Kelly, L.T.; Brotons, L.; Giljohann, K.M.; McCarthy, M.A.; Pausas, J.G.; Smith, A.L. Bridging the divide: integrating animal and plant paradigms to secure the future of biodiversity in fire-prone ecosystems. *Fire* **2018** **Supplementary Material.** We reviewed the ten most recent papers on fire ecology published in each of five exemplar journals (*Biological Conservation, Ecology, Forest Ecology and Management, Global Ecology and Biogeography* and *International Journal of Wildland Fire*; n = 50 papers). On 11/06/2018 we used the keyword 'fire' to search for relevant articles, using the search engine provided by the publisher of each journal. Results were sorted by date and papers were included in the review if they investigated either animal or plant associations with fire. We excluded articles that did not present new data or that examined data on fires but not animals or plants. For each journal, we classified the ten most recent papers that met our criteria as either animal-based ('Animals'), plant-based ('Plants') or investigating both animals and plants ('Joint'). Studies were classified as joint if they assessed associations of both animals and plants with fire or explicitly incorporated both groups into experimental design. | PaperID | Title | Journal | DOI | Animals | Plants | Joint | |---------|--|-------------------------|--|---------|--------|-------| | 1 | Disentangling effects of fire, habitat, and climate on an endangered prairie specialist butterfly | Biological Conservation | https://doi.org/10.1016/j.biocon.2017.10.034 | 1 | 1 | 1 | | 2 | Aboriginal burning promotes fine-
scale pyrodiversity and native
predators in Australia's Western
Desert | Biological Conservation | https://doi.org/10.1016/j.biocon.2018.01.008 | 1 | 0 | 0 | | 3 | Prescribed burning impacts avian diversity and disadvantages woodland specialist birds unless long-unburnt habitat is retained | Biological Conservation | https://doi.org/10.1016/j.biocon.2017.09.005 | 1 | 0 | 0 | | 4 | Fire-induced forest transition to derived savannas: Cascading effects on ant communities | Biological Conservation | https://doi.org/10.1016/j.biocon.2017.08.020 | 1 | 0 | 0 | | 5 | Declines revisited: Long-term recovery and spatial population dynamics of tailed frog larvae after wildfire | Biological Conservation | https://doi.org/10.1016/j.biocon.2017.06.022 | 1 | 0 | 0 | | 6 | Mitigation for energy development fails to mimic natural disturbance for birds and mammals | Biological Conservation | https://doi.org/10.1016/j.biocon.2017.05.023 | 1 | 1 | 1 | | 7 | Restoration treatments to control
Molinia arundinacea and woody and
alien species encroachment in Calluna | Biological Conservation | https://doi.org/10.1016/j.biocon.2017.05.013 | 0 | 1 | 0 | Kelly, L.T.; Brotons, L.; Giljohann, K.M.; McCarthy, M.A.; Pausas, J.G.; Smith, A.L. Bridging the divide: integrating animal and plant paradigms to secure the future of biodiversity in fire-prone ecosystems. *Fire* **2018** | | vulgaris heathlands at the southern edge of their distribution | | | | | | |----|---|-------------------------|--|---|---|---| | 8 | Bombs, fire and biodiversity: Vertebrate fauna occurrence in areas subject to military training | Biological Conservation | https://doi.org/10.1016/j.biocon.2016.10.030 | 1 | 1 | 1 | | 9 | Contrasting effects of land use legacies on grassland restoration in | Biological Conservation | https://doi.org/10.1016/j.biocon.2016.08.004 | 0 | 1 | 0 | | 10 | burnt pine plantations Are forest gullies refuges for birds when burnt? The value of topographical heterogeneity to avian diversity in a fire-prone landscape | Biological Conservation | https://doi.org/10.1016/j.biocon.2016.05.010 | 1 | 0 | 0 | | 11 | Fire disturbance disrupts an acacia ant–plant mutualism in favor of a subordinate ant species | Ecology | https://doi.10.1002/ecy.1797. | 1 | 1 | 1 | | 12 | Pinus contorta invasions increase wildfire fuel loads and may create a positive feedback with fire | Ecology | https://doi.org/10.1002/ecy.1673 | 0 | 1 | 0 | | 13 | Aridity, not fire, favors nitrogen-
fixing plants across tropical savanna
and forest biomes | Ecology | https://doi.org/10.1002/ecy.1504 | 0 | 1 | 0 | | 14 | Biotic resistance and disturbance:
rodent consumers regulate post-fire
plant invasions and increase plant
community diversity | Ecology | https://doi.org/10.1002/ecy.1391 | 1 | 1 | 1 | | 15 | Fire ecology of C3 and C4 grasses depends on evolutionary history and frequency of burning but not photosynthetic type | Ecology | https://doi.org/10.1890/14-1495.1 | 0 | 1 | 0 | | 16 | Early-season fires in boreal black
spruce forests produce pyrogenic
carbon with low intrinsic recalcitrance | Ecology | https://doi.org/10.1890/14-1196.1 | 0 | 1 | 0 | | 17 | Bison foraging responds to fire frequency in nutritionally heterogeneous grassland | Ecology | https://doi.org/10.1890/14-2027.1 | 1 | 1 | 1 | Kelly, L.T.; Brotons, L.; Giljohann, K.M.; McCarthy, M.A.; Pausas, J.G.; Smith, A.L. Bridging the divide: integrating animal and plant paradigms to secure the future of biodiversity in fire-prone ecosystems. *Fire* **2018** | 18 | Fire alters ecosystem carbon and
nutrients but not plant nutrient
stoichiometry or composition in
tropical savanna | Ecology | https://doi.org/10.1890/14-1158.1 | 0 | 1 | 0 | |----|---|----------------------------------|--|---|---|---| | 19 | A late-Quaternary perspective on atmospheric pCO2, climate, and fire as drivers of C4-grass abundance | Ecology | https://doi.org/10.1890/14-0209.1 | 0 | 1 | 0 | | 20 | A fire-driven shift from forest to non-
forest: evidence for alternative stable
states? | Ecology | https://doi.org/10.1890/12-1766.1 | 0 | 1 | 0 | | 21 | Disentangling the effects of crown scorch and competition release on the physiological and growth response of Pinus halepensis Mill. using d13C and d18O isotopes | Forest Ecology and
Management | https://doi.org/10.1016/j.foreco.2018.04.056 | 0 | 1 | 0 | | 22 | Fire and forest recovery on seismic lines in sandy upland jack pine (Pinus banksiana) forests | Forest Ecology and
Management | https://doi.org/10.1016/j.foreco.2018.01.027 | 0 | 1 | 0 | | 23 | Fuel mass and stand structure 13 years after logging of a severely burned ponderosa pine forest in northeastern Oregon, U.S.A | Forest Ecology and
Management | https://doi.org/10.1016/j.foreco.2018.04.047 | 0 | 1 | 0 | | 24 | Germination, survival, and early growth of three invasive plants in response to five forest management regimes common to US northeastern deciduous forests | Forest Ecology and
Management | https://doi.org/10.1016/j.foreco.2018.05.037 | 0 | 1 | 0 | | 25 | Long-term avian response to fire
severity, repeated burning, and
mechanical fuel reduction in upland
hardwood forest | Forest Ecology and
Management | https://doi.org/10.1016/j.foreco.2018.05.014 | 1 | 1 | 1 | | 26 | Recent post-wildfire salvage logging
benefits local and landscape floral and
bee communities | Forest Ecology and
Management | https://doi.org/10.1016/j.foreco.2018.05.009 | 1 | 1 | 1 | | 27 | Substrate specific restoration | Forest Ecology and | https://doi.org/10.1016/j.foreco.2018.05.019 | 1 | 1 | 1 | Kelly, L.T.; Brotons, L.; Giljohann, K.M.; McCarthy, M.A.; Pausas, J.G.; Smith, A.L. Bridging the divide: integrating animal and plant paradigms to secure the future of biodiversity in fire-prone ecosystems. *Fire* **2018** | | promotes saproxylic beetle diversity in boreal forest set-asides | Management | | | | | |----|--|------------------------------------|--|---|---|---| | 28 | The influence of fire history on soil nutrients and vegetation cover in mixed severity fire regime forests of the eastern Olympic Peninsula, Washington, USA | Forest Ecology and
Management | https://doi.org/10.1016/j.foreco.2018.03.037 | 0 | 1 | 0 | | 29 | The role of fire history, land-use, and vegetation structure on the response of Mediterranean lizards to fire | Forest Ecology and
Management | https://doi.org/10.1016/j.foreco.2018.03.029 | 1 | 0 | 0 | | 30 | Structural diversity and dynamics of
boreal old-growth forests case study
in Eastern Canada | Forest Ecology and
Management | https://doi.org/10.1016/j.foreco.2018.04.007 | 0 | 1 | 0 | | 31 | Long-term potential for fires in estimates of the occurrence of savannas in the tropics | Global Ecology and
Biogeography | https://doi.org/10.1111/j.1466-8238.2007.00356.x | 0 | 1 | 0 | | 32 | Not only trees: Grasses determine
African tropical biome distributions
via water limitation and fire | Global Ecology and
Biogeography | https://doi.org/10.1111/geb.12735 | 0 | 1 | 0 | | 33 | Are strong fire-vegetation feedbacks needed to explain the spatial distribution of tropical tree cover? | Global Ecology and
Biogeography | https://doi.org/10.1111/geb.12380 | 0 | 1 | 0 | | 34 | Diversity and species composition of West African ungulate assemblages: effects of fire, climate and soil | Global Ecology and
Biogeography | https://doi.org/10.1111/j.1466-8238.2008.00416.x | 1 | 0 | 0 | | 35 | Predicting the century-long post-fire responses of reptiles | Global Ecology and
Biogeography | https://doi.org/10.1111/j.1466-8238.2011.00747.x | 1 | 0 | 0 | | 36 | Scale matters: fire-vegetation feedbacks are needed to explain tropical tree cover at the local scale | Global Ecology and
Biogeography | https://doi.org/10.1111/geb.12562 | 0 | 1 | 0 | | 37 | Fire and plant diversity at the global scale | Global Ecology and
Biogeography | https://doi.org/10.1111/geb.12596 | 0 | 1 | 0 | | 38 | Woody cover in African savannas: the role of resources, fire and herbivory | Global Ecology and
Biogeography | https://doi.org/10.1111/j.1466-8238.2007.00360.x | 1 | 1 | 1 | | 39 | Fire persistence traits of plants along a | Global Ecology and | https://doi.org/10.1111/j.1466-8238.2006.00283.x | 0 | 1 | 0 | Kelly, L.T.; Brotons, L.; Giljohann, K.M.; McCarthy, M.A.; Pausas, J.G.; Smith, A.L. Bridging the divide: integrating animal and plant paradigms to secure the future of biodiversity in fire-prone ecosystems. *Fire* **2018** | | productivity and disturbance gradient
in mediterranean shrublands of south-
east Australia | Biogeography | | | | | |----|---|---|--|---|---|---| | 40 | Relationships among fire frequency, rainfall and vegetation patterns in the wet–dry tropics of northern Australia: an analysis based on NOAA-AVHRR data | Global Ecology and
Biogeography | https://doi.org/10.1111/j.1466-822x.2005.00174.x | 0 | 1 | 0 | | 41 | Importance of internal refuges and the external unburnt area in the recovery of rodent populations after wildfire | International Journal of
Wildland Fire | https://doi.org/10.1071/WF17102 | 1 | 0 | 0 | | 42 | Post-fire surface fuel dynamics in
California forests across three burn
severity classes | International Journal of
Wildland Fire | https://doi.org/10.1071/WF17148 | 0 | 1 | 0 | | 43 | Tundra avian community composition during recovery from the Anaktuvuk River Fire | International Journal of
Wildland Fire | https://doi.org/10.1071/WF17159 | 1 | 0 | 0 | | 44 | Short-term stem mortality of 10 deciduous broadleaved species following prescribed burning in upland forests of the Southern US | International Journal of
Wildland Fire | https://doi.org/10.1071/WF17058 | 0 | 1 | 0 | | 45 | Reproductive success of wind, generalist, and specialist pollinated plant species following wildfire in desert landscapes | International Journal of
Wildland Fire | https://doi.org/10.1071/WF16222 | 0 | 1 | 0 | | 46 | Relationships among burn severity, forest canopy structure and bat activity from spring burns in oakhickory forests | International Journal of
Wildland Fire | https://doi.org/10.1071/WF16159 | 1 | 1 | 1 | | 47 | Messmate stringybark: bark ignitability and burning sustainability in relation to fragment dimensions, hazard score and time since fire | International Journal of
Wildland Fire | https://doi.org/10.1071/WF16146 | 0 | 1 | 0 | | 48 | Inability of fire to control vegetation dynamics in low-productivity mulga | International Journal of
Wildland Fire | https://doi.org/10.1071/WF17011 | 0 | 1 | 0 | Kelly, L.T.; Brotons, L.; Giljohann, K.M.; McCarthy, M.A.; Pausas, J.G.; Smith, A.L. Bridging the divide: integrating animal and plant paradigms to secure the future of biodiversity in fire-prone ecosystems. *Fire* **2018** | 49 | (Acacia aneura)-dominated communities of eastern Australia Prescribed fire as a tool to regenerate live and dead serotinous jack pine | International Journal of
Wildland Fire | https://doi.org/10.1071/WF17046 | 0 | 1 | 0 | |----|---|---|-------------------------------------|-----|-----|-----| | 50 | (Pinus banksiana) stands High post-fire mortality of resprouting woody plants in Tasmanian Mediterranean-type vegetation | International Journal of
Wildland Fire | https://doi.org/10.1071/WF16211 | 0 | 1 | 0 | | | | | NUMBER OF PAPERS IN CATEGORY (n=50) | 21 | 40 | 11 | | | | | PERCENTAGE OF PAPERS IN CATEGORY | 42% | 80% | 22% |