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Abstract: During current high-speed cutting processing, the requirements on the CNC machine tool,
controller, and cutting technique has become higher and higher. This research focuses on cutting
tools, when the rake angles of different tools cause the shearing cut to change, and when the cutting
force and cutting resistance are changed accordingly. In general, the rake angle is smaller in rough
machining and bigger in finish machining. Therefore, the size of the rake angle should be decided
on by considering the workpiece, feed-rate, cutting depth, cutting speed, cutter life, etc. In this
research, we make different changes to the rake angle of the milling cutter and do real cutting tests to
discuss the impact that rake angle change has on its processing characteristics. During the cutting
experiment, by setting different cutting parameters, this research aims to get cutting force data using
the dynamometer and the signal interceptor, and to analyze the relevance of the cutting force change,
abrasion of tool, surface roughness, and chip morphology of different rake angles. This will be done
through observation when the rake angle is 0◦, when the cutting force in the X/Y/Z direction is the
smallest, when the depth of the cut is 0.1 to 0.3 mm, and when the tangential shear cutting constant
Kts is reduced by 50%.
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1. Introduction

By changing different rake angles of tools, Lin [1] verified that when the rake angle of tools is
increased, the maximum equivalent stress, the unit cutting force, and the cuttings temperature will
decrease. Huang [2] once discussed the milling force and the post-processing surface roughness of the
medium carbon steel and the fast cutting steel during turning and milling, and the experiment results
showed that, under the same conditions, the smaller the cutting force endured by the tool during the
cutting, the better the machinability was for the workpiece material. Moreover, a larger helical angle of
the cutting tools means a bigger cutting rake angle, and thus the surface abrasion between the cuttings
and the tool will be reduced and the shearing strain will also be reduced. However, the effective shear
angle will be increased, which reduces the cutting force gradually [3,4] so as to improve the processing
efficiency. Many domestic scholars have carried out research in the field of measuring cutting force.

This research will apply the same holder to adjust the rake angle of the tool, and the cutting force
change will then be observed. Furthermore, the ploughing force and the size effect during machining
will be discussed, and the shearing effect of the face will be analyzed.

Koenigsberger and Sabberwal [5] have reported the empirical equation related to tangential force:

ft = ct(tc)× tx × sin θ = kt × tx × sin θ (1)
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In the mode of radial force established by Tlusty and Macneil [6], kr is the fixed ratio of the radial
force and tangential force, and their relationship is shown as below:

fr = kr × ft (2)

where in tc is the average cutting thickness, kt is the tangential cutting pressure constant. If the
above equation does not consider the size effect, the kt is the definite value during cutting. However,
if it does consider the size effect, kt will change with the cutting angle and therefore, the material
characteristics, cutting parameters, and other factors must be considered when establishing the cutting
mode. However, most scholars regard kt as a definite value during their research of the cutting force
mode.

2. Experimental

2.1. Cutting Tool Design with Adjustable Angle

This research adopts the adjustable holder as shown in Figure 1, which can be applied to study
high-speed cutting on the fixed holder and blade. The rake angle of the tool is mainly adjusted,
and different rake angles of the tools have obviously different cutting characteristics. The key
components of the adjustable cutting tools include the holder body, the rotation mechanism components,
the positioning components, the anchor screws to the rotation mechanism components, the disposable
blade, the anchor screws to the blade, and other important components. The rotation mechanism
components are mainly adjusted and are fixed at different processing feed-rate speeds with different
materials, as shown in Figure 2. The tool rake angle α and tool clearance angle η will have different
changes when adjusting the rotation mechanism components. The right side shows the side view,
and the left side shows the front view—as shown in Figure 3. In this research, the analysis and studies
will be carried out from different perspectives.
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In Figure 3, α is the rake angle and η is the clearance angle.

2.2. Mathematical Model Derivation

In general, cylindrical coordinate system ρ–r–h changes with the rotation of the tool during
milling, as shown in Figure 4. The angle ρ is Zero when the height (h) of one point at the edge of the
milling cutter is zero (h = 0), and when the relationship of ρ and h is as below [7–9]:

h(ρ) =
R

tan α
[ρ− (k− 1)ρa] (3)

(k− 1)ρp ≤ ρ ≤ (k− 1)ρp + ρa, k = 1, 2, 3, . . . , N (4)

ρp is the included angle between the blades, while ρa shows the relationship between the tool and
its cutting height da. However, the main effect variables of milling are the axial cutting depth da,
the radius of milling cutter R, the rake angle or helical angle α of the tool, and other parameters.

ρp =
2π

N
(5)
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ρa =
da

R
tan α (6)
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When the rectangular coordinate system X-Y-Z is overlapped with the cylindrical milling cutter
coordinate, the heading direction of the work-piece is the same as the X-axis during the test. In addition,
the θ angle is the cutting rotation angle between the tool and the work-piece during cutting, as shown
in Figure 4.

X-Y-Z coordinates are those for the work-piece during cutting when the milling cutter is fed along
the Z axis, and when the rotation angle of the tool is θ. The relationship between the milling cutter ρ

and the tool rotation angle φ can be shown on the work-piece coordinates as below.
During milling, the radial cutting-in dr and the offset C affect the relationship between the initial

feed-rate angle θ1 and the final cutting angle θ2. The cutting thickness tc is a function of θ, and the
relation is as below:

θ1 = cos−1(
R− C

R
) (7)

θ2 = cos−1(1− C + dr
R

) (8)

tc = tx sin(θ) (9)

During cutting, there is a contact point on the fillet of the cutting edge, as shown in Figure 5.
The material above this point will be pushed to produce chips, and the material under this point will
be pushed into the bottom of the tool. Then, the work-piece surface will be formed after the flank
leaves. The position of the contact point will change with the geometrical shape and material of the
tool, the material of the work-piece, and the cutting parameters [3]. The cutting force F is divided into
ploughing force FP and shear force FS.
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The impact of shear force and ploughing force on milling force can be divided into tangential,
radial, and axial partial milling force, and the expression is shown in the below Equations (17)–(19).

The tangential, radial, and axial partial milling forces are shown in the following equation:

d ft = ktstx sin θdh + ktpdh (10)

d fr = krsktstx sin θdh + krpktpdh (11)

d fa = kasktstx sin θdh + kapktpdh (12)

The partial cutting by sorting is shown as below: d ft

d fr

d fa

 =

 1
krs

kas

ktstx sin θdh +

 1
krp

kap

ktpdh (13)

The process of converting the tangential force, radial force, and axial force into the X-Y-Z
coordinated system is as follows: d fx

d fy

d fz

 =

 cos θ sin θ 0
sin θ − cos θ 0
0 0 −1


 d ft

d fr

d fa

 (14)

=

 1
−krs

0

krs

1
0

0
0
kas

ktstx

 sin 2θ
2

1−cos 2θ
2

sin θ

dh +

 1
−krp

0

krp

1
0

0
0
−kap

ktp

 cos θ

sin θ

1

dh (15)
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= qs psdh + qp ppdh (16)

The ps(θ), pp(θ) is limited by the initial cutting angle θ1 and the final cutting angle θ2 during
machining. Therefore, the basic cutting function must be multiplied with a cutting window function W
(θ, h). During cutting, θ will be changed by the height of milling h and the partial milling force mode
when considering the cutting window is as follows:

w(θ) =

{
1 when..θ ∈ [θ1, θ2]

0 otherwise
(17)

The single blade cutting mode is obtained from the integration of the partial milling force function
and the cutting height, which can be shown as follows:

f j(ϕ) =
∫

d f =

da∫
0

〈
[qs][ps] +

[
qp
][

pp
]〉

w(θ)dh (18)

ts(φ) =
∞

∑
k=−∞

δ(φ− (k− 1)βp) (19)

f (φ) = ts(φ) ∗ f j(φ) (20)

The * stands for the operational symbol of convolution. During single blade cutting, it can be the
convolution of the partial milling force function. General tools can do multi-blade milling, and the tools
continuously rotate to cause the periodic change of the milling force. The periodicity is βp = 2π/Z,
therefore the force that is measured during processing is a periodic cutting force. The single blade
mode is extended to be multi-blade periodic cutting force, by calculating the convolution of the single
blade cutting force and the blade sequence function ts (φ). The total cutting force mode is as follows:

The average milling force is the important reference data during milling. The functions of the
Fourier transform can be obtained when calculating the average value of the periodic function:

F(ω) = TS(ω)Fj(ω) (21)

= N
∞

∑
k=−∞

δ(ω− Nk)Fj(ω) (22)

The Fourier transform equation for the TS (ω) blade sequence function ts (φ) is:

TS(ω) = N
∞

∑
k=−∞

δ(ω− NK) (23)

We make the Fourier transform based on the above equation. The total milling force function can
be shown as the form of Fourier transform series:

f (φ) =
1

2π

∞∫
−∞

F(ω)ejωφdω =
∞

∑
k=−∞

A[Nk]ejNkφ (24)

A[Nk] =
N
2π

Qs(Nk)Ps(Nk) +
N
2π

Qp(Nk)Pp(Nk) (25)
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The specific cutting force constant is the important parameter to calculate the cutting force.
This can be used to calculate the six unknown specific cutting force constants kts, krs, kas, ktp, krp, and kap

by adopting slot milling and semi-slot milling. The equation is as follows [9–11]:

ktstx

krsktstx

kasktstx

ktp

krpktp

kapktp


=

2π

NR0
T−1



Axhs[0]
Ayhs[0]
Azhs[0]
Axs[0]
Ays[0]
Azs[0]


(26)

Therefore, the integrated convolution cutting force mode of milling cutter’s slot milling can
be set up. The convolution cutting force mode includes tool geometry (radius, helical angle),
cutting conditions (axial and radial cutting depth), material parameters (specific cutting force constant),
and other important parameters in the milling process. These can be applied to imitate cutting under
various milling conditions [4,12,13].

2.3. Equipment and Method

Two different materials of medium carbon steel S45C are used in this cutting experiment.
The cutting signal is read by a dynamometer and data capture box, and the cutting force data are
then analyzed by software. Relevant comparisons are then made after these calculations. The cutting
experiment and the measurement method are shown in Figure 6. Moreover, the chips of milling and
the blades are sorted, and a picture is taken to observe the tool abrasion and chip change so as to
explain the status and phenomenon of the experiment. The tested work-piece applies the surface
rough-meter to measure the surface profile of each finished surface. The feed per tooth (ft) has three
feed per tooth of 0.1, 0.2, and 0.3 (mm/tooth). The cutting depth (ap) has three equal parameters of 0.1,
0.2, and 0.3 mm. The specifications of the tools are shown in Table 1. Tool material of H type is then
coated in material TiALN. Cutting condition in the spindle speed by corporation to the recommended
value, when the used S45C material by the spindle rotation speed for N = 2500 rpm, the experiment
flow chart as shown in Figure 6b.

Table 1. Relative specifications of the tools and blade.

Specification of Holder Item No. of Blade Material of Tool Tooth Qty Company

BXD4000R252SA25SA XDGT1550PDER-G15 Coated TiAlN 2 MITSUBISHI

Experiments using the machine tool is gantry-type for three-axis vertical machining centres.
Spindle speed is 14,000 rpm and the spindle taper is in the form of HSK-A80. The X/Y/Z axis has a
rapid feed-rate of 20 m/min and a working feed-rate of 8 m/min.
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3. Discussion

3.1. The Impact of Different Cutting Depths on Cutting Characteristics

Different tool rake angles in cutting characteristics can obviously affect the cutting force. When the
cutting rake angle and cutting depth is too big, the cutting force also increases relatively, as shown
in Figure 7a–c. The main reason for this is that when the rake angle is big, the contact area of the
flank is increased, which causes an increase of the cutting force. In this experiment, the direction of
the X axis is the feed-rate cutting direction, thereby the cutting force in the direction of the X axis is
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big. With different cutting depths, the bigger the cutting depth is, the smaller the stress the Z axis is,
which is mainly affected by the size effect. Therefore, the tangential shear effect and the tangential
plough effect will be discussed.
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Generally, Kts is the tangential shear constant, and its unit is MPa or N/mm2. In the physical
sense, it means the energy consumption when removing work-piece material per unit volume, in the
unit of (J/mm3). It can be divided into shear effect and plough effect in general cutting. In shear
effect, Kts is the cutting constant of tangential shear force, which can stand for the tangential cutting
power of removing the non-deformable chip sectional area per unit, or the power of removing material
per unit volume. This includes the chip deformation energy of the main shear area and the energy
consumption caused by abrasion of the second shear area and tool rake angle. This parameter can be
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used to estimate the difficulty level of removing the material. In the plough effect, Kts is the cutting
constant of the ploughing force, which can stand for the abrasion of the contact width between the unit
tool and work-piece and the plough effect. Therefore, the cutting constant of the tangential plough
force has much to do with the abrasion of the flank.

The cutting force constant will be increased as the cutting depth becomes smaller. This is mainly
because of the size effect during cutting processing. Shaw [14] illustrates this with the dislocation
theory, as a big shear force must be given to the cutting material with a small shear area to cause plastic
deformation. Figure 8 shows that the smaller the feed per tooth tc is, the bigger the tangential shear
cutting constant Kts is. As shown in Figure 8, the smaller the cutting chip thickness is, the bigger the
driving force that is needed in processing [15]. Correspondingly, the shear cutting constant is bigger,
and the average cutting force is also obviously improved. The precipitation of material by hardening,
and the size effect are main reasons for this [16–22].
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The ploughing force mainly shows the relationship between the contact length of the flank and the
work-piece [8], as shown in Figure 9. When the cutting rake angle is increased, the contact length of the
flank and the work-piece is also increased, which causes the increase of the ploughing force. Thereby,
the cutting rake angle increases relative to increases in the cutting force, which is mainly because
the increase in the contact length of the flank and work-piece causes the increase of the tangential
plough constant. Therefore, the tool clearance angle will be increased relatively when the cutting rake
angle increases.
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3.2. The Impact of Different Feed-Rates on Cutting Characteristics

When the rake angle of the tool is changed at the same cutting depth, when the rake angle of the
tool increases, the cutting force also increases (shown in Figure 10a,b). The main reason for this is the
increase of the contact length of the flank. When the cutting feed-rate is increased, the cutting force
gradually approaches to stability. Therefore, high-speed cutting is better for cutting processing.
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When the cutting depth is a definite value, we observed a relationship between the tangential shear
constant and the cutting rake angle, as shown in Figure 11. The feed-rate per tooth of Ft = 0.3 mm/tooth
is bigger than Ft = 0.1 mm/tooth in the tangential shear constant. Therefore, the impact of the feed-rate
per tooth and the tool rake angle on the tangential shear constant is non-significant.

Appl. Syst. Innov. 2018, 2, x FOR PEER REVIEW  11 of 13 

 

3.2. The Impact of Different Feed-Rates on Cutting Characteristics 

When the rake angle of the tool is changed at the same cutting depth, when the rake angle of the 
tool increases, the cutting force also increases (shown in Figure 10a,b). The main reason for this is the 
increase of the contact length of the flank. When the cutting feed-rate is increased, the cutting force 
gradually approaches to stability. Therefore, high-speed cutting is better for cutting processing. 

 
(a) 

 
(b) 

Figure 10. (a) The impact of the different feed-rate of 0.1 mm/min on cutting force; (b) The impact of 
different feed-rates of 0.3 mm/min on cutting force. 

When the cutting depth is a definite value, we observed a relationship between the tangential 
shear constant and the cutting rake angle, as shown in Figure 11. The feed-rate per tooth of Ft = 0.3 
mm/tooth is bigger than Ft = 0.1 mm/tooth in the tangential shear constant. Therefore, the impact of 
the feed-rate per tooth and the tool rake angle on the tangential shear constant is non-significant. 

 

Figure 11. The impact of the different feed-rate per tooth on the tangential shear constant. 

The feed-rate per tooth of Ft = 0.3 mm/tooth is bigger than Ft = 0.1 mm/tooth in the tangential 
plough constant. The main reason for this is that Ft = 0.3 mm/tooth of the feed system is big, the 

Figure 11. The impact of the different feed-rate per tooth on the tangential shear constant.

The feed-rate per tooth of Ft = 0.3 mm/tooth is bigger than Ft = 0.1 mm/tooth in the tangential
plough constant. The main reason for this is that Ft = 0.3 mm/tooth of the feed system is big, the contact
distance with the flank is long, and thereby the tangential plough constant is big (as shown in Figure 12).



Appl. Syst. Innov. 2018, 1, 18 12 of 13

Appl. Syst. Innov. 2018, 2, x FOR PEER REVIEW  12 of 13 

 

contact distance with the flank is long, and thereby the tangential plough constant is big (as shown 
in Figure 12). 

 
Figure12. The impact of the different feed-rate per tooth on the tangential plough constant. 
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Figure 12. The impact of the different feed-rate per tooth on the tangential plough constant.

4. Conclusions

• In order to avoid increasing the tangential plough constant and the tangential shear constant
of tools, which might increase the cutting force and further reduce the service life of tools,
the clearance angle of the tools should be increased. This is because, as the cutting rake angle
increases, when the rake angle is 0◦, the cutting force in the X/Y/Z direction is the smallest.

• The smaller the cutting depth is, the bigger the tangential plough constant and the tangential
shear constant are. The main reason for this is that the size effect causes the bigger tangential
shear constant, and the contact length of the flank is the primary cause for the big tangential
plough constant.

• When the cutting feed-rate is changed, the bigger the feed-rate is, the bigger the tangential plough
constant and the tangential shear constant are. The main reason for this is that the removal rate
per unit of time is big, however the effect is not too big and the impact on the different rake angle
of tools is not obvious.
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