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Abstract: Marine geophysical surveys were carried out at the underwater site in the south-western
sector of the Eastern Harbor of Alexandria, opposite to the Egyptian Sea Scout Club. Survey works
aimed to detect and study the surface and subsurface geomorphological changes caused by historic
sea-level rise and natural hazards, by integrating the results of high-resolution geophysical mapping
for the seafloor textures and the subsurface layers with previously published core data and sea-level
records, the survey works employed echo-sounder, side scan sonar, and sub-bottom profiler. Acoustic
data were ground-truthed using an ROV camera and sediment grab sampler. Results of bathymetric
mapping and sonar imaging outlined two breakwaters and quay corresponding to a submerged
ancient port; also, sediment types were classified according to variation in the magnitude of the
backscattered intensities. Interpretation of sub-bottom profiles illustrated the depositional sequence
of the topmost sedimentary layers where the sediment thicknesses were thickened by rates that
perfectly matched with the recorded sea-level rise rate during the last two millennia, as indicated
by isopach maps. Anthropogenic activities were noticed in particular outcropping areas on the
sub-bottom profiles. The results explained the role of natural hazards and sea-level rise in changing
the geomorphology of the coastline and seabed features.

Keywords: marine geophysical survey; bathymetric mapping; side scan sonar; sub-bottom profiler;
acoustic backscatter; seismic interpretation; natural hazards

1. Introduction

Underwater investigations in the Eastern Harbor of Alexandria (Figure 1) during
the last decades have revealed great archaeological findings related to human settlements
since the Greek, Roman, and Arabic periods. Among these discoveries are the eastern-
side submerged royal quarter including the Emporium, the Poseidium, the Timonitun,
the island of Antirrhodus, and the royal palace of Cleopatra, in addition to several port
structures and jetties that were recognized in the form of well-founded breakwaters and
peers that divide the harbor into several basins [1–4]. Another landmark found was a
Roman shipwreck located at the bottom of the harbor near Antirhodus Island [1]. The
Eastern Harbor of Alexandria was initiated amid two carbonate ridges since Pleistocene,
then sediment loads were transported from the Egyptian offshore shelf and deposited in
the harbor basin during transgression of the sea [5]. The recent oval shape of the harbor
was formed after being sheltered from the open sea for 3000 years BP, followed by the
construction of ancient Alexandria and the royal ports during the Ptolemaic rule (Late
Holocene) over a limestone ridge of the Pleistocene age [1,6].
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Figure 1. (a) Map of the study area in front of Egyptian Sea Scout Club; (b) map of the northern part
of Egypt; (c) map of the Eastern harbor of Alexandria showing the previously detected structures,
represented by the light green polygons (after Goddio et al., 1998 [1]); core samples locations are
marked by yellow circles (after Stanley et al., 2007 [7]).

The marine survey works extended in the south-western sector of the Eastern Harbor
of Alexandria opposite to the Egyptian Sea Scout Club (Figure 1), which lies 20 km west of
the north-western Egyptian coastal margin of the Nile Delta. The study area is considered
as an underwater heritage site that lies west of the submerged ancient royal port remains,
where various Eastern-Mediterranean commercial ports were linked to these ancient ports
during the Greek and Roman period [1,3]. Therefore, the city became a capital of significant
political value and was a center for international trade between East and West [8]. Previous
geoarchaeological investigations indicated that the whole area suffered from several col-
lapses during the last 2000 years [9–12]. The sea-level rise can cause significant changes in
coastal zones which leads to the submergence of historic settlements and landscapes [13].
The area of the Eastern harbor of Alexandria was affected by a 2 m post-glacial sea-level rise
during the past two millennia [14,15]. The rapid submergence of the structures indicated
land subsidence as a result of sediment failure and substrate destabilization [12,16]. Also,
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the 365 A.D. tsunami and the following tectonic activities catastrophically affected the
ancient coast of Alexandria [11,17]. Submergence was also caused by the overloading of
old structures due to insufficient foundation piling over a less compacted base which in
turn led to the collapse of these ancient constructions [18,19], where considerable coastal
changes can be recorded as a result of human impacts [20].

The main objective of this work was to perform highly detailed geophysical mapping
of the submerged site and investigate the seafloor textures and structural features, aiming
to study the geomorphological changes resulted from the historic sea-level rise and natural
hazards, using an integration of a single beam echo-sounder, side scan sonar, sub-bottom
profiler, and ROV video camera.

The bathymetric survey was applied for mapping the seafloor topography and de-
termining the borders of possible archaeological sites [21,22]. A side scan sonar survey
was carried out to provide clear images for the seabed textures and detect the exposed
archaeological artifacts on the seafloor [23–25]. A seismic profiling survey has been used
to trace the subsurface discontinuities, detect the semi-buried archaeological relics, also
to study the changes of the coastal geomorphology [26–28], ROV video camera and grab
sampler have been used for ground-truthing.

2. Materials and Methods

Marine geophysical surveys were conducted in the south-western sector of the Eastern
Harbor opposite to the Egyptian Sea Scout Club (Figure 1a) using a single beam echo-
sounder, side scan sonar, and chirp sub-bottom profiler, acoustic data were ground-truthed
by ROV video camera and surface sediment samples, while position information was
provided by a differential GPS and specialized marine navigational software. Survey grids
were limited by particular shallow areas close to the shore (Figure 2).

Figure 2. Map of the survey track lines in the study area.

The bathymetric survey was run out using a dual-frequency echo-sounder (Teledyne
Odom-Echotrac MK III), the transducer was pole-mounted to the port side of the survey
vessel 0.5 m below the sea surface and provided 0.01 m resolution, survey grid consisted
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of thirteen survey lines that spaced 100 m from each other in both headings (Figure 2),
bathymetric data close to the southern and south-western coast could not be acquired due
to the extremely shallow water depths, the corresponding depth values were digitized
from previous survey works [1] and grided with the acquired thirteen lines, constructing
bathymetric contour map using Surfer software.

Sonar imaging survey was carried out using Edge-Tech 4200 side scan sonar (SSS),
which provides high resolution sonar images for the seafloor by operating dual simultane-
ous frequencies at 300 and 600 kHz to identify the backscatter textures of the seafloor and
target the submerged archaeological artifacts. A stainless-steel fish was towed by a 5 m
cable behind the survey vessel, the device emitted fan-shaped pulses towards the bottom
and recorded a seafloor swath of 75 m range on each side. Five (NW-SE) track-lines parallel
to the coast and the other two (NE-SW) perpendicular lines (Figure 2) were recorded by
Edge-Tech (Discover) software in JSF format, while data processing was done through
Geocoder and side scan mosaicking of Hypack® software. Initially, the SSS data underwent
reformatting from JSF field format to HSX processing software format, then radiometric
and geometric corrections were performed, auto Time Varying Gain amplifications were
also applied to compensate for the decay in signal amplitudes, followed by slant range
correction related to a reasonable sea bottom tracking. Then a final Geotiff mosaic image
was constructed using the high frequency dataset (600 kHz), and the sonographs were
classified according to the backscatter intensity.

Sub-bottom profiler survey (Figure 2) was carried out through three planned lines
oriented (NW-SE) and four (NE-SW) cross lines by using chirp sub-bottom profiler (Edge-
Tech 3200 series), the system comprised a transducer towed behind the survey vessel with
10 m cable-out applied subsequently in layback correction to position the tow-fish precisely,
20 ms acoustic impulse were emitted by the transducer with 100% pulse power and pinging
(2–12 kHz) frequency range with a high rate to offers high resolution seismic records in
the moderately shallow survey area, seismic data were recorded in JSF format using the
native Discover software. Seismic data processing was applied using Hypack® sub-bottom
software and the workflow included band-pass frequency filtering and time varying gains
to produce a clear image for the stratigraphic interpretations. The seismic profiles were
acquired in the time domain and horizon depths have been deduced using an average
sound velocity of 1530 m/s acquired by (Valeport) sound velocity profiler. The identified
horizons and their top surface ages have been tied with previously published sediment
core samples (AL25 and AL19) around the study area (Figure 1c) which were obtained in
14C radiocarbon years B.P. using the Accelerator Mass Spectrometry technique [5,7]. The
core sample (AL25) lies inside the study area and was correlated with the core sample
(AL19) which lies around 1 km to the east of the core sample (AL25). Subsequently, the
lateral geomorphological variations were extrapolated across the subsurface profiles.

The ROV video camera dives and sediment grab sampling locations (Figure 2) were
selected according to the preliminary interpretation of the acoustic data. Positioning and
piloting of the ROV Video camera (Videoray pro3) were remotely done by the researchers
from the survey vessel (Figure 3), where the control unit comprised a joystick and third
axis controllers with a 15′ LCD screen which displays the video signal overlayed with
the heading and depth readings. The position of the ROV video camera was estimated
from the GPS NMEA output and the layback as a function of depth according to Vincentys
algorithm [29].

Surface sediment samples were collected using a stainless-steel Peterson grab sampler,
and locations were determined using DGPS. Grain size analyses were performed at the
Marine Geophysics Lab of the National Institute of Oceanography and Fisheries, and the
samples were subjected to the combined technique of pipette analysis and dry sieving [30].
Results of mean size and sorting of sediments were compared with the acquired seafloor
images of the side scan sonar and the different backscattered forms were defined.
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Figure 3. The researcher during the piloting of the ROV camera onboard the research vessel.

3. Results
3.1. Bathymetry

The resulted bathymetric contour map (Figure 4) has revealed the recent seafloor
morphology of the study area. Generally, the depth values ranged from 1 m close to the
coast to more than 10 m at the northeastern corner of the study area towards the center of
the harbor. The 3.5 m contour line outlined a border for two opposite structures which are
separated by relatively deeper area and interpreted as the two main breakwaters of the
submerged ancient port that once settled above the seabed in this part of the harbor [1,31],
the contour lines showed irregular patterns around these structures then increased regularly
to 5 m towards the north, afterward the seafloor was sloped gently towards north till
reaching 10 m depth. The contour shape of the shallower zone close to the coast (~less than
2 m depth) suggested the presence of a quay that was connected with the breakwaters of
the submerged port.

Figure 4. Bathymetric contour map of the study area showing the submerged ancient harbor.
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3.2. Sonar Imaging

The mosaic map of the stacked side scan sonar images (Figure 5) defined the recent
seafloor acoustic pattern of the study area according to variation in the backscatter in-
tensity [22,25]. Generally, different forms of backscattered intensities were detected in
the study area, the first form was characterized by a bright appearance due to the high
backscatter intensity which defined the submerged archaeological remains, the outcropping
reefs, and the coarse-grained sediments (Table 1). While the second form was encountered
by a pale appearance as a result of the weak backscattered intensity which mainly indicated
the presence of fine-grained sediments (Table 1), also some combined patches of bright and
pale appearance were noticed in certain areas.

Figure 5. Side scan sonar mosaic map of the study area showing the traces of the submerged
ancient harbor. (a) Very-coarse boulders; (b) Coarse boulders; (c) Buried archaeological remains;
(d) Outcropping reefs.

Table 1. Results of mean size and sorting of sediments samples.

Sample Number Sample Depth (m) Sediment Type/
Mean Size Sediment Sorting

1 3.3 Coarse sand Poorly sorted

2 4.9 Fine sand Moderately well sorted

3 3.4 Medium sand Poorly sorted

4 4.1 Fine sand Moderately sorted

5 4.3 Very Fine sand Moderately sorted

6 3.2 Very Fine sand Moderately well sorted

The mosaic map (Figure 5) showed semi-buried archaeological remains at 250 m
away from the coastline, these remains are in the form of two asymmetric breakwaters of
a submerged port structure, which spaced by 45 m from each other and this space was
suggested to be the old port entrance. Target measurements were performed on the mosaic
map and subsequently, the starboard-side breakwater of the submerged port was found
extending for about 230 m with about 10 m widths that got thinned towards the entrance of
the port, the height of this breakwater varied from 0.6 m from the seafloor up to 1.3 m at the
western end. While the length of the 1 m elevated port-side breakwater was measured to be
around 180 m and the width noticeably varied from 12 m at both ends and around 22 m at
the central part. Other geomorphological changes have been noticed, where several groups
of coarse and very-coarse boulders [32,33] were detected with distinct reflections around
the eastern edge of the starboard breakwater (Figure 5a) and inside the port entrance
(Figure 5b); in addition to traces of buried and deformed remains in the suggested quay
area at the southwestern margin of the mosaic map (Figure 5c). Several outcropping reef
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areas were recognized on the seafloor (Figure 5d) where a low relief area was located at
35 m offshore the breakwaters, another higher relief region was detected at 160 m apart
from the breakwaters and elevated 1 m from the seafloor.

3.3. Ground-Truthing

The ROV camera dives generally gave cloudy images for the seafloor due to the high
turbidity that provided less than 0.5 m forward visibility. Different features were captured
(Figure 6) on the study area around the sampling locations, where outcropping reef area
(Figure 6a), sand ripples (Figure 6b), breakwater remains (Figure 6c), scattered boulders
(Figure 6d), soft sediments (Figure 6e), and irregular patches of sediments (Figure 6f)
were recognized.

Figure 6. (a–f): Seafloor images obtained from the ROV camera dives around the six sampling stations (not to scale).

Results of sediments analyses (Table 1) were compared with the backscattered sono-
graphs (Figure 5) and ROV dives images (Figure 6). Sediment types were classified on
the mosaic map of the side scan sonar [25], where the poorly sorted coarse and medium-
grained sands were represented by bright color tones on the sonographs, and appeared in
the form of ripple marks which mainly located in high silting areas [34] especially around
the submerged breakwaters and the outcropping reefs. While the dark color tones were
represented by the moderately sorted fine-grained sediments that widely spread in the
north-western and north-eastern parts of the study area. These dark tones were also located
outside the port entrance, and around the borders of the port side breakwater.

3.4. Sub-Bottom Profiling

Interpretations of seismic profiles with the sediment core data [7] (Figure 7) showed
the depositional sequence of the topmost sedimentary layers, and illustrated the evolution
of seabed topography and bathymetric features, the suggested stratigraphic sequence was
displayed through the seismic profiles [P] and [C] (Figure 2). Seismic profile [P] showed
the borders of the two submerged breakwaters of the ancient port (Figure 8), these borders
are marked by the top surface of the Ptolemaic era and tied with dated core samples [5,7],
where the Royal ports of ancient Alexandria were developed during the Ptolemaic rule
at Late Holocene epoch [9,14]. The port-side breakwater was found cutting through the
sediments substrate and cropping out more than 3 m from the seabed, while the sediment
thicknesses were varied across the sub-bottom profiles where it thickened up to 2 m in
the area of the port entrance (Figure 8) and the area offshore the port-side breakwater
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(Figure 9). The corresponding sedimentation of the Roman period is relatively low above
the breakwater margins; also, the top surface of the Roman era was found onlapping over
the port structures. Sharp reflections were noticed on the top surface of the Roman layer
above the port structure and close to the port scarps (Figures 8 and 9). The sub-bottom
profiles were found capped with a relatively thin layer of sediments corresponding to the
later Arabic time till the present.

Figure 7. Core sample (AL25) tied with the SB profile (C) after correlation with core sample (AL19)
(modified after Stanley et al., 2007 [7]).

Figure 8. Seismic profile [P] across the breakwaters of the submerged ancient harbor. (a) Uninterpreted profile; (b) Inter-
preted profile.

Integration of Sonar images with sub-bottom profiles was applied to study each
breakwater separately and to confirm the survey results, where the eastern part of the
starboard-side breakwater was found outcropping and semi-buried in the sediment sub-
strates and gradually get buried while moving towards the port entrance, the sediments
were noticed onlapping over the western edge of the breakwater (Figure 10b), ripple marks
were detected on the seabed around the outcropping region of the starboard-side breakwa-
ter, and several boulder debris were recognized spreading over different sediment patches
around the port entrance (Figure 10a). The deformed surface of the port-side breakwater
was noticed on the side scan sonar image (Figure 11a) where some parts were buried by
sediments and others were outcropping, also the ancient sea scarp was noticed on the
sonograph and indicated by onlapping sediments on the subsurface profile (Figure 11b).
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Figure 9. Seismic profile [C] across the Port side breakwater of the submerged ancient harbor. (a) Uninterpreted profile;
(b) Interpreted profile.

Figure 10. The starboard side breakwater of the submerged ancient harbor. (a) Side scan sonar image; (b) Sub-bottom
profiler section; (c) Location map of the displayed images.

Figure 11. The port side breakwater of the submerged ancient harbor. (a) Side scan sonar image; (b) Sub-bottom profiler
section; (c) Location map of the displayed images.

3.5. Sediment Thickness

The sediment thickness was interpolated for the successive sedimentary layers pre-
sented in the sub-bottom profiles across the study area, where the lower succession rep-
resents the sedimentation during the Roman period (Figure 12), while the upper layer
represents the Arabic to Recent period (Figure 13). The sediment thickness of the Roman
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period has a range of 0.1–3 m, a maximum thickness of 3.2 m was observed in the western
and north-eastern parts, and a minimum thickness of 0.2 m was noticed in the southern and
eastern margins. Generally, the thickness of the lower layer varies according to the seabed
topography, which reaches around zero where the outcropping rocks and submerged
structures exist.

Figure 12. Isopach map for the sedimentation during the Roman period in the study area.

Figure 13. Isopach map for the sedimentation during the Arabic to Recent period in the study area.

The sediment thickness of the upper succession corresponding to the Arabic to Recent
period (Figure 13) has a range of 0.1–1.3 m, the sediment is much thicker in the northeastern
part reaching 1.5 m, and much thinner in the southern parts close to the shore, that reach
around zero at the outcropping rocks and the submerged structures.
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4. Discussion

The ancient coast of Alexandria was significantly modified during the Greek and
Roman periods after the destruction of the royal ports and palaces as a result of land
subsidence, eustatic sea-level rise, earthquakes, and tsunami. Mapping of the submerged
ancient site which was constructed during the Ptolemaic period in the 4th century B.C. [9,35]
allowed to detect remarkable geomorphological changes over the seabed of the study area
across the past times.

The bathymetric mapping and the sonar imaging for the seafloor topography and the
seabed characteristics have defined the supposed borders of the submerged port site, the
noticed asymmetry in the shape of both breakwaters indicated mostly that the starboard-
side breakwater was artificially built over the seafloor due to the presence of a large number
of rubble mounds along this breakwater (Figure 10a), while the rough surface of the port-
side breakwater indicated that the breakwater was a part of a pre-existed out-cropping reefs;
also, some construction relics were situated close to the reef structure of the breakwater
(Figure 11a).

The non-uniform surfaces of breakwaters and the surrounding debris of coarse boul-
ders were suggested to be an impact of the previously-recorded high magnitude natural
hazards that affected the area. It is assumed that numerous fractions were disintegrated
from the breakwaters forming debris of boulders, and transported away from the port
structure, where storms and tsunami waves can hit and damage the ancient structures [36]
and displace large boulders [37] due to its powerful carving abilities. The detected buried
structures of the suggested quay of the port in the southwestern part of the study area
have indicated the exposure of the port to a high silting rate due to the relatively rapid
submergence as a result of the pre-mentioned catastrophic events. The majority of these
geomorphological features were matched with the resulted images from the ROV camera
dives. Also, seabed sediments were acoustically classified according to variation in the
magnitude of backscatter intensity, the classification was calibrated by the results of grain
size analyses of sediment samples, and specified that the fine-grained sediments represent
darker color tones on the sonographs than the coarse-grained sediments.

The sub-bottom profiling survey showed the borders of the submerged breakwaters
of the ancient port where the artificial rubble mounds of the starboard-side breakwater
were noticed on the subsurface profile as an anomalous formation that buried within
sedimentations and inclined towards the port entrance (Figure 10b), while the reef structure
of the port-side breakwater was recognized as a base layer underneath the sediment layer
(Figure 11b); also, the sedimentation onlapped over the breakwater seaward margin which
marking a shore scarp. Several sharp reflections were noticed on the top surface of the Roman
layer in the form of dark patches (Figure 8, Figure 9) which may indicate the presence of
disturbed subsurface layers due to the incompetent anthropogenic activities related to the
construction piling throughout the Roman period, during Alexandria’s expansion [7,19,38],
which acted as an indirect factor in the submergence of the archaeological site.

The variation in sediment thicknesses along the port margins has indicated changing
sedimentation rates across the past times (Figures 12 and 13), where the sediment thick-
ness between the opposite breakwaters is larger than the thickness across the breakwater
margins, this condition was suggested to be a result of the increased rates of depositions
that followed the construction of the Heptastadium tombolo which changed the current
circulations and sediment deposition around the port structure through the late Ptolemaic
era [7], also due to the high silting accompanied with the 365 A.D tsunami waves during
the Roman period [35,39] which in turn buried the structures of the ancient port and
the port entrance space by sediments alluviations, from the isopach maps, it is clear that
the sediment accumulations during the Roman period (Figure 12) were larger than that
of the Arabic to Recent period (Figure 13). Also, the determined thicknesses perfectly
matched with the historical records of ~2 m sea-level rise and land subsidence during the
last two millennia [14].
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Integration of the acoustic data with the results of sediment analyses and ROV images
provided a clear image for the recent seabed characteristics by establishing a synthetic
classification map (Figure 14). Different forms of features were recognized on the seabed,
where the fine-grained sediments covered the majority of the study area, while the medium
to coarse-grained sediments spread in the central part and bounded the submerged struc-
ture of the ancient port. The submerged structure was surrounded by different-sized
disintegrated boulders that scattered towards the southern shore next to various partially
buried remains. Also, outcropping reef and rocky areas were located in the central part
and the south-eastern margin of the study area, respectively.

Figure 14. Synthetic classification map resulted from combining the mosaic image with the sediment classification results.

5. Conclusions

The geophysical mapping of the submerged archaeological site showed significant
results in seabed investigation and detection of the possible geomorphological changes
resulted from the sea-level rise and natural hazards. The acoustic data were integrated
with the acquired surface samples and the previously dated sedimentological core data, in
addition to records of relative sea-level rise.

The bathymetric mapping has revealed the recent sea-floor morphology outlining
two breakwaters corresponding to a submerged ancient port, and the contour shape
showed irregular patterns around the port structures and suggested the presence of a
quay in the shallow coastal zone of the study area. While the sonar imaging survey
has defined two different forms of backscattered intensities according to variation in the
magnitude of the reflected energy. Partially buried archaeological remains were recognized
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and interpreted as submerged breakwaters of an ancient port; also, coarse and very coarse
boulders were detected around the submerged breakwaters in the form of debris that
disintegrated from the submerged structure. The irregular structural form and the non-
uniform surfaces of the submerged breakwaters highlighted the effect of severe natural
hazards on the study area. Sediment types were classified on the mosaic map and ground-
truthed with surface sediment samples and ROV camera images establishing a synthetic
classification map that shows sediment and backscatter intensity distributions across the
study area, where patches of sand ripples and relatively fine-grained sediments were
distributed around the outcropping structures.

Interpretation of sub-bottom profiles has suggested the stratigraphic sequence of the
topmost sedimentary layers and detected the borders of the submerged breakwaters of
the ancient port, which indicated that each side had a different origin. Seaward sediment
onlapping was noticed along the margin of the port structure which indicated the ancient
shore scarps. The deposited sediment thicknesses varied across the subsurface profiles
which increased in certain areas as a result of the changed current circulations following
the construction of the Heptastadium tombolo and also due to the 365 A.D. catastrophic
tsunami. Also, several indicators of anthropogenic activities were noticed on top of the
Roman layer and capped with relatively thin deposition corresponding to the Arabic to
the recent period. The results of these integrated geophysical techniques outlined the role
of natural hazards and sea-level rise in changing the geomorphology of the coastline and
seabed features.
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