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Abstract: The objectives of this study are to evaluate landscape-scale fuel and terrain controls on fire
rate of spread (ROS) estimates derived from repetitive airborne thermal infrared (ATIR) imagery
sequences collected during the 2017 Thomas and Detwiler extreme wildfire events in California.
Environmental covariate data were derived from prefire National Agriculture Imagery Program
(NAIP) orthoimagery and USGS digital elevation models (DEMs). Active fronts and spread vectors
of the expanding fires were delineated from ATIR imagery. Then, statistical relationships between
fire spread rates and landscape covariates were analyzed using bivariate and multivariate regression.
Directional slope is found to be the most statistically significant covariate with ROS for the five fire
imagery sequences that were analyzed and its relationship with ROS is best characterized as an
exponential growth function (adj. R2 max = 0.548, min = 0.075). Imaged-derived fuel covariates alone
are statistically weak predictors of ROS (adj. R2 max = 0.363, min = 0.002) but, when included in
multivariate models, increased ROS predictability and variance explanation (+14%) compared to
models with directional slope alone.

Keywords: wildland fire; extreme wildfire event; fire rate of spread; thermal imagery; regression

1. Introduction

Wildfires induce a variety of valuable ecosystem processes [1,2] but can inflict severe
economic, social, and environmental losses. Of note, California’s 2017 losses include
USD 500 million in suppression costs, 47 lives lost, and over 9000 structures damaged or
destroyed [3]. These statistics highlight the need to understand how fire behavior is related
to underlying geospatially distributed environmental factors. Rate of spread (ROS), also
referred to as fire spread rate, is a key focus of fire scientists, first responders, and fire
management agencies and has been the subject of many studies seeking to quantify its
dependence on environmental factors. Research on the mechanisms that govern wildfire
spread are commonly conducted using laboratory [4–7] or outdoor fire experiments [8–10],
where inputs may be controlled by researchers. Findings discerned from such studies have
been extended to larger spatial scales using numerical models that simulate wildfire spread
in various environments and conditions e.g., [11–14].

Laboratory studies and fire spread models have utility, however, advancements are
stymied by the lack of quality landscape-scale data needed for adequate fire spread theory,
model validation, and model calibration [15–19]. There is also a need for improved empiri-
cal quantification of the environmental drivers of wildfire spread and their control on ROS
at landscape-scales during extreme wildfire events (EWE) [20–24]. Better understanding
and near real-time estimation of wildfire ROS frequency distributions at landscape-scales
could help fire scientists, managers, and emergency responders focus future research,
evacuation, suppression, and mitigation efforts [19,25–28].
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Although interactions between the land surface, lower atmosphere, and fire spread
are complex, amalgamations of (1) fuel, (2) topographic, and (3) weather or fire-induced
weather properties are widely recognized as being dominant influences on fire
spread [29–33]. Wildland fire fuels are characterized by vegetation’s biophysical character-
istics such as surface area-to-volume ratio, load (mass per unit area), spatial distribution
(horizontal and vertical structure), bulk density (mass per unit volume), and moisture
content [34–37]. Fuel characteristics are difficult to quantify across time and space [37],
but many researchers have found success using remotely sensed image data to charac-
terize vegetation composition, which is used to represent the structural components of
fuels [35–39]. When investigating relationships between wildfire behavior and fuels, re-
searchers commonly classify vegetation types to generate fuel maps using a combination
of image processing, manual image interpretation, and ground-survey data [35,39,40].
Vegetation growth forms (GF) (sometimes called life forms) are the conglomeration of
plant species based on their similarities in growth function, physical structure, and life
cycle [41]. Image-derived spectral vegetation indices (SVIs) can also serve as surrogates of
fuel characteristics and are often used as input to image classification routines for mapping
fuels [38–40]. For example, the Normalized Difference Vegetation Index (NDVI) is one of
the most studied and utilized SVIs for estimating fuel physiological and morphological
characteristics. NDVI has been correlated to shrub height [42], shrub biomass [43], shrub
live fuel moisture content [44], and leaf area index (LAI) [45].

Topography, particularly slope angle in the relative direction of forward fire progres-
sion, is another landscape feature that influences wildfire spread [5–7,29]. Slope aspect,
orientation (i.e., up- or downslope in direction of fire spread), and angle also indirectly
affect fuel conditions and weather, which in turn control ROS [46–48]. A fire burning
upslope can be very intense and fast-moving, where the opposite is documented for fires
spreading downslope or across flat terrain, particularly in low wind conditions [5,49–51].
Quantitative characterizations of topographic slope and ROS relationships have been
largely limited to laboratory and outdoor experiments or computational fire spread mod-
els [4,5,49–52]. Subsequently, many models that are operationally employed around the
world inadequately represent or ignore downhill slope effects on ROS [52]. Remote sensing
and simulation studies investigating topographic controls on wildfire behavior generally
use digital elevation model (DEM) data to characterize slope for statistical stratification [53],
fire severity [54], and predicting fire risk [55].

Weather during extreme wildfire events and antecedent precipitation affect
ROS [2,29–32]. Methods used to evaluate the influence of weather (particularly wind
speed, and relative humidity) on ROS have been conducted using laboratory and out-
door fire experiments, model simulations, climate record modeling, and anecdotal ob-
servations [10,30,56–58]. Studies investigating the influence of climate-scale factors vs.
day-to-day weather on extreme wildfire behavior are conflicting, and even under ideal
fire conditions, most spreading occurs over small proportions of an extreme event’s life
cycle [58,59]. Due to the issues related to reproducibility (compared to laboratory experi-
ments) regional statistical analyses on climatic influences on extreme wildfire events are
most common [60,61]. Similarly, because weather is regarded as the “wildcard” of fire
spread [32], some researchers isolate wind variables in their research to investigate other
environmental components, namely fuels and topography e.g., [7,46,53].

Though ROS is a key characteristic of fire behavior, it is difficult to measure during
extreme wildfire events. However, airborne thermal-infrared (ATIR) imaging systems
enable researchers and fire behavior analysts who support incident commanders to collect
data and information on wildfire spread at relatively high spatial and temporal resolu-
tions [62–65]. ATIR imaging has traditionally been used to map and monitor changes in fire
perimeters [66], evaluate energy release by intensity [67–69], and measure spread direction
and residence time [62–64]. When ATIR systems are utilized for repetitive and coordinated
imaging missions localized to active fire fronts, the resultant thermal imagery can be used
to precisely estimate fire rates of spread and directions [63,64]. Viedma et al. [54] is one of
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the few studies besides our own that used relatively high spatial resolution remotely sensed
data to empirically analyze ROS during an extreme wildfire event. They estimated ROS
from time-sequential fire perimeters delineated from ortho-rectified aerial photographs
during the Riba de Saelices fire in Spain and used ROS as a covariate (among many others)
for predicting burn severity. Storey et al. [70] used ATIR imagery to statistically analyze
spotting behaviors during several large fires in Australia, however their work was focused
on analyzing spotting occurrences rather than full fire spread runs.

Repetitive-ATIR imagery collected over several recent California wildfires, made it
possible to map active fire front locations and estimate fire rates of spread at high levels
of spatial and temporal detail. We statistically examined landscape-scale controls on fire
spread rates collected from several chaparral and oak woodland landscapes based on
a statistical-empirical approach utilizing ATIR image sequences, high spatial resolution
optical imagery, and DEMs. Landscape covariate relationships with ROS estimates were
analyzed with regression. Within the context of primarily canopy fire spread in shrubland
vegetation, the following research questions are addressed:

1. How effective are spectral vegetation indices (SVIs) and fractional cover of growth
form types, derived from high spatial resolution aerial orthoimages, as spatially
explicit surrogates for fuel load distributions, in predicting ROS?

2. How strongly associated are directional slope angle and slope orientation relative to
fire spread direction with ROS?

2. Materials and Methods
2.1. Study Areas

Study areas for this research correspond to the spatial coverage of sequential ATIR
imagery captured during the Detwiler and Thomas Fire events in California, as illustrated
in Figure 1. The Detwiler Fire burned over 30,000 ha of Sierra Nevada foothills in Mari-
posa County from 16 July through 9 January 2018 [3]. The Thomas Fire burned from
4 December 2017 to 12 January 2018, in Santa Barbara and Ventura counties [3]. It is the
second largest recorded fire (single ignition source) in California history, burning over
113,000 total hectares across generally rugged mountainous terrain. The study areas are
composed of chaparral, coastal sage scrub, oak woodland, and mid-elevation coniferous
forest ecosystems.

Fire 2020, 3, x FOR PEER REVIEW 3 of 24 

 

can be used to precisely estimate fire rates of spread and directions [63,64]. Viedma et al. 
[54] is one of the few studies besides our own that used relatively high spatial resolution 
remotely sensed data to empirically analyze ROS during an extreme wildfire event. They 
estimated ROS from time-sequential fire perimeters delineated from ortho-rectified aerial 
photographs during the Riba de Saelices fire in Spain and used ROS as a covariate (among 
many others) for predicting burn severity. Storey et al. [70] used ATIR imagery to statisti-
cally analyze spotting behaviors during several large fires in Australia, however their 
work was focused on analyzing spotting occurrences rather than full fire spread runs. 

Repetitive-ATIR imagery collected over several recent California wildfires, made it 
possible to map active fire front locations and estimate fire rates of spread at high levels 
of spatial and temporal detail. We statistically examined landscape-scale controls on fire 
spread rates collected from several chaparral and oak woodland landscapes based on a 
statistical-empirical approach utilizing ATIR image sequences, high spatial resolution op-
tical imagery, and DEMs. Landscape covariate relationships with ROS estimates were an-
alyzed with regression. Within the context of primarily canopy fire spread in shrubland 
vegetation, the following research questions are addressed: 
1. How effective are spectral vegetation indices (SVIs) and fractional cover of growth 

form types, derived from high spatial resolution aerial orthoimages, as spatially ex-
plicit surrogates for fuel load distributions, in predicting ROS? 

2. How strongly associated are directional slope angle and slope orientation relative to 
fire spread direction with ROS? 

2. Materials and Methods 
2.1. Study Areas 

Study areas for this research correspond to the spatial coverage of sequential ATIR 
imagery captured during the Detwiler and Thomas Fire events in California, as illustrated 
in Figure 1. The Detwiler Fire burned over 30,000 ha of Sierra Nevada foothills in Mari-
posa County from 16 July through 9 January 2018 [3]. The Thomas Fire burned from 4 
December 2017 to 12 January 2018, in Santa Barbara and Ventura counties [3]. It is the 
second largest recorded fire (single ignition source) in California history, burning over 
113,000 total hectares across generally rugged mountainous terrain. The study areas are 
composed of chaparral, coastal sage scrub, oak woodland, and mid-elevation coniferous 
forest ecosystems.  

 
Figure 1. Two study wildfires in California. Map shows general burn externs of 2017 Detwiler and 
Thomas Fires. Numbers depict locations of airborne thermal infrared imaging sequences within 
burn extents (see Table 1). 

Altogether, the study areas exhibited a wide range of vegetation species, but were 
predominately composed of Chamise (Adenostoma fasciculatum), Buckbrush Ceanothus 
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chrysolepsis), Interior Live Oak (Quercus wislizeni), Whiteleaf Manzanita (Arctostaphylos vis-
cida), and California Oatgrass (Danthonia californica).  

Figure 1. Two study wildfires in California. Map shows general burn externs of 2017 Detwiler and
Thomas Fires. Numbers depict locations of airborne thermal infrared imaging sequences within burn
extents (see Table 1).
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Altogether, the study areas exhibited a wide range of vegetation species, but were
predominately composed of Chamise (Adenostoma fasciculatum), Buckbrush Ceanothus
(Ceanothus cuneatus), California Scrub Oak (Quercus beridifolia), Canyon Live Oak (Quercus
chrysolepsis), Interior Live Oak (Quercus wislizeni), Whiteleaf Manzanita (Arctostaphylos
viscida), and California Oatgrass (Danthonia californica).

The study areas are characterized by moderate Mediterranean climate regimes typical
of much of the Southern California region. Hot and dry summers are succeeded by mild
wet winter with average annual precipitation ranging from 32 to 53 cm. Both study areas
were delineated and analyzed using the Universal Transverse Mercator (UTM) coordinate
system—zones 10 and 11 north.

2.2. Data

ATIR imagery collected by Kolob Canyon Air Services using a FireMapperTM 2.0
thermal infrared imaging system was used for ROS measurements for both study fires.
FireMapperTM 2.0 is a noncryogenic sensor with a 320 × 240 frame array [64,71]. The im-
agery was captured in short-, mid-, and long-wave infrared wavelengths, yielding images
with 5–15 m ground sample distance (GSD) depending on flight altitude above ground
level [71]. The long-wave TIR imagery was utilized in this study. Imagery was acquired
over the same fire front with a “race-track” pattern as described in Stow et al. [64]. All
images include a GPS location and time stamp that provides each frame with temporal and
geographic coordinate metadata. FireMapper imagery was geometrically corrected with
ERDAS IMAGINE Photogrammetry Software Application [72] using onboard positional
(GPS) and altitude (inertial motion unit) data to yield georeferenced image frames. Stow
et al. [64] found that the coregistration of sequential pairs of geoprocessed FireMapperTM

2.0 imagery to be approximately one-pixel root mean square error. ATIR image sequences
were prioritized for ROS analyses based on a high number of repetitive, short-interval
(<12 min) flight-passes over active fire fronts burning within varied topography (different
angles and orientations of slope facets during front progression) to sample a range of
fire spread dynamics. ATIR observations analyzed in this research pertain to samples of
maximum forward fire spread. A summary of ATIR image metadata for the sequences
analyzed in this research is shown in Table 1.

Table 1. Airborne thermal infrared imagery metadata by study fire and image sequence.

Sequence Date Time-Range (Local) Passes Frames/
Pass

Ave. Time bet.
Successive Passes (min)

GSD
(m)

Detwiler Thursday, 20 July 2017 3:24:57 to 4:13:30 p.m. 7 25 8:07 13
Thomas 1 Friday, 8 December 2017 2:23:12 to 5:36:11 p.m. 23 30—90 10:09 10
Thomas 2 Friday, 8 December 2017 2:22:54 to 5:46:11 p.m. 26 30—90 8:24 10
Thomas 3 Friday, 8 December 2017 4:29:49 to 5:12:19 p.m. 7 15—30 7:05 10
Thomas 4 Saturday, 9 December 2017 4:33:44 to 5:22:48 p.m. 9 30—35 6:08 10

Prefire visible/near infrared aerial imagery from the National Agricultural Inventory
Program (NAIP) was obtained from USGS Earth Explorer (https://earthexplorer.usgs.
gov/) and Google Earth Engine (GEE) [73] to map and quantify fuel characteristics. The
NAIP image sets were captured between July and August 2016, and consist of 0.6 m spatial
resolution, four-band visible and near-infrared georeferenced orthoimages. Topographic
data were derived from National Elevation Dataset (NED) 10 m spatial resolution digital
elevation models (DEMs). These DEM data were obtained from the GEE data cloud.

Weather data were retrieved from the Remote Automated Weather Station (RAWS) on-
line data library (https://raws.dri.edu/wraws/scaF.html) and from the FireBuster model
Thomas and Detwiler fire forecasts [74]. FireBuster is a fire weather forecast system that
provides spatially explicit weather estimates based on downscaled weather model and dig-
ital terrain data inputs and are available through an interactive webtool or downloadable
1 km raster grids (https://fwxfcst.us/firebuster/) [74]. The RAWS data and FireBuster

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://raws.dri.edu/wraws/scaF.html
https://fwxfcst.us/firebuster/
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estimates obtained for this study consisted of hourly wind speed average, wind speed max,
wind direction, and relative humidity estimates nearest to the space/time domain of the
study areas and ATIR image collection times. Distances from RAWS to study areas ranged
from a minimum of 5.5 km (Thomas 1, 2, and 3) to a max of 13.3 km (Detwiler).

2.3. Fire Feature Delineation and Landscape Sampling Units

Fire fronts were delineated from ATIR imagery using methodologies developed by
Stow et al. [63,64] (Figure 2a). ATIR imagery was contrast enhanced to aid in active fire front
detection and delineation. Images influenced by large amounts of smoke and hot gases
were processed using a Laplacian edge filter to enhance fire front locations and aid in their
delineation. ArcGIS Pro ver. 2.5.0 [75] software tools were used to interactively delineate
fire front line curves in the form of polyline features that contain attribute information
associated to the front length (m), front ID, and time of ATIR image capture. Fire fronts were
manually delineated in ATIR imagery by drawing polylines at the sharpest radiometric
temperature descent (i.e., gradient between fire and non-fire (ambient) temperatures)
(Figure 2a).
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Figure 2. Fire front delineation and fire spread vector/LSUs for Thomas Sequence 2. (a) Fire fronts overlaid on contrast-
enhanced pass-15 thermal infrared (TIR) image. Inset map depicts from location relative to TIR pixel gradient; (b) fire
spread vectors and LSUs with fire fronts overlaid on National Agriculture Imagery Program (NAIP) orthoimagery. The
average time between successive fire fronts for Thomas 2 was 8:24 (min).

Fire spread-vectors were represented as linear features connecting sequential fire fronts
and their origin, spacing, and direction was identified on a sequence-by-sequence basis [64].
Evenly spaced (30 m) [64] points along a time = n (start) front curve were automatically
generated by local-normal polyline connections from each point to the intersection of
the time = n + 1 fire front (Figure 2b). Spread vectors were assigned geometry attributes
including line bearing (0–360◦), distance (m), and ROS estimate (m min−1). Fire spread
vectors were also used as landscape sampling units (LSUs) for extracting topographic and
fuel data for subsequent statistical analyses.
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2.4. Orthoimage Processing

Three spectral vegetation indices (SVIs) were generated from NAIP orthoimages and
tested as fuel loading covariates with ROS. NAIP imagery utilized in this study were not
calibrated to surface reflectance values. Normalized Difference Vegetation Index (NDVI-U)
(Equation (1)), Green-Red Vegetation Index (GRVI-U) (Equation (2)), and Normalized
Difference Red-Blue (NDRB-U) (Equation (3)) images were created for all fire sequences
based on the following formulae:

NDVI-U =
(NIR − RED)

(NIR + RED)
(1)

GRVI-U =
(GREEN − RED)

(GREEN + RED)
(2)

NDRB-U =
(RED − BLUE)
(RED + BLUE)

(3)

where in Equations (1)–(3), -U represents uncalibrated to surface reflectance, NIR, RED,
GREEN, and BLUE are uncalibrated (surface reflectance) NAIP digital number values for
near-infrared, red, green, and blue wavebands, respectively. These SVIs were selected
because they exploit different waveband combinations associated with the NAIP data, and
normalized indices tend to suppress terrain-related illumination and image brightness
effects [76]. NAIP imagery was also used to classify and map vegetation GF types as
surrogates for fuel load. Input data for classification started with generating a false-color
composite image of NDVI-U (Equation (1)), Visible Brightness (VB) (Equation (4)), and the
red/green band ratio (RG) (Equation (5)) [77].

VB = (RED + GREEN + BLUE) (4)

RG = RED/GREEN (5)

where RED, GREEN, and BLUE are uncalibrated NAIP digital number values for red, green
and blue wavebands, respectively. NDVI-U, VB, RG thresholds were established interac-
tively for classifying the following GF and land cover classes: (1) shrub, (2) herb, (3) tree,
and (4) rock/bare soil. Map accuracy was assessed by comparing classification products with
reference data generated from visual interpretation of 100 randomly sampled NAIP pixels
and prefire Google Earth imagery. The overall accuracy of image classification products
was 91%. Misclassified GF pixels identified during accuracy assessment were manually
edited and recoded. Polygons were drawn around misclassified pixels and reclassified
to reflect the correct GF type visually observed in reference imagery. Reclassification was
followed by reconducting accuracy assessment and the procedure was repeated until an
accurate map was produced.

2.5. Topographic Data Processing

Slope angle and orientation (relative to fire spread direction) were assessed as land-
scape topographic covariates with ROS. Standard slope functions found in GIS software
lack the ability to generate nonstatic directional slope (i.e., relative slope in a predefined di-
rection). To overcome this, we developed a DEM processing routine with Python ver. 3.0.2
and the RichDEM terrain analysis library [78] designed to measure the slope inclination
relative to the fire spread direction associated with spread vector bearings. Slope-degree,
slope-aspect, and fire-direction (bearing direction of vector) rasters were calculated for
each LSU [79]. The slope angle and aspect, and fire-direction rasters for each LSU were
then computed and processed into the directional slope covariate using Equation (6):

DS = S ∗ cos
(
(VD – A) ∗ π

180

)
∗ –1 (6)
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where DS is the output directional slope raster, S is a raster grid representing slope degree
values, VD is the spread vector bearing (degree) raster, and A is the aspect in degrees.
The output represents slope angle as a signed degree slope, where negative (downhill)
and positive (uphill) values are calculated relative to the spread vector directions. Rasters
having 0◦ values signify flat slopes.

2.6. Landscape Covariate Sampling and Stratification

Zonal sampling, validation, and organization of covariate data were conducted using
R v.3.6.2 and ArcGIS scripting and software tools and organized as a relational database
using PostgreSQL ver. 9.6.2. LSUs were created spatially coincident to spread vector
using the “Buffer” tool in ArcGIS Pro. Like the spread vectors, LSUs were assigned spatial
geometry attributes consisting of the fire spread bearing, the length of the unit, and the
unit’s size (m2). The LSUs constituted the basis for automatically extracting topographic
and fuel data for subsequent statistical analyses. LSU buffers were created to capture DEM
and NAIP pixels spatially coincident to spread vector polylines. The mean, minimum,
maximum, range, standard deviation, median, and variance of directional slope and SVI
pixels were extracted for each LSU using the R “exactextractr” package [80].

GF fractional cover (GFFC) estimates for LSUs were calculated with a raster model
that converts like-classified, contiguous GF pixels into polygons. The GFFC percentage
of each LSU was quantified on a scale of 0.0–1.0. GFFC estimates were also used to
assign a “LSU Fuel Class” type to each sample unit (Table 2 a), based on combinations of
fuel/vegetation classification schemes derived from prior studies including Anderson [34],
Sandberg et al. [81], and Blodgett et al. [53]. GFFC were stratified into one of two separate
slope orientation groups: Slope angle > 0◦ (upslope), Slope angle < 0◦ (downslope) based on
the mean directional slope (Table 2 b). Google Earth was used to visualize 3-D topography
and remove from statistical analyses LSUs associated with spread vectors where fire spread
both up- and downslope between imaging passes. In total, 195 LSUs were removed from
analyses for this reason. Samples of GFFC were stratified according to Table 2 b and
regressed. Directional slope angles from all sample units were paired with fuel classes
according to Table 2 c and regressed. Directional slope samples were also stratified and
regressed by orientation (upslope and downslope).

Table 2. Explanatory variable classification and stratification schemes. (a) Growth form fractional cover estimates classifica-
tion procedure (LSU fuel classes); (b) growth form fractions stratified by slope orientation; (c) slope angle means stratified
by fuels.

a. LSU Fuel Classes b. GFs Stratified by Slope Angle c. Slope Stratified by Fuels

FC Estimate Fuel Class Growth Form Slope◦ Slope◦ Fuel Class

≥75% Shrub Shrub LSU slope angle
mean w/: Shrub

≥75% Herb Herb % Shrub w/slope angle > 0◦ Herb
≥75% Tree Tree % Herb Tree

≥75% Rock/Bare Soil Rock/Bare Soil % Tree w/slope angle < 0◦ Rock/Bare Soil
≥50% < 75% n cover n-dominated Mix % Rock/Bare Soil n-dominated Mix

<50% cover dominance Full Mix Full Mix

2.7. Statistical Analyses

Several statistical models were employed to examine relationships between both
stratified and unstratified landscape covariates and ROS estimates. These included: (1)
bivariate linear regression, (2) multiple-stepwise linear regression, (3) power (log-log)
regression, and (4) exponential (semi-log) regression. All models were fit and analyzed
using R ver. 3.6.2 [82].
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Exploratory data analyses of ROS estimates and landscape covariates were conducted
to summarize data quality, distribution, and covariance [83]. Sample means, variances,
minima, maxima, standard deviations, kurtosis, skewness, and correlation statistics were
used to evaluate all landscape covariates separately, and cumulatively. Independent
variables that exhibited significant control on ROS estimates were initially evaluated using
parametric and nonparametric difference-of-means/median tests, including: two sample
t-test, Wilcoxon rank sum, analysis of variance (ANOVA), and Kruskal–Wallis tests [83,84].

Bivariate linear regression models evaluated direct relationships between individual
landscape covariates and ROS estimates, for each spread sequence and covariate (strat-
ified and unstratified). All bivariate models were evaluated and compared using beta
coefficients, standardized beta coefficients, adjusted coefficient of determination (adj. R2),
Akaike’s Information Criterion (AIC), and p-value diagnostics [83,85].

Multiple linear regressions were run to determine the cumulative influence and inter-
action of covariates on ROS estimates. Forward- and backward-stepwise regression models
were constructed using the lowest AIC, lowest Mallows CP, highest adj. R2, and significant
F-statistic [83]. All ordinary least squares (OLS) models were evaluated using ANOVA
tests to check whether they were statistically significant or not through corresponding F-
and p-values [85]. Standardized coefficients of parameter estimates were also evaluated to
determine the direct influence of individual covariate estimates. Covariates in multiple
regression models were also tested for multicollinearity using the variance inflation factor
(VIF) [86]. Multiple regression models were fit with all landscape covariates minus one
GF type. One GF type at a time was removed from multiple regression models using
hierarchical partitioning to clear the compositional nature of GFFC estimates [87]. The
removal of any growth form variable was determined on a sequence-by-sequence basis
using regression goodness-of-fit diagnostics derived from the heir.part R package (Adj. R2,
Log-Likelihood, and root mean square error) [88] as precursors for candidacy in multiple
regression models.

Throughout the OLS modeling process, we looked for violations of model assumptions
and if found, data log-transformations and/or different techniques were used to model
relationships. First, plots were used to validate assumptions of normality, linearity, and
equity of variances [83]. Residual Quantile-Quantile (QQ) plots were used as an initial test
for residual normality. To confirm QQ-plot visualizations the Shapiro–Wilk test [83] was
performed to test residual normality. Residuals were also plotted against predicted ROS (y)
values to determine any residual clustering or obvious patterns that indicated violation of
model assumptions [83].

3. Results
3.1. Fire Spread Behavior

Maps of fire front progressions for each fire spread sequence are shown in Figure 3.
Frequency plots of ROS estimates with rose plots of fire spread direction frequency for the
five sequences are presented in Figure 4. Although fire spread rates varied substantially
within and between ATIR sequences, all sample distributions are comparably right-skewed
with mean rates of spread greater than the median. Median rates of spread ranged from
a low of 4.2 m min−1 (Detwiler) to a high of 12.7 m min−1 (Thomas 4). The maximum
ROS estimate for each sequence are 27.9, 57.0, 64.9, 30.9, and 142.1 m min−1 for Detwiler,
Thomas 1, Thomas 2, Thomas 3, and Thomas 4, respectively. The Detwiler sequence,
characterized by predominantly downslope fire spread, exhibits the lowest spread estimate
of 0.2 m min−1 and lowest group median of 4.2 m min−1. Fire spread directions for
Detwiler were localized to the north, northeast, and east (Figure 4a). Thomas 1 and 2
depict fire movement along the same perimeter edge but are separated by a large ridge.
Fire spread for Thomas 1 and 2 occurred mainly upslope with comparable median ROS of
9.0 and 7.8 m min−1, respectively; fire spread mostly to the north and east (Figure 4b,c).
Thomas sequence 3 imagery captured a backing fire ignited by CalFire responders at nearly
the same time and within the vicinity of Thomas 1 and 2. The median ROS for Thomas 3
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is 5.0 m min−1 and spread directions are to the north, south, and northwest (Figure 4d).
The highest maximum (142.1 m min−1) and median (12.7 m min−1) ROS are captured in
Thomas sequence 4 (Figure 4e). Fire spread for Thomas 4 occurred primarily to the west
and southwest, driven by east-northeasterly Santa Ana wind conditions (Figure 4e).
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Figure 4. Fire spread rate sample frequency histograms and rose plots of sample spread frequency by rate of spread with
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(c) Thomas 2. (d) Thomas 3. (e) Thomas 4.

3.2. Wind Conditions During Fire Sequences

RAWS data and FireBuster predictions associated with ATIR collection areas and
periods are summarized in Table 3. The lowest recorded wind speeds were reported during
Thomas 1, 2, and 3 (0.4 m/s NNW). FireBuster wind speed predictions for Thomas 1, 2
and 3 are on average 0.77 m s−1 faster than RAWS measurements. Wind direction (RAWS)
for Thomas 1 and 2 range were S-SSW during the first 1.5 h of spread, and NNW for
the remainder of the sequences. The fastest wind speed (8.9 m s−1) and lowest average
reported relative humidity (12.7%) was reported during Thomas 4. Detwiler wind speeds
during ATIR imaging ranged from 4.5 to 4.9 m s−1 (RAWS) and 3.1 m s−1 (FireBuster).
Wind direction reported from RAWS nearest to Detwiler (13.3 km) exhibit NNE winds.
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FireBuster predictions for Detwiler record WNW winds. Relative humidity for the Detwiler
sequence was 23–24% (RAWS) and 14.8–16.3% (FireBuster). Overall, wind speed, wind
direction, and relative humidity data and predictions from RAWS and FireBuster forecasts
varied little over the time domain of all sequences.

Table 3. Remote Access Weather Station (RAWS) and FireBuster weather reports by fire and rate of spread (ROS) sequence.
Weather attributes depict data range reported during airborne thermal infrared (ATIR) image collection periods. The elapsed
time of ATIR imaging is included in sequence headings. Average reported ROS derived from landscape sampling units.

Sequence
(HH:MM:SS) Source Wind Speed

(m s−1)
Wind Direction

(Vector)
Relative

Humidity (%)
Average ROS

(m min−1)

Detwiler (0:48:33)
RAWS: 4.5–4.9 259–265 23–24

6.23FireBuster: 3.1 101–104 14.8–16.3

Thomas 1 (3:12:59)
RAWS: 0.4–1.3 8–194 7–18

12.86FireBuster: 0.9–1.8 80–219 10.5–30.2

Thomas 2 (3:23:17)
RAWS: 0.4–1.3 8–194 7–18

11.84FireBuster: 1.3–1.8 118–198 10.5–28.6

Thomas 3 (0:42:30)
RAWS: 0.4–1.3 8–194 7–18

7.05FireBuster: 1.3–3.1 73–208 8–71.9

Thomas 4 (0:49:04)
RAWS: 1.8–2.7 257–266 10–13

20.37FireBuster: 6.7–8.9 220–273 7.3–16.1

3.3. Fuel Covariate Relationships with ROS

Statistical models for exploring SVIs as spatially explicit surrogates for fuel load co-
variates for ROS yielded few significant correlations. Bivariate regression diagnostics by
fire and ATIR sequence yielded very weak and mostly nonsignificant relationships. For
the Detwiler and Thomas 4 sequences, all SVIs are statistically significant with ROS. Of
the statistically significant SVI models, the maximum total explained variance is only 5.4%
(NDVI-U, Thomas 4). Weak but significant SVI relationships for Detwiler and Thomas 4
are attributed to greater spatial variability in fuel coverage and type compared to other
sequences. For the study areas (sequences) and SVIs examined in this research, SVIs alone
were not effective predictors of ROS. Weak statistical relationships likely stem from limited
spatial variability in fuel composition and density within the burning areas captured during
ATIR imaging. GFFC distributions for the four Thomas fire sequences were largely charac-
terized by homogenous, high density of chaparral shrubs. Although shrubs predominantly
cover landscapes burned during the Thomas sequences, sparse cover of tree, rock/bare
soil, and herbaceous vegetation types are observed, based on image-classification products.
Notably, portions of Thomas 1, 2, and 4 sequences contained dense corridors of riparian
vegetation along riverbeds cutting through the sequence extents. The diversity of GFs is
greater for the Detwiler fire sequence compared to Thomas fire sequences. LSUs associated
with the Detwiler sequence are characterized by similar shrub, herbaceous, and tree GFFC.
The degree of model fit between GFs and ROS estimates is greater when samples containing
zero percent fraction are removed from sample populations. Like SVIs, GFFC is weakly
associated with fire spread rates. However, model coefficients and adj. R2 metrics indicate
they were slightly more effective proxies for describing spatial distributions of fuel loads
and control on ROS. For example, tree GFFC explained 36% and 12% of the total variation
in ROS at Detwiler and Thomas 2, respectively. Similarly, rock/bare soil beta coefficients
exhibit a negative relationship with ROS estimates at Detwiler, Thomas 1, and Thomas 2
(−14.53 to −23.45), explaining 7–14% of the variance in ROS.

Stratifying GFFC samples by slope angle (upslope > 0◦ and downslope < 0◦) was
largely ineffective at isolating contributions on ROS. Similar to SVI relationships with ROS
estimates, weak association with GFFC (stratified and unstratified) may be attributed to
limited spatial variation in prefire fuel composition within the burning areas captured by
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the ATIR image sequences. This observation is supported by the predominantly homoge-
nous shrub cover portrayed in maps generated from prefire orthoimagery as depicted in
Figure 5.
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and National Agriculture Imagery Program (NAIP) orthoimagery. (b) Prefire Google Earth image
overlooking portion of Thomas sequence 3.

3.4. Topographic Covariate Relationships with ROS

Generalized trends of slope angle for entire image sequences of successive fronts
are characterized by average upslope inclinations of 19.54◦, 10.53◦, 13.50◦, and 11.06◦ for
Thomas 1, 2, 3, and 4, respectively (Figure 4). Fire progression for the Detwiler sequence
primarily occurred downslope with an average decline of −10.01◦. Of all covariates exam-
ined, directional slope is the most statistically significant predictor of ROS estimates for all
study fires and ATIR sequences. Linear, exponential, and power regression diagnostics on
directional slope are reported in Table 4. For Thomas sequences 1, 2, and 3, about 50% of
the variance of ROS estimates are explained by directional slope (adj. R2 ≥ 0.500) (Table 4).
Regression beta and standardized beta coefficients for all regression methods and study
areas show positive linear to weakly nonlinear relationships between ROS and directional
slope (β > 1). Scatter plots comparing linear, exponential, and power regression fits with
directional slope data are shown in Figure 6.

Linear model coefficients are similar for Thomas sequences 1, 2, and 4 (β range of
0.066), while semi-log (exponential) regression coefficients are similar for Thomas 1, 2,
and 3 (β range of 0.003). Exponential relationships for Detwiler and Thomas 4 exhibit
similarity. Power regression models show similar degrees of variance explanation of ROS
on directional slope as by exponential models (avg. adj. R2 difference of 0.010). Plots of
ROS on directional slope data exhibit abrupt increases in ROS per incremental increase
in slope angle at or around 20◦ (Figure 6), confirming the strength of weakly nonlinear
relationships exhibited by power and exponential regression metrics (Table 4). Comparable
model fits between exponential and power regressions types are found for Thomas 1, 2, and
3 (Figure 6b–d). Linear models for Detwiler (adj. R2 = 0.160) and Thomas 4 (adj. = R2 0.194)
yielded higher model fit than exponential and power regression counterparts. Stronger
linear regression fit for the Detwiler and Thomas 4 data are confirmed when comparing
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regression lines-of-best-fit (Figure 6a,e). Overall, exponential and power functions were
most effective for characterizing the relationship between directional slope and ROS (adj.
R2 ≥ 0.500), and consistently accounted for the steeper rise in spread rate commonly
observed at slope angles of 20◦ and greater.

All models stratified by upslope (>0◦) and downslope (<0◦) orientations are statis-
tically significant. However, compared to nonstratified models, greater model fit only
resulted for Detwiler and Thomas 4 (average adj. R2 increase of 0.200). All upslope
stratified models demonstrate markedly higher standardized and unstandardized beta
coefficients. The opposite is true for downslope stratified groups. To minimize potential
bias in slope findings incurred from samples having disparate GF types, slope samples
were stratified by the LSU fuel classes shown in Table 2 c: (1) shrub, (2) mixed-shrub, (3)
herb, (4) mixed-herb, (5) rock/bare soil, (6) mixed-rock/bare soil, (7) tree, (8) mixed-tree,
and (9) full mix. All slope models stratified by the shrub and mixed-shrub fuel classes
are statistically significant for all sequences. Minor increases in slope model fits occurred
within the shrub and mixed-shrub classes for Thomas 1, 2, and 3, while most R2 values
and coefficient estimates are comparable to nonstratified models. Slope stratified by the
mixed-shrub fuel class yielded the highest model fit for Detwiler (adj. R2 = 0.422) and
Thomas 4 (adj. R2 = 0.396). However, when slope data are stratified by other fuel classes,
few models are significant. Detwiler was the only sequence where directional slope strati-
fied by the herb fuel class was statistically significant (adj. R2 = 0.223, p = 0.002). Although
the stratification of slope yielded few significant results for Thomas 1, 2, and 3 (compared
to unstratified models), increase in variance explanation for Detwiler and Thomas 4 were
common.

Table 4. Linear, exponential (semi-log), and power (log-log) regression results and model equations for directional slope.
Model diagnostics separated by fire and airborne thermal infrared image sequence.

Linear

n β ROS = β0 + β1Xi Adj.R2 p

Det. 157 0.250 09.90 + 0.25(slope) 0.160 <0.001
Th 1. 291 0.521 10.97 + 0.52(slope) 0.413 <0.001
Th 2. 372 0.459 10.85 + 0.46(slope) 0.432 <0.001
Th 3. 123 0.292 08.18 + 0.29(slope) 0.494 <0.001
Th 4. 332 0.525 10.97 + 0.53(slope) 0.194 <0.001

Exponential

n β ROS = aebx Adj. R2 p

Det. 157 0.031 6.65e(0.031)slope 0.075 <0.001
Th 1. 291 0.044 7.40e(0.044)slope 0.513 <0.001
Th 2. 372 0.046 6.77e(0.046)slope 0.548 <0.001
Th 3. 123 0.043 5.63e(0.043)slope 0.536 <0.001
Th 4. 332 0.028 7.75e(0.043)slope 0.191 <0.001

Power

n β ROS = axb Adj.R2 p

Det. 157 1.936 2.20(slope)1.936 0.078 <0.001
Th 1. 291 4.979 1.13(slope)4.979 0.490 <0.001
Th 2. 372 4.960 1.00(slope)4.960 0.533 <0.001
Th 3. 123 3.807 1.10(slope)3.807 0.513 <0.001
Th 4. 332 3.028 2.31(slope)3.028 0.173 <0.001
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3.5. Multivariate Analyses

Multiple forward/backward stepwise linear regression models were run with all
covariates as initial inputs for each sequence to gain insights on variable interactions and
combined influences on ROS (Table 5). Directional slope remained the most significant
predictor of ROS (average std. β coef. of 0.381). Except for the Detwiler sequence, NDVI-U
was included as a significant covariate with ROS. Similarly, GRVI-U was a marginally
significant predictor of ROS for two of five sequences. The Thomas 3 model explained
the greatest variance in ROS estimates (54%) and included directional slope, shrub, and
NDVI-U as significant covariates. Levels of statistical significance for GFFC varied largely
by sequence. Rock/bare soil were included in multiple regression models for Detwiler
and Thomas 2 and Thomas 4. Herb fraction for Detwiler and Thomas 1 models exhibited
interaction with other covariates and ROS, and thus were included in multivariate models.
Absolute std. β coefficient averages for fuel covariates were 0.12 and 0.14 for SVIs and
GFFC, respectively. Overall, when compared to directional slope, all image-derived fuel
covariates contributed only a small fraction to ROS variance explanation (12–17%).

Table 5. Multivariate regression results. Cross-validated (CV) R2 are 10-fold. Variance inflation factor (VIF) is maximum
reported for model.

Multiple Regression Forward/Backward Stepwise Regression

AIC VIF Adj. R2 CV R2 p AIC VIF Significant Variables Adj. R2 CV R2 p
Det. 1126.83 19 0.235 0.243 <0.001 1121.31 1 Slope, herb, tree, rock/bare soil 0.237 0.273 <0.001
Th 1. 2546.52 11 0.503 0.519 0.001 2542.85 3 Slope, herb, tree, NDVI-U, GRVI-U 0.505 0.524 <0.001
Th 2. 2899.42 7 0.488 0.494 0.004 2895.55 4 Slope, rock/bare soil, NDVI-U, GRVI-U 0.490 0.499 0.004
Th 3. 755.32 36 0.529 0.584 0.001 747.61 1 Slope, shrub, NDVI-U 0.543 0.574 <0.001
Th 4. 3136.14 11 0.249 0.259 <0.001 3133.22 4 Slope, tree, rock/bare soil, NDVI-U 0.251 0.261 <0.001
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4. Discussion

Weather, fuel, and topographic conditions and properties are the factors that control
wildfire spread [29–33]. Most empirical studies investigating environmental controls on
fire spread are limited to laboratory and outdoor fire experiments, or studies based on
coarse-scale satellite images of natural events e.g., [4,8,9,66]. The primary objectives of
this research were to evaluate landscape-scale terrain and fuel controls on fire spread rates
derived from repetitive-ATIR imagery collected during portions of two extreme wildfire
events. This study directly builds on Stow et al. [63,64] by linking detailed ATIR wildfire
spread measurements to geospatial data representing fuel and topographic distributions
derived from prefire NAIP orthoimagery and USGS DEMs.

4.1. Fuel Covariate Findings

Fuel properties which influence fire behavior are difficult to measure and map due to
their high variability in time and space [37–39]. For this reason, image-derived spectral
vegetation indices and growth form maps were tested as spatially explicit proxies of fuel
load distributions. The low and mostly nonsignificant correlations between ROS and
imaged-derived fuel covariates suggest that (1) neither the SVIs or GFFC were stable pre-
dictors of ROS for the particular wildfire events and landscapes studied here, (2) fuel load
was not a significant control on spread rates at the study sites examined in this research, or
conversely, (3) the temporal resolution of NAIP imagery produced inaccurate estimates of
the spatial characteristics of vegetation at the study areas imaged within the extreme wild-
fire events. Similarly, wind speed, which cannot be incorporated at the space-time scales of
our landscape statistical analysis, may dominate the unexplained variance and weaken any
influence of fuel covariates on ROS (see discussion on weather below). However, when
comparing model coefficients between separate study areas, GFFC depicts more consistent
relationships with ROS estimates than SVIs. For example, a negative relationship was com-
monly found for study areas containing LSUs with larger tree or rock/bare soil fractions
(std. β average of −0.613). Conversely, relationships between SVIs and ROS varied largely
by study area, and no clear relationship was discernable from model coefficients. Some
past studies examining the applicability of SVIs as surrogates of fuel load or biomass using
moderate to coarse-satellite images report promising results e.g., [36,39,40], indicating
that SVIs are more closely associated with ROS at landscape-scales when coupled with
terrain variables [42–44] and derived from orthoimagery captured just prior to the burn
event [36,58].

The inclusion of growth forms and SVIs in multivariate models did increase the pre-
dictability and variance explanation of ROS. Cross-validated R2 values routinely increased
over standard adj. R2 metrics in multivariate models. Similarly, the stratification of direc-
tional slope by fuel class (derived from GFFC estimates) increased variance explanation
of ROS for Detwiler and Thomas 4. This supports what is generally known about fire
behavior, that variations in fire spread rates are likely the result of complex landscape-scale
interactions between fuel, terrain, and weather characteristics [29,37,89]. The statistical sig-
nificance of bivariate and multivariate regression models for fuel covariates at Detwiler and
Thomas 4 show separate controls on ROS at specific times of burning within the extreme
wildfire events. Detwiler and Thomas 4 both exhibited significantly higher FireBuster and
RAWS wind speeds compared to other sequences (Table 4). The ancillary wind informa-
tion coupled with fuel covariate findings at Thomas 4 indicate that fire spread controls
during extreme wildfire events occur at landscape scales [53]. Further, homogeneity of
vegetation cover type has been linked to greater fire size and ROS by Viedma et al. [90]
and Holsinger et al. [91]. To further investigate this point, we analyzed samples in the
top 95th percentile of ROS estimates and found most of the associated LSUs had shrub or
herbaceous cover fractions between 90% and 100%. LSUs linked to lower ROS percentile
groups (e.g., bottom 20th percentile) contained larger variation of GF type. These findings
correspond with many former studies, in that fuel heterogeneity or fragmentation can
restrain fire propagation and ROS [90,91] and should be investigated further.
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4.2. Topographic Covariate Findings

Slope directly regulates fire spread through energy transfer of flaming biomass
along fire fronts and its relationship with ROS has been postulated as a curvilinear
function [4,49–51]. Many findings indicate slope steepness has a dramatic effect on fire
spread [49,50], however, the effects of slope on ROS in chaparral fuels are largely limited
to laboratory settings due to the difficulty of isolating its influence from other variables
(wind and fuels) during outdoor experiments and extreme wildfire events [14]. To eval-
uate nonstatic terrain controls on wildfire spread rates derived from the high-temporal
resolution ATIR imagery, we designed a customized directional slope covariate to calcu-
late signed-slope angles in the relative direction of fire propagation. We also attempted
to isolate directional slope by orientation and fuel classes derived from GFFC estimates
(Table 2 c).

Directional slope is the most explanatory covariate for all study sequences, accounting
for more than 50% (adj. R2 ≥ 0.500) of the variance in ROS estimates for three of five
of the image sequences (Table 4). All regression models were statistically significant for
directional slope on ROS for all sequences. Slightly higher model fits for exponential and
power regressions with directional slope suggest the relationship with ROS is best described
as a positive nonlinear function. An important finding from our topographic analyses
on ROS is that exponential regression results were consistent between study areas. For
example, constants in functions derived from exponential regression (or a in aebx) suggest
the y-intercepts of the separate models varied little among study areas (5.6–7.4 m min−1).
Growth rates of ROS (per unit increase in directional slope) were also consistent between
separate study areas. For instance, growth factors (or b in aebx) in exponential functions
only varied from 3.0% for Detwiler to 4.8% for Thomas 2 (∆1.8%).

We further examined directional slope data for LSUs associated with the top 95th
percentile of ROS estimates and discovered maximum rates of spread coincide with slope
angles between 20 and 40◦; none of these samples associated with rapid fire spread had
negative slopes. These findings contradict those from Vega et al. [92] and Catchpole
et al. [93], who have proposed that slope controls on ROS in shrubland fires is less than
forests [14,52].

While the influence of directional slope on ROS is clear and consistent within the con-
texts of the study fires and space and time scales of analysis, its importance as a controlling
variable may vary as a function of space and time scales [14,52]. We characterized the
average ROS and slope trends for the four Thomas Fire sequences which were all generally
upslope fire progressions (unlike the Detwiler Fire sequence), as shown in Table 6. The
ROS per degree of upslope trends at characteristic length scales of several km (rather than
tens to a few hundred meters for the LSU analyses) are also listed in Table 6. These trend
characteristics show that the relationship between ROS and slope are consistent between
Thomas 1, 2, and 3 (imaged on the same day). The larger ratio between ROS and slope at
Thomas 4 indicates that wind was likely the predominant control on fire spread. This is
confirmed by the higher wind speeds recorded at Thomas 4 and the sequence’s stronger
relationships between fuel covariates and ROS. In this context, the influence of wind on
ROS could also apply to the Detwiler sequence, which also exhibited a higher statistical
significance with fuel covariates, lower significance with directional slope, and higher
average wind speed. An equally important inference is that the directional slope covariate
used in this research may be capturing topographic influences on surface winds [54,58].
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Table 6. Slope trend for Thomas fire sequences. Metrics in table summarize the full range of a sequences (time = 1 front to
time = end front).

Sequence Time Elapsed
(HH:MM:SS)

Total Distance
(m)

ROS
(m min−1)

Elevation Gain
(m)

Slope Trend
(deg)

ROS/Slope
(m min−1/deg−1)

Thomas 1 3:12:59 1884.52 9.76 670.78 19.54 0.5
Thomas 2 3:23:17 2387.74 11.74 444.72 10.53 1.11
Thomas 3 0:42:30 504.00 11.86 124.01 13.50 0.88
Thomas 4 0:49:04 2379.24 48.48 465.16 11.06 4.38

Excluding the Detwiler and Thomas 4 sequences, stratifying directional slope by
orientation and fuel class showed similar findings as unstratified models. However, our
qualitative observations of fire spread along ridgetops and valley bottoms (Figure 7) in-
dicate that the stratification scheme used in this research did not isolate relationships
effectively; or high homogeneity of vegetation type and cover largely negated the stratifica-
tion approach. Moritz et al. [89] postulated that topographic “fences” and “corridors” may
impede or facilitate wildfire spread and occurrence during extreme wildfire events. Our
qualitative observations of topography influencing fire spread from geovisualizations of
active fire fronts derived from ATIR time sequences (Figure 7) support this assumption and
are also consistent with past studies describing how convective or radiative mechanisms
of wildfire spread are (1) strongly influenced along ridgetops and valley bottoms, and/or
(2) these features have a large effect on surface winds and fuel conditions [48,58,89,94].
Moreover, the restriction of fire spread along these topographic features do support past
findings that fire “fences” occur on landscape scales [89–91].Fire 2020, 3, x FOR PEER REVIEW 18 of 24 
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4.3. Weather-Related Findings

Most of the evidence associated with weather effects on fire spread for this study is
limited to general ROS trends relative to wind direction, velocity, and relative humidity
from RAWS observations and FireBuster forecasts that correspond most closely to the
space-time domains of our image-based fire spread estimates. RAWS data and FireBuster
predictions associated with ATIR collection periods and locations are reported in Table 4.
The spatial, and especially temporal scales of both data types are too coarse to be analyzed
statistically in a direct manner with ROS. However, the FireBuster predictions and RAWS
data do help shed light on regression analyses.

Besides reported winds for Thomas 4 and Detwiler, RAWS and FireBuster reports for
other sequences show low wind speed. The incorporation of topographic and meteorologi-
cal data in the spatially explicit FireBuster model [74] are also likely to produce estimates
of weather variables that are more indicative of the site-specific fire spread conditions
where ATIR image sequences were captured, though at coarser spatial and temporal scales.
For example, wind direction reported from nearest RAWS to Detwiler (13.3 km North)
are directionally opposite to fire spread directions documented by spread-vector bearings.
Contrastingly, FireBuster predictions for the time and location of the Detwiler sequence
characterize wind directions consistent with fire spread direction.

The most meaningful finding related to general weather versus ROS relationships is
that wind speeds and ROS were substantially higher, and relative humidity lower during
the Thomas 4 and Detwiler sequences than for the Thomas 1–3, as shown in Table 4. The
data and estimates reveal that Santa Ana weather conditions prevailed during the Thomas
4 sequence on 09 December 2020, but not necessarily on the previous data when the other
Thomas sequences were imaged. Although the burn area associated with the Thomas
4 sequence, just 15 km west of Thomas 1–3, the relationships between directional slope
and ROS are substantially different between the sequences that exhibit relatively higher
wind speeds (Detwiler and Thomas 4). Further, the mean and median ROS estimates for
Thomas 4 are considerably higher than other sequences. Higher ROS for Thomas 4 is likely
associated with the faster wind speeds reported by nearest RAWS data and FireBuster
estimates. This suggests that fire behavior for Thomas 4 and Detwiler were more wind-
driven and the higher wind speeds may have substantially reduced the relative influence
of slope on ROS [14].

The Thomas Fire covered a vast, topographically diverse area and occurred during a
two-week period intermittent Santa Ana weather condition. Thus, while some fire growth
areas and periods were wind-driven, such as the initial run on December 4–5, others were
topographically sheltered from the Santa Ana winds and instead, driven by ‘fire-induced
winds’ [95], or intermittently exposed to the strong ambient winds [96].

5. Conclusions

Through this study we demonstrated that repetitive ATIR imagery from the
FireMapperTM 2.0 imaging system facilitates attainment of broader knowledge of the
relationships between extreme wildfire behavior and controlling environmental factors.
Additionally, such landscape-level estimates of ROS provide could provide an excellent
source of reference data for validating fire spread theory and simulation models [18–20].
Continuing ATIR data collection during extreme wildfire events in disparate ecosystem, ter-
rain, and climate types is of the utmost importance, and would encourage the establishment
of a comprehensive data set for future fire spread research and validation purposes.

We also document procedures for relatively short-interval, time-sequential ATIR
imagery collection with the FireMapper 2.0 system for quantifying ROS during extreme
fire events and evaluating environmental controls on fire spread at landscape scales. We
identified covariate relationships, interactions, and influences with ROS estimates that
help validate and expand upon similar work conducted for larger and smaller scales. We
provide evidence from the 2017 Thomas and Detwiler fires that directional slope can be a
strong control variable on ROS in shrubland landscapes, and its influence can be effectively
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expressed as a curvilinear function. We postulate that calculating directional slope in
advance of an active fire front, coupled with dominant wind data, could provide fire
managers and modelers better ability to predict wildfire spread and focus fuel treatment
projects, similar to findings from Viedma et al. [54] and Coen et al. [58].

This study is the first attempt at isolating and statistically analyzing landscape-scale
covariate relationships with high spatial and temporal resolution fire spread measurements
collected during extreme wildfire events. The Detwiler and Thomas fire events burned
over 140,000 ha of land, and spread through diverse variations of terrain, fuel, and weather.
Observations and results drawn from this study are necessarily limited to the specific fire
spread behaviors and landscape characteristics associated with the study fires captured
during ATIR imaging. Moreover, the influence of weather on ROS estimates is challenging
to account for in the statistical analyses due primarily to the nature of capturing wind speed
and direction data for individual LSUs and at the temporal resolution of ATIR imaging
during such events. However, the effects of Santa Ana wind and humidity conditions
can be discerned from the differences in ROS and model fits with directional slope when
comparing results for Thomas sequence 4 relative to sequences 1 through 3 [96].

Follow-on research pertaining to spatial-scale and nonlinear relationships between
ROS estimates and landscape covariates should be conducted. This could include buffering
spread vectors to generate larger landscape sample units that may account for uncertainty
in actual fire spread directions [64]. Spatial association effects on statistical analyses could
be evaluated using Geographically Weighted Regression (GWR) and/or Eigenvector-based
Spatial Filtering (ESF) regression techniques. Nonlinear, nonparametric machine learning
approaches such as regression trees (RT) and random forest (RF) regression should also be
explored. Similarly, this research focused on analyzing long runs of fire spread that were
easily tractable from ATIR image sequences. However, focus should be given to the spatial
relationships and impact of spotting behaviors on ROS that were omitted in this research
to focus on the full fire runs captured by ATIR sequences.

Future research on imaged-derived fuel covariate relationships with ROS would
benefit from studies of wildfires in different ecosystems with different and particularly more
heterogenous fuel compositions. This would also help determine if the weak relationship
between ROS estimates and fuel covariates were limited by homogenous fuel conditions
within the study fire sequence zones. The inclusion of prefire Light Detection and Ranging
(LiDAR) data for the characterization and mapping of fuels would also likely enhance
assessment of fuel controls.

The predictive capability of directional slope and its statistical relationship with ROS
and interaction with wind speed should be explored further. Moreover, wind direction and
velocity data at spatial and temporal scales closer to those of the ATIR image sequences
would allow better understanding of weather influences on ROS. Evaluating the influence
of terrain features that impede or enhance wildfire spread could also be examined by
exploring ROS relationships with topographic index metrics [97].
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