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Abstract: Weyl semimetals can be described as the three-dimensional analogue of graphene,
showing linear dispersion around nodes (Weyl points). Tantalum arsenide is among the most
studied Weyl semimetals. It has been demonstrated that TaAs has a very high value of the real part of
the complex refractive index in the infrared region. In this work we show one-dimensional photonic
crystals alternating TaAs with SiO2 or TiO2 and a microcavity where a layer of TaAs is embedded
between two SiO2-TiO2 multilayers.
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1. Introduction

Tantalum arsenide is a deeply studied Weyl semimetal [1]. Angle resolved photoemission
spectroscopy measurements together with ab initio calculations demonstrated that fermions in TaAs
can be described as massless chiral particles with spin 1/2 [2–6]. Recently, Wu et al. [7] have measured
a very intense nonlinear optical response of TaAs together with other monopnictide Weyl semimetals,
while Weber et al. [8] have studied the ultrafast dynamics of TaAs. Buckeridge et al. [9] have calculated
several properties of TaAs, including the dielectric function of the material. Owing to the tetragonal
symmetry, an anisotropy of the optical properties arises, with two different dielectric functions when
the oscillating electric field is parallel to the a and b axis or parallel to the c axis. In the c direction,
at photon energies below 1 eV, the imaginary part of the refractive index decreases significantly,
while the real part of refractive index has values above 6. Thus, TaAs can be exploited as a high
refractive index material in the infrared region.

For this reason, we want to demonstrate in this work the implementation of tantalum arsenide as
a layer in a one-dimensional (1-D) multilayer photonic crystal. One-dimensional photonic crystals
are the simplest case of photonic crystals that are materials in which the alternation of high and
low refractive indices has a length scale of the light wavelength. In these materials, light is not
allowed to propagate for certain photon energies, in correspondence with the so-called photonic band
gap [10–13]. One-dimensional multilayer photonic crystals can be fabricated with many fabrication
techniques such as sputtering, spin coating, pulsed laser deposition, chemical etching, and molecular
beam epitaxy [14–18]. These structures are useful for several applications, for example lasing [15,19],
emission control [20–22], and sensing [23–25]. Herein, we show one-dimensional photonic crystals
alternating TaAs with SiO2 or TiO2 and a microcavity where a layer of TaAs is embedded between two
SiO2-TiO2 multilayers. We show that with very thin layers of TaAs, 16 nm in the photonic crystals and
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8 nm in the microcavity, we can achieve very efficient photonic band gaps and cavity defects, due to
the high real part of the refractive index of TaAs in the infrared region.

2. Methods

To calculate the optical properties of the different photonic structures studied herein, we have
employed the transfer matrix method [26,27]. In our study, the light impinges at normal incidence on
a system composed of a glass substrate, the photonic structure, and air.

Briefly, the electric (magnetic) field in air, E0 (H0), is related to the electric (magnetic) field in glass,
Em (Hm), through this expression[
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where x is the number of layers. Mj is the characteristic matrix of the layer j
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φj is the phase variation of the light wave passing through the layer, and for normal incidence φj =

(2π/λ)njdj, with nj being the refractive index of the layer, dj is the layer thickness, and pj =
√

ε j/µj

for a transverse electric wave (TE, taking into account that for normal incidence TE and TM show the
same behaviour in 1-D photonic crystals).

The transmission coefficient t and the transmission T are

t =
2ps

(m11 + m12 p0)ps + (m21 + m22 p0)
(3)

T =
p0

ps
|t|2 (4)

We have studied the optical response of a TaAs/SiO2 photonic crystal, of a TaAs/TiO2 photonic
crystal, and of a (TiO2-SiO2)7-[SiO2-TaAs-SiO2]-(SiO2-TiO2)7 microcavity in the range 0.2–1.1 eV with
a step of 2.5 meV.

3. Results and Discussion

In this work, we studied the optical properties of 1-D photonic crystals made with TaAs alternated
with SiO2 or TiO2 and of a microcavity in which TaAs was embedded between two SiO2-TiO2 Bragg
mirrors (seven bilayers), as sketched in Figure 1.
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Figure 1. Scheme of (a) a TaAs/SiO2 (or TaAs/TiO2) photonic crystal and of (b) a
(TiO2-SiO2)7-[SiO2-TaAs-SiO2]-(SiO2-TiO2)7 microcavity.
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In Figure 2, we show the light transmission spectrum of a photonic crystal made of seven bilayers
of TaAs and SiO2. The thickness of each TaAs layer was 16 nm, while the thickness of each SiO2 layer
was 1200 nm. n and k (real part and imaginary part of the refractive index) of TaAs, in the c direction
of the crystal, have been taken from Reference [9]. The Sellmeier equation for the dispersion of the
refractive index of silica is [28]:

n2
SiO2

(λ)− 1 =
0.6961663λ2

λ2 − 0.06840432 +
0.4079426λ2

λ2 − 0.11624142 +
0.8974794λ2

λ2 − 9.8961612 (5)

The Sellmeier equation for the dispersion of the refractive index of titania, reliable for thin films
in the range 0.2–1.1 eV, fits the data by Siefke et al. [29,30] and is

n2
TiO2

(λ)− 1 =
4.181λ2

λ2 − 0.21332 +
5.068λ2

λ2 − 14.332 (6)
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Figure 2. Light transmission spectrum of a 1-D photonic crystal made using seven bilayers of TaAs
and SiO2.

For thicknesses of TaAs above 16 nm, the light absorption of the material became very strong
because of the high imaginary part of the refractive index.

If we used TiO2 instead of SiO2 to be alternated with TaAs, we observed a photonic band gap in
the same spectral position (i.e., 0.35 eV) with a thickness of the TiO2 layers of 765 nm, resulting in a
thinner photonic crystal. In Figure 3, the light transmission spectrum of a photonic crystal made of
TaAs and TiO2 is depicted.

In the spectra in Figures 2 and 3, the transmission valley around 0.65 eV was the second order
of the photonic band gap of the photonic crystals. For photon energies above 0.8 eV, the imaginary
part of the TaAs complex refractive index increased significantly, such that the transmission valley at
0.9–1.0 eV was mostly due to TaAs absorption [9].

The photonic band gap was less intense with a TaAs-TiO2 unit cell (minimum at about 0.1) with
respect to the one with a TaAs-SiO2 unit cell (minimum at about 0.03) because of the smaller refractive
index contrast in the TaAs-TiO2 case.

In Figure 4, we show the light transmission spectrum of a (TiO2-SiO2)7-[SiO2-TaAs-SiO2]-
(SiO2-TiO2)7 microcavity. The TiO2 layers of the [TiO2-SiO2]7 Bragg mirrors were 377.78 nm thick,
while the SiO2 layers were 590.28 nm thick. In this way, the TiO2 layers and SiO2 layers followed the
condition nSiO2 dSiO2

∼= nTiO2 dTiO2 . The two SiO2 layers that sandwiched the TaAs layer in the cavity
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defect were 560 nm thick, while the thickness of the TaAs layer was 8 nm. The microcavity shows in
the region 0.31–0.42 eV a photonic band gap with an intense defect peak at 0.376 eV. Since nSiO2 dSiO2

∼=
nTiO2 dTiO2 , the second order of the microcavity photonic band gap was not observed.Ceramics 2018, 1, x FOR PEER REVIEW  4 of 6 
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Figure 3. Light transmission spectrum of a 1-D photonic crystal made using seven bilayers of TaAs
and TiO2.
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Figure 4. Light transmission spectrum of a (TiO2-SiO2)7-[SiO2-TaAs-SiO2]-(SiO2-TiO2)7 microcavity.

4. Conclusions

In this work, we have exploited the high refractive index of tantalum arsenide in the infrared
region (in the region 0.2–1.1 eV), employing the material as a layer in the engineering of a 1-D multilayer
photonic crystal and of a 1-D microcavity. We showed one-dimensional photonic crystals alternating
TaAs with SiO2 or TiO2 and a microcavity where a layer of TaAs was embedded between two SiO2-TiO2

multilayers. It is worth noting that with thin TaAs layers, 8 to 16 nm thick, it is possible to build
photonic crystals and microcavities in the infrared region with good efficiency. This can be promising
for the fabrication of thin filters for this spectral region.
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