217 of the 573 locations not burning after
1995 (Table 1). Fire frequency between 1995 and 2014 varied from 0 to 0.3 with 150 sites
burning with a frequency of 0.1 or greater (Table 1). Treatment history varied among
locations with the total number of aerial seedings on a site ranging from 0 to 5 treatments
and drill seedings ranging from 0 to 3 treatments (Table S2). The treatment history included
260 sites (45.3%) with some history of aerial seeding, but only 83 sites (14.5%) had two
or more aerial seeding treatments since 1950. Sites were more likely to have a history of
drill seeding treatments in our dataset. There were 309 sites (54%) with at least one drill
seeding and 65 locations (11%) had more than one drill seeding treatment. Though there
was a tendency for the number of aerial and drill seedings to increase with the number of
fires (Table S3), the weighted average of aerial seeding treatments did not exceed two until
there were more than six fires, and the weighted average of drill seeding treatments did
not exceed one until the seventh fire (Figure S1).

Table 1. Summary statistics of the fire regime response variables. The total fire number was the sum
of the fires between 1955 and 2015. The mean fire return interval and frequency were based on fire
data between 1995 and 2015. Sites that did not burn between 1995 and 2015 were designated as a fire
return interval of more than 25 years and had a fire frequency of 0.

Fire Regime Variable Category Count (n)

Total Fire (n) Unburned 164
1 114
2 154
3 63
4 42
5 24

6–7 12

Return Interval (years) <5 6
5–10 143

11–20 188
>20 236

Fire Frequency 0.00 236
0.05 1880
0.10 81
0.15 43
≥0.20 26
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The NPMR model that best predicted the number of fires between 1955 and 2015 con-
sisted of the first year a site was burned, minimum spring vapor pressure deficit (VPD), total
number of seeding treatments, and most recent seeding treatment method (Table 2). The
number of fires was unaffected by vapor pressure deficit (VPD) for sites that first burned
before 1990 (Figure 3a). For sites that burned for the first time after 1990, arid sites (greater
spring VPD) tended to have more fires than more mesic sites. At sites that burned for the
first time in 2014, the most arid sites burned 2.5 times on average while more mesic sites
burned only once (Figure 3a). The number of fires increased with the number of seeding
treatments regardless of the first year a site burned (Figure 3b). Fire number increased with
greater numbers of treatments, particularly in areas with more arid spring weather; six
treatments contributed to two fires at the most mesic sites and nearly four fires at more
arid sites (Figure 3c).

The seeding treatment prior to the most recent fire (pre-fire) method had a significant
effect on the modeled number of fires since 1955 (Figure 4). Sites that were drill seeded or
aerial and drill seeded prior to the most recent fire tended to only burn twice; unseeded
sites burned three to four times and aerial seeded sites burned three to five times (Figure 4a).
Increasing aridity resulted in increased fire number for locations that were aerially seeded
or unseeded prior to the most recent fire, but fire number at sites that were drill seeded,
aerial, and drill seeded, or had no prior history of seeding treatments did not increase with
aridity (Figure 4a). Fire number decreased as the year a site burned became more recent
for aerially seeded treatments, but the number of fires for other pre-fire treatments were
relatively unaffected by the year a site first burned (Figure 4b). Regardless of the number of
historic treatments on a site, aerially seeded sites burned more times than other treatments
(Figure 4c). On sites with one treatment, if the site was aerially seeded or left unseeded after
the penultimate fire, there were three fires compared to two when drill seeded (Figure 4c).
On sites with one treatment, drill seeded sites burned twice, while aerially seeded and
unseeded sites burned three times (Figure 4c).

Table 2. The Nonparametric Multiplicative Regression best-fit models for each fire regime variable. The explanatory
variables that compose the models include the first year a site burned (1st fire year), the 30-year mean minimum vapor
pressure deficit from March-May (Spring VPD min), the seeding treatment before the most recent fire (Pre-fire seeding treat),
the total number of times a site was aerially seeded (Aerial seeding (n)), the total number of times a site was drill seeded
(Drill seeding (n)) and 30-year mean spring precipitation from March-May (Spring precipitation).

Response Variable Eval xR2 Model Fit xR2 (±SE) Avg Size Predictor Variable Sensitivity Tolerance

Fires (n) * 0.8 0.83 31.2 1st fire year 0.09 9.45 (15%)
1950–2014 (±0.0) Spring VPD min 0.05 0.26 (25%)

Treatment (n) 0.05 1.5 (25%)
Pre-fire seeding treat † - - -

Fire Return Interval * 0.78 0.81 43.32 Aerial seeding (n) 0.22 0.5 (10%)
1994–2014 (±0.0) 1st year treated 0.15 10.35 (15%)

Spring VPD min 0.02 0.46 (45%)
Pre-fire seeding treat † - - -

Fire Frequency * 0.76 0.77 33.29 Drill seeding (n) 0.07 0.75 (25%)
1994–2014 (±0.0) Spring precipitation 0.05 6.28 (25%)

Aerial seeding (n) 0.03 0.25 (5%)
Pre-fire seeding treat † - - -

Eval xR2 = The correlation from original model analysis. Model Fit xR2 = Correlation based on the bootstrap analysis. Avg. Size = The
number of sample units contributing to the estimate of occupancy. * p < 0.01, SE = Standard error. † Categorical variable. Sensitivity and
tolerance can only be calculated with continuous variables.
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Figure 3. The Nonparametric Multiplicative Regression modeled relationship response of the number of fires to (a) the first
year the site experienced fire and the 30-year average minimum vapor pressure deficit in spring (spring VPD), (b) the first
year the location experienced a fire, and the total number of seed treatments, and (c) the 30-year average minimum vapor
pressure deficit in spring and the total number of seed treatments. The color scale ranges from 0 fires (black) to 4 fires (red).
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The NPMR model that best predicted the fire return interval between 1995 and 2015
consisted of four variables: the number of aerial seeding treatments, the first year a site
was treated, the minimum spring VPD, and the pre-fire seeding method (Table 2). When
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the number of aerial seeding treatments increased, the fire return interval decreased across
all levels of spring VPD but was reduced at high VPD (Figure 5a). On sites without aerial
seeding treatments, the fire return interval was shortest on sites that first burned between
1975 and 1990 (Figure 5b). Adding aerial seeding treatments resulted in decreased fire
return intervals, particularly at locations first treated before 1970 (Figure 5b). The fire return
interval was shorter when on more arid sites regardless of the first time a site was treated
(Figure 5c). Sites first treated in 1975–1995 had the shortest fire return interval on the most
arid sites, while the shortest fire return interval on the more mesic sites were when the site
was treated between 1985 and 1995 (Figure 5c).
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As the number of aerial seeding treatments in a site’s treatment history increased,
fire return intervals tended to decrease but varied according to seeding treatment type
preceding the most recent fire (Figure 6a). The fire return interval was 20 years with drill
seeding regardless of whether or not there was aerial seeding before the drill seeding
(Figure 6a). For sites with both aerial and drill seeded prior to the most recent fire, the
fire return interval decreased from 15 to 16 years with one aerial seeding treatment to
14 years with a history of two aerial seeding treatments (Figure 6a). The fire return interval
decreased from 16 to 19 years when there was no aerial seeding to as little as 7 years
when there was a history of two aerial seeding treatments (Figure 6a). When the most
recent seeding treatment was aerial seeding, the fire return interval decreased from as
much as 10 to as little as 5 years as the number of aerial seeding treatments increased
(Figure 6a). On sites with a history of one aerial seeding, sites that were aerially seeded
after the penultimate fire had the shortest fire return intervals (Figure 6a). Drill seeding in
addition to aerial seeding increased the fire return interval, although fire return intervals
were greater on sites that were only drill seeded (Figure 6a). For aerial seeded sites, the
fire return interval increased as the first treatment year became more recent; however, fire
return intervals decreased slightly when aerial and drill seeding were combined as first
treatment year became more recent (Figure 6b). The fire return interval was unchanged for
sites with drill seeding treatments regardless of when the site was first treated (Figure 6b)
or across the spectrum of average minimum spring vapor pressure deficit (Figure 6c). Fire
return interval decreased as the minimum spring VPD increased on unseeded or aerially
seeded sites after the penultimate fire (Figure 6c). Fire return interval on drill only or aerial
and drill seeding were unaffected by the increase in spring VPD (Figure 6c).



Fire 2021, 4, 16 12 of 23Fire 2021, 4, 16 12 of 23 
 

 

 

Figure 6. The modeled relationship between the fire return interval grouped by the type of pre-fire Scheme 30. year aver-
age spring vapor pressure deficit. Figures include 5% jittering along the x-axis (a) or y-axis (b,c) was used to see overlap-
ping treatments. 

The NPMR model that best predicted fire frequency from 1995 to 2015 consisted of 
four variables: the number of drill seeding treatments, spring precipitation, the number 
of aerial seeding treatments, and the pre-fire seeding method (Table 2). Fire frequency 
decreased slightly as precipitation increased (Figure 7a,b). Fire frequency increased with 
the number of aerial seeding treatments with the greatest increase at high precipitation 
from a frequency of 0.02 (once every 50 years) to 0.18 (once every 5.5 years, Figure 7a). 
Fire frequency increased slightly as the number of drill seeding treatments increased with 
the greatest increase in fire frequency at low spring precipitation (Figure 7b). Fire fre-
quency did not change as the number of drill seeded treatments increased when aerial 
seeding treatments were one or fewer (Figure 7c). Fire frequency decreased with increas-
ing drill seedings when a site had three aerial seeding treatments (Figure 7c). 

Figure 6. The modeled relationship between the fire return interval grouped by the type of pre-fire Scheme 30. year
average spring vapor pressure deficit. Figures include 5% jittering along the x-axis (a) or y-axis (b,c) was used to see
overlapping treatments.

The NPMR model that best predicted fire frequency from 1995 to 2015 consisted of
four variables: the number of drill seeding treatments, spring precipitation, the number
of aerial seeding treatments, and the pre-fire seeding method (Table 2). Fire frequency
decreased slightly as precipitation increased (Figure 7a,b). Fire frequency increased with
the number of aerial seeding treatments with the greatest increase at high precipitation
from a frequency of 0.02 (once every 50 years) to 0.18 (once every 5.5 years, Figure 7a). Fire
frequency increased slightly as the number of drill seeding treatments increased with the
greatest increase in fire frequency at low spring precipitation (Figure 7b). Fire frequency
did not change as the number of drill seeded treatments increased when aerial seeding
treatments were one or fewer (Figure 7c). Fire frequency decreased with increasing drill
seedings when a site had three aerial seeding treatments (Figure 7c).

Sites varied in fire frequency based on the seeding treatment used after the prior fire.
Fire frequency increased with the number of aerial seeding treatments, but the frequency
was less when sites were drilled alone or in combination with aerial seeding treatments
(Figure 8a). Fire frequency was greatest on sites aerially seeded after the penultimate fire
regardless of whether there was one or two drill seeding treatments previously (Figure 8b).
Fire frequency was similar on drill seeded or unburned and unseeded sites prior to the
most recent fire and was not affected by spring precipitation (Figure 8c). Fire frequency
was greater for aerial and drill seeded sites than sites with only drill seeding and showed
a slight decrease as precipitation increased (Figure 8c). Variation in fire frequency for
unseeded and aerially seeded sites decreased as precipitation increased (Figure 8c). Fire
frequency for aerially seeded sites decreased as precipitation increased (Figure 8c).
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Multi-response permutation procedure analysis showed there was no significant
difference in biomass when grouped by most recent seeding treatment method (T = −1.10,
A = 0.016, p = 0.13). Biomass components were significantly different along the elevational
gradient (p = 0.007), but within group homogeneity was low (T = −3.17, A = 0.058),
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suggesting a high degree of variability. When sites were nested by treatment type within
elevation, there was significant differences among groups and within group similarity
increased (T = −3.08, A = 0.109, p = 0.004), but there was still considerable variation within
treatment and elevation groups. The best fit NMS ordination had two axes that explained
much of the variation (R2 = 0.9). The final stress was 11.7. Axis 1 was strongly correlated
with shrub biomass and, to a lesser extent, perennial bunchgrass while axis 2 was strongly
correlated with annual grass biomass and perennial bunchgrass (Table S4, Figure S2). The
poor differentiation and within group variability with sites were grouped by elevation is
demonstrated by the considerable overlap in ordination space (Figure 9).
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Figure 9. NMS ordination of the biomass grouped by elevation with centroids (+) for each convex
hull polygon. Plant functional groups labeled in ordination space indicate where the biomass for
each group was the greatest (e.g., shrub biomass increased from left to right on Axis 1 and from
bottom to top on Axis 2).

The MRPP pairwise-comparisons, using the conservative α = 0.0115, showed biomass
composition was significantly different between aerial seeded sites above 1521 m and
four other groups: aerially seeded sites below 1020 m (T = −3.51, A = 0.211, p < 0.004);
unseeded locations below 1020 m (T = −6.48, A = 0.247, p < 0.0002); aerially seeded sites
between 1021 and 1270 m (T = −3.02, A = 0.096, p < 0.01) or 1271–1520 m (T = −3.92,
A = 0.194, p < 0.003, see Table S5 for a complete list). Plant biomass composition at sites
below 1020 m with no seeding treatment was the most variable, while aerial seeded sites
between 1021 and 1270 m were the least variable, dominated by grasses (Figure 10a). Two
plant functional groups were not normally distributed (annual grass W = 0.94, p = 0.005;
shrub W = 0.93, p = 0.002) and the shrub biomass was heteroscedastic (W = 6.19, p < 0.001)
requiring Kruskal–Wallis tests. Annual grass biomass was significantly different among
seeding treatments and elevation groups (H(9) = 21.32, p = 0.01). Biomass among seeding
treatments for bunchgrasses and shrubs tended to be different (bunchgrass F(9,55) = 1.86,
p= 0.08; shrub H(9) = 15.91, p = 0.07), but there was no significant difference in forb biomass
among treatments (F(9,55) = 1.29, p = 0.26). Bunchgrass and shrub biomass made up the
largest biomass portion at sites above 1521 m, with annual grasses only found on aerially
treated sites (Figure 10b). On aerial seeded sites below 1520 m, annual grass biomass
comprised a more substantial proportion of biomass with little or no shrub biomass present
(Figure 10b).
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Figure 10. NMS ordination (a) illustrating significantly different plant community biomass composi-
tion for elevation and seeding treatment combination that was significantly different according to the
multiple response permutation procedure (α = 0.011). Plant functional groups labeled in ordination
space indicate where the biomass for each group was the greatest (e.g., Shrub biomass increased
from left to right on Axis 1 and from bottom to top on Axis 2). Mean biomass of each plant functional
group (b) for each treatment (Aerial, A; Drill, D; Unseeded, N) along the elevation gradient: low
(770–1020 m), medium-low (1021–1270 m), medium-high (1271–152 m), and high (1521–1780 m).
Letters represent differences in biomass amount and composition among plant communities. Drill
seeded sites at low and high elevations had an n = 1 and were dropped from the analysis.

4. Discussion

Our research adds to a growing body of work that examines what shapes post-
fire communities in the sagebrush steppe [54]. Artemisia tridentata subsp. wyomingensis
communities exist in dry climates and require ≥ 80 years to recover to pre-fire levels of
cover variability [23,24,80]. We found sites burned 2–7 times between 1955 and 2015 and
the mean fire return intervals being as little as 3–5 years between 1995 and 2015 for aerial
seeded sites. This makes the fire regime far outside the normal range of variability [23,24].
Pre-fire seeding treatment and site aridity consistently predicted fire regime characteristics.
The number of seeding treatments predicted fire regime characteristics. The recovery rate
in A. tridentata subsp. wyomingensis communities after a fire may increase with greater
precipitation [81], but our results suggest a more nuanced effect. The effect of site moisture
on fire regime characteristics was dependent on the type of seeding treatment used after
a fire. Greater spring moisture had no effect on fire regime after drill seeding treatments;
however, increased moisture—in the form of precipitation or lower vapor pressure deficit—
resulted in fewer fires, lower fire frequency, and longer fire return intervals on aerial seeded
sites. In our study area, precipitation increased, and vapor pressure deficit decreased, as
elevation increased and resulted in cooler, more mesic summer conditions and longer,
colder winters. Despite the elevation and climatic gradients, there was little differentiation
in plant biomass when grouped by seeding treatment and elevation. When seeding
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treatments were nested in elevation, aerial treatments at high elevations showed differences
with other treatments. Additionally, there was a difference in the amount of annual grass
biomass along the elevation gradient.

The interaction between seeding treatment method and moisture availability suggests
climatic influence over native bunchgrass and Bromus establishment likely contributed
to the difference in fire regime characteristics. As moisture availability increased, fire
number and fire frequency decreased at aerially seeded and unseeded sites but not at drill
seeded sites. Established perennial bunchgrasses can inhibit Bromus plant growth [82,83],
cover and density [84], but using aerial seeding is much less reliable at ensuring plant
establishment than drill seeding [31]. Though the increase May rain since 1987 at low
elevation sites may promote bunchgrass germination, rain between June and September has
decreased since 1987, likely limiting the successful establishment of bunchgrasses [85–87]
and opening habitat for Bromus establishment. In addition, mild winters with little snow at
the low elevations and precipitation in May promote Bromus survival and fecundity [88,89].
Though native Vulpia species were present at the biomass collection sites, annual grass
biomass was primarily composed of Bromus tectorum. Greater annual grass biomass at low
elevations shown here demonstrates Bromus populations can take advantage of favorable
growing conditions to increase their populations into the available space left open at lower
elevation sites. Nonnative grasses can alter fire regime characteristics in a variety of native
plant communities by increasing fire risk [26], creating continuous fuel beds [10], and/or
increasing the likelihood of ignition [90] leading to increased fire frequency [12] and area
burned [12]. That is particularly true of Bromus tectorum [20,21,26,91]. At high elevation
sites, summer moisture appears adequate to promote bunchgrass establishment; when
combined with snow accumulation and snow resident time, these climatic conditions likely
decreased Bromus survival. The result is less annual biomass and fewer continuous fuels,
and a shorter fire season that limit fires.

Fire regime characteristics were often determined by complex, nonlinear relationships
between multiple variables. The effect of the year a site first burned, climate, and the
total number of seeding treatments interacted to affect the number of fires. On sites that
first burned prior to 1970, the number of fires did not change as the climate became drier,
but the number of fires increased when the site first burned in or after 2000. This lack of
change in the response of fire number before 1970 suggests a connection to changes in
Bromus cover over time. Sites with that first burned prior to 1970 may have more time
to recover from the fire. This is important because Bromus cover tends to higher in the
years immediately following fire [27,92,93] and may decrease over time [94–96]. Bromus
outcompetes bunchgrass seedlings [97–99], but some native species (e.g.-Poa secunda and
Elymus multisetus) are able to establish or persist with Bromus [100,101]. If bunchgrasses
establish, mature bunchgrasses can inhibit Bromus growth and reproduction [51,83,84],
but the shift from a Bromus dominant community to a bunchgrass community could take
decades [40,96]. In our study area, Bromus decreased as native bunchgrasses cover or
density increased (unpublished data). Given the literature and our observations, it is likely
bunchgrass communities on sites burned prior to 1970 had more mature bunchgrasses
than recently burned sites that reduced Bromus cover consistent numbers of fires on sites
burned before 1970 than more recently burn sites regardless of climate or the number of
seeding treatments.

Fire return intervals responded differently from fire number to the interaction between
time a site was first treated, climate, and the number of aerial treatments. The change in
fire return interval had a markedly different relationship with time since first treated when
the first seeding treatment occurred between 1970 to 1995 compared to the pre-1970 or
post-1995 periods. That relationship suggests that changes in species composition used
by the Bureau of Land Management in seed mixes for seeding treatments contributed to
changes in fire return intervals. Agropyron desertorum, the dominant species used prior to
1970 [38,102], inhibits Bromus growth and seed production [82,84]. Bromus can recruit and
survive in the presence of A. cristatum [99,103] and remain co-dominant in stands with
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A. cristatum and Poa secunda [104]. The increased use of A. cristatum after 1970 and Hycrest
in the 1980s–1990s may have allowed Bromus to establish and even small amounts of
Bromus cover can increase fire frequency [12,20,21]. The use of native grasses after 2000 has
created a fire regime similar to the one created by treatments using A. desertorum.

The effect of the number of treatments on fire regime characteristics varied among
treatment strategies. Sites with recent fires often received post-fire rehabilitation seeding
treatments [38]; therefore, the number of treatments should increase as the number of
fires increases. We found increasing the total number of seeding treatments on sites that
first burned between 1965 and 1975 only increased the number of fires slightly, while fire
numbers increased from one to three on sites that burned for the first time between 2005
and 2014. The number of fires and fire frequency increased as the number of treatments
increased on sites where the pre-fire seeding treatment was aerial or unseeded but were un-
affected when the most recent treatment included drill seeding. Aerial seeding grass species
result in only low seeded species cover in forested systems [105]. In the sagebrush steppe,
aerial seeding may increase nonnative perennial bunchgrasses at high elevations [40] but
requires herbicide to reduce annual grass cover prior to seeding at low elevations [106].
One drawback of aerial seeding is the high potential of low seed-to-soil contact, resulting in
low seeded species [31]. Great Basin native bunchgrass and forb recovery is not enhanced
by aerial seeding after a fire [107]. Native species are inhibited when nonnative grasses, like
A. cristatum, are included in the seed mix [40]. Aerial seeding does not increase Artemisia
tridentata cover or density after a fire [33] even after two decades [40]. Drill seeding also
had longer fire return intervals and lower fire frequency than other treatments in the last
20 years and mitigated the effect of aerial treatments. The number of fires on sites with
drill and aerial treatments used in tandem was similar to those that were only drill seeded
and had an intermediate fire return interval and fire frequency. Further, on sites that had
aerial seedings in the past, treatments with both aerial and drill seedings before the most
recent fire had in less frequent fires.

In our study area, the majority of recent aerial seed treatments included only A. triden-
tata seeded into recently burned, fire-resilient grasslands, such as Agropyron cristatum, A.
fragile, or E. wawawaiensis [38]. The typical method of aerially seeding A. tridentata subsp.
wyomingensis in the winter without drill seeding is unlikely to promote shrub establishment
after fire [33]. In addition, the A. tridentata subsp. wyomingensis aerial seeding treatments in
our study area were used on sites with established A. cristatum stands [38,64]. Agropyron
cristatum outcompetes the seedlings of all A. tridentata subspecies [108], making it unlikely
that A. tridentata subsp. wyomingensis will establish when aerially seeded into drill seeding
treatments that used A. cristatum. Agropyron cristatum inhibits native forbs and grasses,
leading to sites with low diversity or evenness [109–111] even when native species ini-
tially establish at the same rate as A. cristatum [112]. Therefore, sites seeded with both
A. cristatum and native forbs and grasses in the 1980s and 1990s are unlikely to retain a
diverse native species component. Since ‘Secar’ E. wawawaiensis is less palatable to cattle
than other bunchgrasses used in recent post-fire rehabilitation seeding efforts [113,114]
and avoided by goats [115], herbivore pressure on native forbs and other bunchgrasses
likely increase on sites with E. wawawaiensis. This may shift the plant community to an
unpalatable or invasive-dominated ecosystem [116], where fuels accumulate over time
and create continuous fuel beds that promote more frequent fires. Whether the seeding
included A. cristatum or E. wawawaiensis, the long-term result is a low diversity grassland
that may be more susceptible to invasion by small-seeded, winter annual species [117],
like Bromus.

Many factors may affect fire regimes, including average climate and interannual
variation in weather [54,118], available fuels [119–121], historical fire management prac-
tices [52,53], and interactions between climate, fuels, and management [14]. There is
a lack of understanding how seeding treatments affect fire regimes across arid land-
scapes [52,53,122]. Though some research has looked at post-fire seeding treatments
after one fire [33,40,84,94,123], this study included sites with multiple wildfires and treat-
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ment histories over >50 years. Our results suggest that spring moisture is an important
determinant of the fire regime, but the effect of spring moisture varies among seeding
techniques. Spring moisture likely increased B. tectorum fecundity. Greater precipitation in
May, could have stimulated germination of perennial bunchgrass, but the recent shifts in
decreased precipitation between June and September would have increased water stress
and mortality for seeded species. The consequence would be reduced bunchgrass estab-
lishment and less competition for B. tectorum in subsequent years, leading to increased
B. tectorum establishment. As precipitation shifts and temperatures increase in the arid
western United States, it may be necessary to provide additional summer water in the first
year after seeding treatments to increase post-fire rehabilitation success.

Drill seeded sites had fewer fires over the 60-year study period and in recent years had
longer fire return intervals and less frequent burns than aerial seeded sites. This trend did
not differ along the moisture gradient and fire regimes on recently drilled sites had similar
fire regimes to sites with older treatments. Aerially seeded sites had more frequent fires
and were dominated by A. cristatum, E. wawawaiensis, or Bromus. The accumulation of fine
fuels from Bromus combined with unconsumed, senesced A. cristatum and E. wawawaiensis
likely contributed to frequent fires. Drill seeding helped mitigate the frequent and greater
number of fires associated with aerial seeding treatments. If the goal is to minimize the
number and frequency of fires [124], drill seeding larger areas with native bunchgrasses
and forbs may help achieve that goal on drier sites historically dominated by A. tridentata
subsp. wyomingensis. Additional treatments, such as the reduction of A. cristatum and
E. wawawaiensis, may better establish diverse communities that are more palatable to
livestock and wildlife, more resilient to Bromus invasion, and less prone to fire.
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