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Abstract: This paper tests the suitability of automated point cloud classification tools provided by
the popular image-based modeling (IBM) software package Agisoft Metashape for the generation of
digital terrain models (DTMs) at moderately-vegetated archaeological sites. DTMs are often required
for various forms of archaeological mapping and analysis. The suite of tools provided by Agisoft are
relatively user-friendly as compared to many point cloud classification algorithms and do not require
the use of additional software. Based on a case study from the Mycenaean site of Kastrouli, Greece,
the mostly-automated, geometric classification tool “Classify Ground Points” provides the best results
and produces a quality DTM that is sufficient for mapping and analysis. Each of the methods tested
in this paper can likely be improved through manual editing of point cloud classification.

Keywords: photogrammetry; DTM; GIS; IBM

1. Introduction

In recent years, aerial laser scanning (ALS; also known as LIDAR) has attracted much
attention for its ability to “see through” dense vegetation [1–8]. This technology can
record ground surfaces below vegetation as some fraction of the lasers emitted from the
scanner strike ground surfaces through small gaps between leaves. This allows for the
processing of ALS-derived point clouds to filter out “first returns”, representing the canopy,
leaving only “last returns”, representing the ground surface [8–12]. One end product of
such a process is a digital terrain model (DTM; also referred to as a bare-earth digital
elevation model), a measure of the elevation of a ground surface that does not include
vegetation or structures [13–15]. DTMs are critical datasets for archaeologists, useful for
identification of sites and features below dense vegetation but also for performing various
kinds of landscape modeling and spatial analyses in GIS [13–17]. Thus, digitally stripping
a site of its vegetation through the production of DTMs is critical for many avenues of
archaeological inquiry.

Despite the advantages of ALS for DTM production, laser scanning approaches are not
always feasible as the technique can be cost-prohibitive [2,18–21]—though costs are likely
to come down with the rapid pace of technological development. As such, archaeologists
often prefer the combination of low-altitude aerial photography, often from UAVs, and
image-based modeling (IBM) for the collection of elevation datasets at sitewide scale [22–30].
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Agisoft Metashape (formerly Agisoft Photoscan) stands out as one particularly common
software package used for the production of 3D datasets through IBM [25,26,31–33]. Stan-
dard IBM procedures produce a digital surface model (DSM; i.e., an elevation dataset
including both vegetation and structures) rather than a DTM [34]. DSMs are not suitable
for most forms of archaeological analysis and mapping as the elevations in the dataset
represent a combination of vegetation, structures, and ground surfaces. In the context
of ALS, where point cloud filtering techniques are common and well-known, DSMs are
infrequently used by archaeologists [14]. Among IBM practitioners, however, the use of
DSMs produced from unfiltered or minimally-filtered point clouds is common [25,35].

Though IBM is often preferred by archaeologists due to cost considerations and ease
of use, IBM approaches suffer in comparison to ALS with regard to the inability of the
former approach to record data hidden by dense vegetation. As such, a DSM produced
through IBM methods does not contain data on archaeological features hidden below
trees. Thus, IBM/photogrammetry is often considered inappropriate for application in
vegetated areas [20,26,36,37]. However, many—if not most—archaeological sites exist
in moderately vegetated areas, often featuring some trees, shrubs, or bushes, but not
enough to entirely cover the site and prevent it from being seen from above. Collection of
elevation data through methods of low-altitude aerial photography and IBM at sites such
as these is an attractive proposition due to the cost-effectiveness and user-friendliness of
the techniques [21]. In this context, IBM is viable but conducting additional data processing
to produce a DTM is necessary for mapping and spatial analysis.

IBM-derived data can be processed in a number of ways to produce a DTM [38]. Geo-
metric filters normally used for the processing of ALS data are often applied to IBM data as
well [39,40]. Examples of this include the use of algorithms such as the fast Fourier trans-
form [41], cloth simulation filtering [42,43], and a TIN-based filtering approach [38,44–46].
These geometric algorithms are frequently applied using specialized point cloud filtra-
tion software tools such as LASGround [46], TerraSolid [45], or LP360 [44]. IBM point
clouds can also be classified based on the use of RGB and NIR imagery to identify the
spectral signature of points, either through the use of an NDVI threshold [38,47,48] or a
machine learning-based classification [47]. Machine learning classifiers can also be based
on geometric relationships within a scene [49], or both color and geometry [50]. GIS-based
filtering of DSMs proves yet another approach to DTM production from IBM data [51].
Most of these tools are suitable for use by specialists in ALS or remote sensing but are
beyond the technical expertise of most field archaeologists who nevertheless require DTMs
for mapping or analysis. This is problematic as a major appeal of LAAP and IBM-based
approaches is their ease of use.

Fortunately, user-friendly alternatives exist for point cloud filtration and DTM pro-
duction. One prominent example is the point cloud classification toolkit provided by
Agisoft Metashape [52]. The set of tools in this program, ranging from fully manual to
fully automated, can be used effectively to filter out vegetation and structures from pho-
togrammetric point clouds in an easy and straightforward way [21,28,34,53,54]. The results
of these approaches have been validated as accurate and useful for analysis of bare earth
surfaces through comparative analysis of derivative DSMs and DTMs [34]. However,
studies measuring the accuracy of Agisoft-based point cloud filtration have found that
results are not as accurate as those generated from more technically-intensive point cloud
filtering algorithms or DTM production through ALS [34,38,55]. Moreover, users of the
automated tools in Agisoft have also pointed out the need for manual editing of point cloud
classification results [21]. Still, automated approaches for IBM point cloud filtration mean
that IBM can be a viable and accurate alternative to ALS even when ground classification
is necessary [21]. As such, the availability of user-friendly point cloud classification tools
within Agisoft is a boon to archaeologists working at all but the most densely vegetated
sites. These tools allow for the use of cost-effective and user-friendly photogrammetric
methods to generate GIS-based elevation datasets that can facilitate both sophisticated
spatial analyses and aid more straightforward goals of contour generation and mapping.
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This paper explores the point cloud classification and DTM production functionality
offered by Agisoft Metashape Professional [52,56]. The approaches offered by Agisoft are
largely automated and user-friendly and as such, provide a useful alternative to more
technical approaches requiring specialized knowledge or additional software. The utility
of the approaches offered by Agisoft has not been adequately tested despite the ubiquity
of use of the software by archaeologists. Each of the three automated approaches to point
cloud classification provided by Agisoft Metashape is tested based on IBM data recorded
at the Late Helladic period site Kastrouli, in central Greece. The generation of derivative
contour data for both an unmodified DSM and a DTM using standard GIS techniques is
also presented in order to discuss the utility of DTM production using these techniques.

Kastrouli is located in the Phokis region of central Greece, on the Desfina Peninsula [57].
The site lies at the end of a ridgeline at the top of a hill, the top of which is encircled by
a fortification wall. The slopes of the hill on which the site lies are rocky with sparse
vegetation, while the top of the hill is partially covered by trees, large bushes, and shrubs,
as well as several low field walls. The site’s earliest and most notable remains are, in
addition to the fortification wall, three tombs that date to the Late Helladic period, one of
which (Tomb A) was dated more precisely to the LH IIIB 2 [58,59], though the tomb was
re-assigned to the LH IIIA 2 or slightly later based on excavations in 2016 and optically
stimulated luminescence dating [60,61]. The tomb was also re-used through the LH IIIC
and again later in the Middle Geometric period, before being partially looted in the 20th
century [58,59]. The fortification wall was also constructed in the Late Helladic period and
was reinforced in later periods [59,62,63]. Excavations in 2017 and scientific analysis of
finds and skeletal remains have shed additional light on the site’s occupation in the Late
Helladic period [62–67]. The current case study at Kastrouli was part of the 2016 excavation
campaign at Kastrouli, which excavated Tomb A at the site and conducted two small wall
sample probes in other parts of the site. The campaign also featured a 3D and spatial
recording program designed to comprehensively and intensively document the site and
the progress of the excavation through spatial and 3D recording [58–60,68].

2. Materials and Methods

The data collected to create a sitewide model of Kastrouli was collected using a helium
balloon with an attached, custom frame and a Canon EOS 50D DSLR triggered by an
interval timer (updated from the LAAP system described in [25]). The balloon was tethered
to an operator on the ground, who maneuvered the balloon around the site with the goal of
collecting images in transects across the site and with a great deal of (ca. 90%+) overlap
between consecutive images. The balloon, though less predictable in flight than a typical
small UAV, carries a higher resolution camera and allows for longer flight time. As such,
the balloon system generates comparable results to a UAV system for photogrammetric
purposes if coverage is adequate, though recent technological development in UAVs has
rendered them the gold standard of LAAP recording. In total, sidewide LAAP photography
at Kastrouli captured 790 images of the site, a sufficient number to generate a detailed
model of the site.

Once these images were captured, they were processed using a straightforward and
standard workflow in Agisoft Metashape Pro. The ways in which these stages work
within Agisoft is discussed in further detail elsewhere [25,27]. At Kastrouli, the model was
georeferenced using nine control points established at the site using differential GPS. The
model overall had a horizontal spatial error—as reported by Agisoft—of 8.23 cm, which
we regard as acceptable for a sitewide model, especially given the acquisition of smaller,
more precise models at key parts of the site. The processed and georeferenced model was
sufficient to generate a high-resolution (2.5 cm) orthophotograph suitable for the project’s
mapping goals (Figure 1) as well as a DSM of the site. As Kastrouli is moderately vegetated,
a DSM includes elevations of vegetation and architecture at the site, meaning that the
dataset is inadequate for mapping and spatial analysis. Thus, producing a DTM was
necessary. As discussed above, many methods for producing a DTM from IBM datasets
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exist, though most require a relatively high level of technical expertise. Those provided
by Agisoft Metashape, however, are relatively user-friendly, though varied in degree of
automation and effectiveness.
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Figure 1. An orthophotograph of the site of Kastrouli, Greece. Note the vegetation obscuring the
ground surface across the site.

Agisoft Metashape provides a suite of point cloud classification tools that facilitate the
production of DTMs from a subset of points in a model (Table 1) [52]. These include four
options to classify points at varying levels of automation. First, a nearly fully automated
classification (Classify Points) is available, applying machine learning techniques to sort
points into standard LIDAR classes. Users have the option to select which classes will be
used and a confidence parameter for point classification. At 0.00 confidence, this tool will
classify every point in a scene based on Agisoft’s proprietary classification algorithm. This
tool is the easiest to apply as it requires only the input of one parameter.

Table 1. Methods of point cloud classification in Agisoft Metashape Professional and the correspond-
ing user parameters used to produce optimal DTMs at Kastrouli.

Point Cloud Classification Method User Parameters

Classify Points Confidence: 0.00

Classify Ground Points
Max angle (deg): 15

Max distance (m): 0.05
Cell size (m): 10

Select Points by Color
Color: #b69b8a
Tolerance: 15

Channels: red, green, blue, hue, saturation, value

Assign Class Fully manual
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A second, mostly automated tool (Classify Ground Points) requires users to set three
geometric parameters, which are used to distinguish points representing the bare earth from
those representing other features based on the angle and slope from adjacent points [34,38].
This tool uses a TIN-based algorithm [21]. The Classify Ground Points tool in Agisoft
Metashape is very easy to use but requires an iterative process in which the three geometric
metrics used to differentiate points are manually adjusted and the selection tool re-run in
order to find a quality result [34]. As such, it is difficult to ensure that the best possible
result is attained.

A third tool provided by Agisoft (Select Points by Color) allows for the classification
of points by their color values, with an option to set a tolerance range. This tool can be
applied to select and classify points into the various categories one at a time. At Kastrouli,
a medium-light shade of orange (hex code #b69b8a) generally representing the color of the
surface of the site in the acquired imagery was selected for identifying ground points. This
tool also requires an iterative process in which colors and tolerance are adjusted in order to
find a visually optimal result.

The final tool (Assign Class) is fully manual, allowing users to select points by hand
and sort them into classes. The first three automated approaches are tested and presented
here. In each case, the threshold for user-provided values was chosen based on the best
appearance of the resulting classification (Table 1). In order to test the reliability of these
approaches, results are presented below without any manual editing of point cloud classifi-
cation, which should normally be applied for best results [21]. These values will naturally
vary by site and data collection methods.

Producing a DTM from a subset of a dense point cloud in Agisoft Metashape is a
straightforward task and only requires the selection of relevant point classes during DEM
production [52]. A DTM was produced from the results of each point cloud classification
process described above. The results of these processes are presented below, along with
smoothed contours generated from the DTMs/DSM for comparative purposes.

3. Results

The methods described above resulted in four elevation models of 2.5 cm spatial
resolution: an unmodified DSM (Figure 2a) and three DTMs produced through classifying
points geometrically (Figure 2b), through color selection (Figure 2c), and using the fully
automatic procedure (Figure 2d). Each DTM is intended to represent the bare earth surface
of the site, stripped of vegetation and architecture, though results vary by method. In
each method, in areas of the site where the points were classified as ground, the cloud
of points was used by Agisoft to generate a continuous raster surface. However, in areas
covered by vegetation or architecture in which no ground classified points existed due
to the limitations of photography and photogrammetry discussed above, the program
interpolated a surface from the ground points on each side of the open space. In other
words, the elevation measurements in areas covered by vegetation or stone walls serve as
estimates based on the nearest ground points [21]. Ultimately the entire DTM is generated
through an interpolative process, though this interpolation becomes more speculative in
areas with fewer relevant points—i.e., those with dense vegetation and a complex ground
surface [21]. It is difficult to quantify the error in elevation induced by the interpolation of
vegetated areas, given a lack of a control dataset of points below vegetation. Testing of the
quality of the DTM-generation process was not a primary goal of the field project, and so the
data needed to conduct this type of accuracy testing was not collected in the field. However,
visual inspection of the resulting DTMs is insightful for the relative utility of the results
and subsequent research can investigate the accuracy of each classification method [38].
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Figure 2. Comparison between an unmodified DEM of Kastrouli produced by (a) LAAP and pho-
togrammetry and DTMs of the site generated by LAAP, photogrammetry, and point cloud classifi-
cation through: (b) Classify Ground Points, (c) Select Points by Color, and (d) Classify Points. The
site wall and excavation areas are shown for context. DEMs (a,b) are also viewable in interactive
format here: https://storymaps.arcgis.com/stories/39280437536b4c458817fa4aa5c0b541 (accessed
on 19 November 2021).

4. Discussion

Visual inspection of each resulting DEM is useful for understanding the extent to
which each point cloud classification method was successful in identifying ground points,
and therefore removing vegetation and architecture at the site from the elevation model.
The DSM produced without classifying points (Figure 2a) serves as a control for comparison.
On this DSM, the vegetation across the site is clearly visible as roughly circular high points
across the site, especially its summit. Architecture is also apparent on closer inspection.

Of the other elevation models, the DTM produced by the geometric classification
tool Classify Ground Points is clearly superior. The model is free of any elements of
elevation representing large vegetation and architecture at the site is not apparent in the
dataset. Previous testing of this point cloud classification technique for DTM production
has reported that quantitative error results for the approach are highly competitive, but
qualitative results are less so [43]. In the present case study, visual inspection of the
results shows that the qualitative results in terms of the algorithm’s ability to differentiate
vegetation from ground points are superior to other methods provided within Agisoft.
However, further testing can examine the extent to which quantitative error rates compare
to other approaches.

Other methods provided by Agisoft were less successful in differentiating ground
points from vegetation. A color-based approach (Figure 2b), despite classifying the lowest
number of points out of the three classification techniques, was the least successful in
removing vegetation from the DEM. The DEM produced through this method clearly
illustrates that points on top of vegetation were classified as ground points, even despite
the iterative process and fine tuning of the color and tolerance parameters. Despite the
flawed result, this tool still has potential for point cloud classification as it can be used in
combination with other tools, including manual identification, to produce a more refined

https://storymaps.arcgis.com/stories/39280437536b4c458817fa4aa5c0b541
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result. However, at Kastrouli, this tool was not sufficient to produce a DTM without
manual editing.

The final approach tested here is the fully automated tool, Classify Points, which
applies Agisoft’s proprietary algorithm, developed through machine learning, to sort points
in the model into classes. Points identified as “ground” were subsequently used to produce
the DEM. Unfortunately, though easy to use, this approach was not effective in classifying
points at Kastrouli. This automated approach classified many points on the surface of the
site as “building” (orange points in Figure 3), despite the lack of buildings in the scene.
Low stone walls across the site were correctly classified as building; however, bedrock
outcrops and much of the bare earth at the site was incorrectly grouped as such. Only a
fraction of the actual ground surface was classified as “ground” (brown points in Figure 3)
as well, with this class also featuring enough low-lying vegetation to disrupt the quality of
the DTM. However, much of the vegetation at the site was classified correctly, suggesting
potential for more nuanced use of this approach to classify and remove vegetation rather
than rely on the identification of ground points. Overall, this tool was not accurate at
Kastrouli, though it may be effective in other contexts and sites.
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and brown points are classified as “ground”. Much of the bare earth at the site is incorrectly classified
as “building.”

Though these approaches were of varying effectiveness, in total they suggest that the
use of multiple methods, combined with some manual editing of point cloud classification,
will provide effective results. However, at Kastrouli, the geometric procedure Classify
Ground Points provided quality results without even a need for manual editing. However,
producing a highly accurate DTM would likely require manual editing of automated
classifications [21], which in turn requires many hours of additional labor in classification
by a trained eye able to differentiate rocky outcrops from stone walls and ground-truthing.
These tasks are important for best results, but they exponentially complicate and limit the
efficiency of the overall process. As such, projects producing DTMs from photogrammetric
datasets should consider the balance between efficiency of data processing and the ultimate
accuracy of a final DTM.

In this case study, the geometric approach produced a DTM that generally reflects the
topography of Kastrouli, especially on the top area of the site. The elevation dataset clearly
has removed the artificially high measurements that represent the highest trees and bushes.
This is a valuable accomplishment, as the current vegetation on the site most likely does
not reflect ancient vegetation, and these elements also disrupt mapping and analysis efforts.
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The smoother surface of the DTM on the top of the site more accurately reflects the ground
surface in that area, as it is largely flat and gently sloped within the area encircled by the
fortification wall. The vast majority of the archaeological remains at Kastrouli are also
found in this area. That the DTM generation method performed most strongly in this area
is an encouraging result for study and analysis of the site’s anthropogenic component and
therefore the project’s goals. This is evidenced by the contours generated from the DTM,
which—by contrast with contours generated from an unmodified DEM of the site—provide
a much simpler and more intuitive representation of the site’s elevation (Figure 4). The
DTM-generated contours serve as a strong basis for mapping of key site features and
excavation areas. Meanwhile, many of the contours generated from the DSM appear to
represent the topography of the vegetation at the site rather than the variations in ground
level elevations. Ultimately, the DTM produced through these methods provides a more
useful basis for understanding ancient occupation of the site as it more closely reflects the
ancient occupation surface rather than more recent vegetation. Future investigation at the
site will be able to make use of this dataset to examine the patterns of occupation across
the site.

Quaternary 2022, 5, x FOR PEER REVIEW 8 of 12 
 

 

analysis efforts. The smoother surface of the DTM on the top of the site more accurately 
reflects the ground surface in that area, as it is largely flat and gently sloped within the 
area encircled by the fortification wall. The vast majority of the archaeological remains at 
Kastrouli are also found in this area. That the DTM generation method performed most 
strongly in this area is an encouraging result for study and analysis of the site’s anthropo-
genic component and therefore the project’s goals. This is evidenced by the contours gen-
erated from the DTM, which—by contrast with contours generated from an unmodified 
DEM of the site—provide a much simpler and more intuitive representation of the site’s 
elevation (Figure 4). The DTM-generated contours serve as a strong basis for mapping of 
key site features and excavation areas. Meanwhile, many of the contours generated from 
the DSM appear to represent the topography of the vegetation at the site rather than the 
variations in ground level elevations. Ultimately, the DTM produced through these meth-
ods provides a more useful basis for understanding ancient occupation of the site as it 
more closely reflects the ancient occupation surface rather than more recent vegetation. 
Future investigation at the site will be able to make use of this dataset to examine the 
patterns of occupation across the site. 

 
Figure 4. (a) Contour map produced from the unmodified DSM. Note the contours representing 
vegetation. (b) Contour map produced from the Classify Ground Points-derived, geometrically fil-
tered DTM. In both cases, contour lines below 5 m have been removed and contours have been 
smoothed. These maps are also viewable in interactive format here: https://story-
maps.arcgis.com/stories/39280437536b4c458817fa4aa5c0b541 (accessed on 19 November 2021). 

One of the main benefits to the workflow described here is the relative simplicity and 
efficiency of the approach. Combined LAAP-IBM methods have become relatively stand-
ard applications at archaeological sites, with Agisoft also commonly being applied for its 
integrated photogrammetric workflow [27,33]. The steps for generating a DTM are also 
efficient in terms of the manual labor required, with the most time-consuming steps being 
field collection of data and testing different point selection and classification methods and 
standards. Refining the classification of the point cloud to reduce false negatives and false 
positives can also be manually intensive, depending on the standards needing to be met. 
The work described here produced quality results without manual editing in order to 
demonstrate the efficiency of that process, though review and manual editing of point 
cloud classification would likely improve outputs [21]. Processing photographs into 3D 
models, and subsequently DTMs, is another potential limiting factor on the efficiency of the 
process, depending on the quality of the computational resources available. In general, how-
ever, these LAAP, photogrammetric processing, and point cloud classification methods 
serve as an effective and efficient method for DTM generation and in many cases may com-
plement already practiced workflows on archaeological projects. These methods also allow 
for the generation of accurate and simple contours that are important for cartography at 
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vegetation. (b) Contour map produced from the Classify Ground Points-derived, geometrically
filtered DTM. In both cases, contour lines below 5 m have been removed and contours have been
smoothed. These maps are also viewable in interactive format here: https://storymaps.arcgis.com/
stories/39280437536b4c458817fa4aa5c0b541 (accessed on 19 November 2021).

One of the main benefits to the workflow described here is the relative simplicity
and efficiency of the approach. Combined LAAP-IBM methods have become relatively
standard applications at archaeological sites, with Agisoft also commonly being applied
for its integrated photogrammetric workflow [27,33]. The steps for generating a DTM are
also efficient in terms of the manual labor required, with the most time-consuming steps
being field collection of data and testing different point selection and classification methods
and standards. Refining the classification of the point cloud to reduce false negatives and
false positives can also be manually intensive, depending on the standards needing to be
met. The work described here produced quality results without manual editing in order to
demonstrate the efficiency of that process, though review and manual editing of point cloud
classification would likely improve outputs [21]. Processing photographs into 3D models,
and subsequently DTMs, is another potential limiting factor on the efficiency of the process,
depending on the quality of the computational resources available. In general, however,
these LAAP, photogrammetric processing, and point cloud classification methods serve as
an effective and efficient method for DTM generation and in many cases may complement
already practiced workflows on archaeological projects. These methods also allow for
the generation of accurate and simple contours that are important for cartography at

https://storymaps.arcgis.com/stories/39280437536b4c458817fa4aa5c0b541
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archaeological sites. The approach presented here is applicable to all moderately-vegetated
sites recorded with IBM, though the quality of point cloud classification methods may vary
according to the topography and vegetation at the site. Though more sophisticated methods
may also provide better results, the methods tested here are extremely user-friendly and
can be improved by manual editing of point cloud classification. As such, this approach
provides an easy and straightforward method of DTM production.

Drawbacks of the methods described above are its applicability only to areas with
limited vegetation or architecture and its dependence on automated methods that may not
capture the complexity of an archaeological site. In areas with no vegetation or architecture,
the DTM does not depend on interpolation, which means that the dataset can achieve high
fidelity to the ground surface given the potential for photogrammetric methods to achieve
high levels of accuracy [35,69]. However, any part of a site where the ground surface is
obscured by vegetation or architecture relies on interpolation from the nearest ground
surface, which increases the amount of estimation at the expense of actual measurement.
Thus, more vegetated or built-up sites will suffer in accuracy compared to more sparsely-
covered sites. This trade-off should be factored in when choosing this method for DTM
generation. The combined approach described above also should be applied with the
understanding that automated methods lack the sophistication provided by expertise and
a trained eye. A strictly automated approach may be unable to distinguish between a
low stone wall and a rocky outcrop, for example. However, tools for manual point cloud
classification allow archaeologists to consider the extent to which they would like to modify
or replace the results of an automated system. Ultimately, maps and spatial analyses are
subjective enterprises that can be facilitated by objective methods, so a combination of
automated and manual approaches seems appropriate for this type of study. Looking
forward, future studies should address the extent to which an interpolative method of
creating a DTM reflects the reality of the ground surface of the site below vegetation and
architecture by comparing the results generated using the method described above to
measurements derived from other means [38,55]. This verification will help to demonstrate
the accuracy of an IBM-based point cloud classification approach to DTM generation.

5. Conclusions

A combined LAAP-photogrammetry-point cloud classification approach is an effec-
tive and efficient workflow for generating a DTM of an archaeological site sufficient for
cartography and spatial analysis. Such a methodology bests LiDAR on cost and may
integrate more fully into already existing archaeological practices. The popular IBM soft-
ware package Agisoft Metashape provides a number of mostly-automated tools for point
cloud classification that can be applied to DTM production. Of these, the Classify Ground
Points tool appears to be the most reliable based on a case study from Kastrouli, Greece.
However, it is likely that automated methods can be improved by manual editing of results,
at the expense of efficiency. Overall, the use of automated point cloud classification tools
in Agisoft provides a streamlined and user-friendly process for the production of DTMs.
This approach then represents a useful addition to the toolbox of archaeological projects
interested in mapping and spatial analysis at moderately-vegetated or moderately-built
up sites.
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