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Abstract: Gas-enhanced oil recovery (EOR) through huff-n-puff (HnP) is an important method
of recovering oil from fracture-stimulated reservoirs. HnP productivity is hampered by fracture
channeling, leading to early gas breakthroughs and gas losses. To mitigate these issues, foam-
generating surfactants have been developed as a method of reducing injected gas phase mobility and
increasing oil recovery. This work investigates foam generation and propagation by a proprietary
surfactant blend in high-temperature, high-pressure, high-permeability, and high-shear conditions
that simulate the environment of a proppant-packed fracture. Bulk foam tests confirmed the aqueous
stability and foaming viability of the surfactant at the proposed conditions. Through several series of
floods co-injecting methane gas and the surfactant solution through a proppant pack at residual oil
saturation, the effects of several injection parameters on apparent foam viscosity were investigated.
The foam exhibited an exceptionally high transition foam quality (>95%) and strong shear-thinning
behavior. The foam viscosity also linearly decreased with increasing pressure. Another flood series
conducted in an oil-free proppant pack showed that swelling of residual oil had no effect on the
apparent foam viscosity and was not the reason for the inversely linear pressure dependency. An
additional flood series with nitrogen as the injection gas was completed to see if the hydrophobic
attraction between the methane and surfactant tail was responsible for the observed pressure trend,
but the trend persisted even with nitrogen. In a previous study, the dependence of foam viscosity on
pressure was found to be much weaker with a different foaming surfactant under similar conditions.
Thus, a better understanding of this important phenomenon requires additional tests with a focus on
the effect of pressure on interfacial surfactant adsorption.

Keywords: hydrocarbon foam; conformance control; fractured reservoirs; gas injection; pressure
dependent rheology

1. Introduction

With energy demand increasing and available conventional oil sources depleting,
many have turned their attention to developing unconventional oil reservoirs [1–3]. Of all
unconventional sources, shale/tight oils have become the primary plays for unconventional
oil recovery due to their great potential, with over 2 trillion barrels of oil deposits in U.S.
shale plays and over 30 billion barrels of total tight oil reserves estimated in 24 North
American reservoirs [1,2,4–6]. Through primary production techniques, less than 10% of
the original oil in place is recovered from tight oil reservoirs, with some having recovery
factors as low as 2%. Several additional factors can also hamper oil production, such as
organic deposition, poor mobility control, inadequate fluid containment, and more [7–9].
With so much oil being left unrecovered, enhanced oil recovery (EOR) techniques must be

Colloids Interfaces 2024, 8, 13. https://doi.org/10.3390/colloids8010013 https://www.mdpi.com/journal/colloids

https://doi.org/10.3390/colloids8010013
https://doi.org/10.3390/colloids8010013
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/colloids
https://www.mdpi.com
https://orcid.org/0000-0001-6521-7217
https://doi.org/10.3390/colloids8010013
https://www.mdpi.com/journal/colloids
https://www.mdpi.com/article/10.3390/colloids8010013?type=check_update&version=2


Colloids Interfaces 2024, 8, 13 2 of 21

researched and developed to increase recovery and economic efficiency without the need
for re-fracking, which comes with heightened environmental concern [1,10–14].

The most widely used EOR method for shale/tight oils is gas injection [15,16]. Com-
mon gases used include CO2 and hydrocarbon gases [16]. The most promising mode of
gas injection in these unconventional formations is huff-n-puff (HnP) [10,15,17]. In this
EOR process, gas is injected into a well to build reservoir pressure (the huff); then, the
well can be shut-in for a period of time (the soak); and finally, the well is turned back into
a production well (the puff) until production declines to a set point, and the process is
repeated [13,18–20]. Use of HnP has shown success with unconventional reservoirs in
increasing oil recovery and in economic efficiency through simulation, laboratory, and field
pilot tests [10,17,18,20–23].

The use of gas injection to enhance oil recovery in both conventional and uncon-
ventional reservoirs, however, does come with some impediments, including early gas
breakthrough and poor sweep efficiency due to gravity override, channeling through
high-permeability zones, and viscous fingering, which cause decreased well productiv-
ity [9,14,20,24,25]. There are two main contributors to conformance issues in HnP of tight
oil reservoirs: well interference and fracture channeling [9,13,22,24–31]. To limit these
conformance issues, researchers have developed several methods for improving the mobil-
ity control of the injection gas. Foam, as an alternative to polymers, is one such mobility
control agent for diverting the injection gas from the high-permeability areas to the low-
permeability areas in gas flooding, as shown in Figure 1 [3,32–35]. Polymers, such as gelling
agents, are not suitable for fracture-stimulated reservoirs due to their potentially damaging
nature against productive fracture channels and their tendency to degrade in high-shear,
high-temperature conditions, so foaming surfactants offer a viable alternative [3,15,36–38].
By increasing the apparent viscosity of the injection gas, foam can also reduce out-of-zone
injection (i.e., gas leak-off due to well interference) [24,39]. Foam has proven to be an effec-
tive mobility control agent in several EOR techniques, including HnP, hot water flooding,
low-tension gas flooding, and much more [24,40–42]. While the use of foam to mitigate
conformance issues for gas HnP in fractured reservoirs is a relatively new area of study,
recent laboratory investigations and field pilots have shown encouraging results [24,39,43].
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With the successful use of foaming surfactants in field pilots to alleviate concerns about
conformance control and increase recovery with HnP in fractured reservoirs, attention now
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turns to understanding how foam is generated and propagates through proppant-packed
fracture networks. Gas HnP in tight oil reservoirs and foam flow in fractures are still
limited and in their early stages of development, so a better understanding of how foam
rheology evolves in fractures is vital to continued optimization and improvement of this
EOR method [1,44,45]. A lot of work has been conducted to observe foam behavior in
non-propped hydraulic fractures and naturally fractured reservoirs using parallel plate
setups [44,46,47], fractured shale and carbonate cores [12,39,48–51], acrylic fracture network
models [52,53], and fracture networks in marble slabs to represent the fracture environment
in tight oil reservoirs [45]. Because of the complexity of fracture networks and the difficulty
of foam generation in extreme conditions, many studies have used simulation models to
look at foam rheology in propped and non-propped fractures [14,29,50,54,55]. Previous
studies have also employed microvisual models to observe foam generation and structure
at the pore scale [56–58]. Several experiments have also gone the route of analyzing how
foam flow is affected by various characteristics of the fractures, including aperture, surface
roughness, proppant sorting, shape, and network complexity [14,46,52,54,55,58]. With
the success of surfactant-stabilized foam in improving unconventional oil recovery, some
researchers have also investigated how different foam additives, such as nanoparticles [54],
and alternatives, including microemulsions [59] and polymers [60], can further improve
conformance control and oil recovery.

This literature review showed that there is still a substantial gap in understanding the
rheology of foam flow in proppant-filled fractures under realistic conditions. Most work
performed on foam propagation in fractures is focused on the success of using foam to
improve conformance control and boost ultimate oil recovery rather than understanding the
physics of foam propagation in such a system [24,39,43,48,49,53]. While some have briefly
looked at the effect of foam quality and flow rate on foam rheology in fractures, the lack of
a systematic experimental design to truly characterize these effects is evident [46,52,55,58].
A concrete characterization of the effect of flow rate is specifically important because of the
heterogeneous conductivity of the fractures, meaning some will experience greater shear
than others [25]. Furthermore, there is a deficiency in the literature addressing the effect of
pressure on foam flow in propped fractures. Understanding the effect of pressure is vital
for HnP application since the fundamental basis of HnP is using an immense change in
pressure to boost gas penetration in the matrix, enhance gas-oil contact, and improve oil
recovery [22]. For HnP field pilots, pressure fluctuation is usually between 2000 psi and
6000 psi, so it is important to understand how foam rheology will be affected under such a
pressure change [27].

In this work, the focus is on the behavior of surfactant-stabilized foam generated with
methane gas in high-pressure, high-temperature, high-permeability, high-shear, proppant-
filled fractures, of which there is very little literature available [24,61]. In developing the
methodology for these experiments, it was important to keep the system as representative
of a propped fracture in a real reservoir as possible since failing to maintain realistic
conditions can lead to misleading results [1,61]. Thus, several aspects of these experiments
were taken directly from an actual field pilot, such as the high system temperature, the
use of methane gas as an EOR gas, the surfactant formulation, the proppants used in the
proppant pack, and the co-injection mode. The implementation of a sand pack to simulate
the high-permeability, proppant-filled fractures in tight oil reservoirs has been a successful
technique used in previous studies since the propped fracture acts as a porous medium
for foam propagation [54,57,59,60,62]. Next, several characterization tests were performed
with the foaming surfactant formulation to exemplify its ability as a foamer and its viability
for use in high-temperature and high-pressure conditions. After that, a systematic, factorial
core flooding program varying foam quality, flow rate, and pressure was undertaken
using the proppant pack. The change in foam viscosity under these different conditions
was analyzed and trended to see how foam behaves with variance in these important
influencing factors. Thus, the data could be used to create a rheological model for foam
flow in propped fractures and to predict foam behavior in the field.
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2. Results and Discussion
2.1. Surfactant Characterization
2.1.1. Effect of Oil on Foam Stability

Initial foam stability tests showed that the surfactant was indeed stable and capable of
foaming at the temperature and salinity of the fracture environment. With the confirmation
of the foam stability criterion, a more in-depth look was taken at the decay of the foam
under high pressure and temperature with and without oil present, as the introduction of
high pressure and oil is more representative of the fracture environment. Figure 2 shows
the effect of pressure on the bulk foam decay at 298 K, both with and without oil added.
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Figure 2. Bulk foam decay at 298 K, (a) without oil and (b) with oil at various pressures.

Without oil present, the initial foam height increases with pressure. The transience in
foam height decay is very similar at all pressures, but generally it can be seen that, in these
bulk foam tests, foamability and foam stability increase with pressure. This behavior agrees
with previous literature on bulk foam stability, which suggests that improved hydrophilic-
lipophilic balance (HLB) and smaller bubble size at higher pressure could be responsible for
greater bulk foam stability [63,64]. However, these previous studies were conducted in the
absence of oil. In the presence of oil, though the same initial foam height trend can be seen,
the transient decay of the foam height is essentially identical across all pressures and much
faster than that in the presence of oil. This detrimental effect of oil on bulk foam stability is
commonly observed throughout bulk foam experiments [65–68]. This indistinguishable
decay rate across several pressures in Figure 2b shows the dominant impact of oil-induced
foam destruction compared to the positive effect of pressure on foam generation.

The effect of temperature on the surfactant solution’s foamability at 3000 psi, both
with and without oil, is shown in Figure 3. Without oil, the foaming formulation seems to
perform better at 388 K, but when oil is added, the formulation shows slower decay at 298 K.
In the no-oil case, the foam stability of the surfactant solution seems to be unaffected, if not
slightly improved, at the elevated temperature. Previous studies have shown that foams
commonly experience increased film drainage at elevated temperatures, leading to film
thinning and coalescence. However, some surfactant formulations have the ability to better
withstand elevated temperatures due to higher hydrophilicity, which results in a tighter,
thicker surfactant monolayer that improves film stability and prevents film drainage, which
could explain the behavior seen in Figure 3a [63,64,69]. When oil is present, the observation
of bulk foam stability at higher temperatures better fits what is found in the literature
because foam stability decreases with lower oil viscosity due to greater spreading of the oil
over the lamella film, and oil viscosity decreases at higher temperatures [67]. The purpose
of the work presented here was to verify that the formulation continues to perform as
a viable foamer in high-pressure and high-temperature conditions, which it does. The
progression of foam height and texture in the bulk foam test without oil at 388 K and
3000 psi can be seen in Figure 4.
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2.1.2. Emulsion Tendency Test

A key criterion for surfactant selection was the minimal tendency for long-lasting,
viscous emulsion formation when mixed with crude oil, as these emulsions can adversely
impact in situ oil transport and prove difficult and costly to separate during post-production
processes [70]. To match the separation processes in the field, a criterion of 45 min for
emulsion separation was instituted. In addition, the in situ formation of viscous emulsions
during core floods can cause a higher pressure drop and be mistaken for stronger foam
generation, when in reality the destabilization of the foam is being compensated for by
these viscous emulsions [62]. The results of the emulsion tendency test are reported in
Figure 5. Within 30 min, most of the emulsions separated, and only a small amount of
Winsor Type III-like emulsions remained. Winsor Type III emulsions refer to a middle-
phase layer of microemulsions at the interface of the aqueous and oil phases [71,72]. These
lingering emulsions, however, persisted for multiple days, forming a small phase. Upon
further evaluation, it was observed that these emulsions were not viscous. Therefore, the
surfactant formulation is still viable for use in the experimental flooding program.
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2.2. Foam Transport through Proppant Pack Results
2.2.1. Foam Rheology at Residual Oil

The baseline pressure drop values were within the measurement effort and were not
leveraged further. Subsequently, proppant pack foaming experiments were performed to
investigate the effect of three key injection parameters: foam quality, total flow rate, and
system pressure.

2.2.2. Effect of Foam Quality

Previous literature has established the existence of two distinct flow regimes: a low-
quality, wet regime and a high-quality, dry regime. In the low-quality regime, foam
behavior is gas-rate dependent and dominated by bubble trapping and mobilization, and
the foam viscosity is expected to increase with increasing FQ. In the high-quality regime,
foam behavior is liquid-rate dependent and dominated by limiting capillary pressure and
bubble coalescence, and foam viscosity is expected to increase with decreasing FQ [73–75].
The transition between the two regimes is marked by a peak in foam viscosity, and referred
to as the transition foam quality [76].

Usually, the transition foam quality is observed at ≤90% FQ [74,77]. However, the
sample of data presented in Figure 6 shows that, in this case, the foam viscosity increases
through the complete FQ scan; all data presented in Figure 6 and all subsequent graphs
have an error of less than 3%. This indicates that the foam remains in the low-quality regime
up to 95% FQ and exhibits an exceptionally high transition FQ, which has been rarely seen
before in similar high-pressure, high-temperature conditions [69]. This observation held
true across all flow rate and pressure scans and exemplified the foam’s ability to withstand
dryer conditions and generate foam with minimal water and surfactant injection during
a field implementation. Dry-out occurs as the FQ increases and the capillary pressure
approaches the limiting capillary pressure, resulting in the thinning of aqueous films as
well as foam coalescence [65,74,78]. Evidence of such a high transition FQ indicates that
the foam observed in this work must have a high limiting capillary pressure. While this is
primarily discussed as a result of the surfactant type, limiting capillary pressure can also
be affected by gas velocity and the permeability of the porous medium [78]. Additionally,
injecting less aqueous solution is better for maintaining reservoir integrity and productivity,
and injecting more gas is more favorable for production during the puff stage due to
gas-induced oil swelling and expansion from pressure reduction [38,79].
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Figure 6. Foam quality analysis at residual oil for full pressure scan at 0.0176 cm/s.

2.2.3. Effect of Total Flow Rate

In the data presented in Figure 7, a clear shear-thinning profile can be seen, meaning
that as the flow rate increases, the foam viscosity decreases due to the reduced flow
resistance of moving foam films [80]. This observation held true across the pressure range
in Table 3. This shear-thinning behavior of surfactant-stabilized foam is widely seen in the
literature [81,82]. Hirasaki and Lawson developed a model for shear thinning of foam in a
straight capillary tube, showing that viscosity scaled with flow rate raised to the power of
−1/3 [80]. Nguyen developed a shear-thinning model for foam that, unlike Hirasaki and
Lawson’s model, accounted for the effect of pore throat constriction due to the divergent-
convergent nature of porous media channels. Nguyen’s model showed that viscosity scales
with flow rate raised to the power of −2/3 [65]. However, in this study, viscosity evidently
scales with flow rate raised to the power of approximately −0.957 for this proppant pack
system, exhibiting much stronger shear-thinning behavior than described by either Hirasaki
and Lawson’s model or Nguyen’s model. This is likely due to natural deviations from the
ideal behavior assumed in the development of the previous models.

The shear-thinning rheology in the range of viable field flow rates is a favorable
outcome given that in the near-wellbore conditions, gas injectivity, as desired, would be
relatively higher and would, therefore, reduce the amount of time and energy required
to inject the target gas slug. On the other hand, as the foam penetrates deeper into the
fracture network, the shear rate decreases, resulting in higher foam viscosity and improved
conformance control deeper in the formation [24,83].
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Figure 7. Shear thinning profile at residual oil for full flow rate scan at 80% FQ.

2.3. Effect of Pressure

The most interesting finding was the inversely linear dependency of foam viscosity
on system pressure, irrespective of flow rate, as shown in Figure 8. Before delving into
the novelty of this dependency, its application in the field must be discussed. The increase
in strength as pressure decreases can be beneficial to foam-assisted HnP for two reasons.
First, as mentioned previously, one of the main benefits of using foam in HnP processes
is that it aids in decreasing the loss of injection gas due to well interference by reducing
gas mobility [24,39]. If there are any issues with continued loss of injection gas, as the
pressure decreases due to this gas loss, the foam will thicken and reduce gas mobility to
mitigate further loss of gas, essentially acting as a negative feedback regulator. Second,
during the puff stage, when pressure rapidly decreases, the strong foam will promote
uniform withdrawal of the fluids over the entire fracture network rather than through
high-permeability fractures.
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This inverse linear dependency of foam viscosity on system pressure is contrary to
what has been reported before [84–86]. Even the few previous experiments that showed
that foam viscosity monotonically decreases with system pressure did not exhibit trends
with such linearity or provide mechanistic reasoning as to what the cause of the trend
could be [69]. The observation of the inversely linear trend here and the explanation of
what may be causing it, therefore, became of significant interest. A few hypotheses were
investigated to examine the cause of this inverse linear dependency of foam viscosity on
system pressure and are discussed in the following sections.

2.3.1. Effect of Residual Oil on Pressure-Dependent Foam Rheology

The first potential cause of this pressure dependency was hypothesized to be the
swelling of the residual oil in the pack. Oil swelling is caused by the dissolution of solvent
into the oil phase, resulting in an increase in the oil phase volume [87,88]. It is known that
as pressure increases, there will be greater oil swelling, causing the live oil saturation to
increase and, therefore, additional foam destruction [87]. To address this hypothesized
effect, a flood series was completed using a pack free of residual oil. The results of this flood
series are shown in Figure 9, which confirms the marginal, if any, impact of residual oil on
foam generation. The linear dependency of foam viscosity on system pressure was also
reproduced in the absence of oil, as shown in Figure 10. Thus, oil swelling with increased
system pressure was ruled out as a hypothesis for this observed pressure dependency. This
conclusion is supported by previous studies in which the introduction of methane resulted
in negligible oil swelling of several light, sweet crude oils under high temperature and
pressure [89].
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2.3.2. Effect of Injection Gas on Pressure-Dependent Foam Rheology

The next hypothesis investigated was the enhanced hydrophobic interaction between
the surfactant and methane at higher system pressure. As system pressure increases, the
density of the methane increases, creating a stronger hydrophobic attraction between
the methane and the hydrophobic tail of the hydrocarbon surfactant molecules. Film
stability relies on repulsive forces between the interfaces of the lamellae, so the introduction
of this attractive, hydrophobic force could weaken the lamellae and, thus, lower foam
viscosity [90,91]. Decreased film stability leads to lower foam strength due to a higher
drainage rate, bubble coalescence, and Oswald ripening [86,90,92].

To test this hypothesis, a pressure scan of the surfactant formulation was completed
using nitrogen due to its inert nature. Figures 11 and 12 reproduce the same dependency
of the foam viscosity on foam quality and system pressure, respectively, as observed
with methane eliminating surfactant and gas interaction as a hypothesis to explain the
observed dependency.

2.3.3. Effect of Surfactant Type on Pressure-Dependent Foam Rheology

Another hypothesis investigated was the potential relationship between the observed
pressure dependency and the surfactant’s properties since the pressure trend has already
shown no causal link to the residual oil or gas type. Floods were previously performed
using this system to evaluate the foaming ability of two distinct commercially available sur-
factants. These two surfactants exhibited disparate pressure trends, such that one showed
an increase in foam viscosity with increasing system pressure, while the other showed that
system pressure had no effect on foam viscosity. The results of these floods can be seen
in Figure S1 of the supporting information. The observation of these different pressure
trends led to two important conclusions: the inverse pressure trend is not an artifact of the
system, and evidence strongly suggests that the pressure trend is a result of surfactant type.
Based on this, it is hypothesized that surfactant adsorption on the liquid-gas interface and
its impact on interfacial rheology could be the cause of the pressure dependency.
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One possible mechanism linking surfactant adsorption to the interfacial rheology is
related to the viscoelasticity of the liquid-gas interface. The understanding of the effect of
viscoelasticity on foam is limited, but it is suspected that as viscoelasticity increases, foam
strength in porous media improves due to a reduction in film drainage rate [90,93]. As
surfactant adsorption at the liquid-gas interface increases, interfacial tension decreases, and
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viscoelasticity increases [90]. Therefore, the hypothesis regarding this mechanism states
that as pressure increases, surfactant adsorption at the interface decreases, resulting in
lower interfacial viscoelasticity and a weaker foam.

Another important property in determining foam stability is the disjoining pressure,
which is used to characterize the forces per unit area between the interfaces of two bub-
bles [90,91]. As the disjoining pressure decreases, the liquid film thins until it ruptures and
the foam coarsens, i.e., a greater disjoining pressure indicates greater foam stability [86,94].
There are three forces that contribute to the disjoining pressure: the repulsive electrostatic
and steric forces, and the attractive van der Waals forces. To enhance foam stability, a
strong repulsive interaction between the interfaces of the liquid film is required, such that
the disjoining pressure will counterbalance the attractive forces that tend to rupture the
film [90,94]. The thickness of the surfactant adsorption layer has a significant effect on the
disjoining pressure, in that a thicker adsorption layer results in a higher disjoining pressure
due to an increase in electrostatic potential [95]. Considering this, the hypothesis states that
as pressure increases, adsorption arrangement changes such that the surfactant adsorption
layer decreases in thickness, resulting in a lower disjoining pressure and a weaker foam.
Research into the effect of surfactant adsorption layer thickness on disjoining pressure and
how this thickness is affected by pressure is very limited, so the opportunity exists here to
advance the current state of research in this area [95].

Having hypothesized two mechanisms related to interfacial surfactant adsorption
that could explain the decrease in foam viscosity with increasing pressure, the discussion
advances to possible reasons as to why interfacial surfactant adsorption would be affected
by pressure. To answer this, literature on the effect of pressure on micellar formation and
structure was investigated. Micelles are colloidal clusters of surfactants that directly and
indirectly have a significant effect on interfacial phenomena [96]. While previous work
shows that micelle stability should not be affected by pressure in this range, micellar size
is expected to increase with increasing pressure at this elevated temperature [97,98]. An
increase in micellar size means that more surfactant is involved in the micellar structure,
and, with more surfactant entangled in micellar formation, less is available to adsorb at the
interface [99]. A detailed experiment analyzing the effect of pressure on micellar size and
shape would be helpful in supporting this hypothesis of the pressure trend observed with
the surfactant formulation.

3. Experimental Section

Synthetic Brine: A synthetic brine of about 30,000 ppm total dissolved solids (TDS)
representative of a US Shale reservoir was prepared, as outlined in Table 1. The required
salts were dissolved in deionized water.

Table 1. Synthetic brine composition.

Salt Concentration (ppm)

NaCl 10,500
CaCl2·2H2O 1000

KCl 100

Oil: The oil used in these experiments was a light, sweet crude oil with a viscosity of
about 1.13 cP and a density of about 0.773 g/mL. To simulate foam rheology in the absence
of mobile oil, the oil saturation was kept at residual for gas injection. Oil was co-injected
with brine and gas to study the effect of mobile oil on foam stability.

Surfactant: A proprietary foaming-surfactant formulation that is stable at 388 K (a
target reservoir temperature) in the model brine and forms no viscous emulsions. This
formulation is a blend of an anionic sulfonate surfactant and an amphoteric surfactant.
The formulation development work is out of the scope of this work. All experiments were
performed at 0.5 wt% active surfactant concentration.
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Injection Gas: The injection gas used in this work was 99% pure methane (CH4) gas.
The last flood series used 99.9% purity nitrogen (N2) gas to remove any potential effect of
hydrophobic interactions between the gas and surfactant solution.

Proppant Pack: 30/50-mesh, white Ottawa sand was used to create the proppant pack.
The proppant was packed into a stainless-steel column that had a length of 30.48 cm and
an inner diameter of 2.54 cm. All the core flood experiments in this study were conducted
without aging proppants with oil. There is a possibility for proppants to become weakly
oil-wet during the primary production process, and previous studies have indicated the
importance of considering this [69,100–102]. However, an aging test was conducted to
evaluate the ability of the crude oil to alter the wettability of the water-wet white Ottawa
sand. In this test, the sand, wetted with the synthetic brine, was aged in the crude oil
for eight weeks at 388 K (reservoir temperature) in a high-pressure cell. After aging, the
sand was rinsed with the synthetic brine by simply stirring the sand-oil mixture slowly
in the synthetic brine at the same temperature. It was visually observed that the oil was
completely removed from the sand. Additionally, aging “dry” proppants in oil and creating
an entirely oil-wet proppant pack would not be an accurate representation of in situ field
conditions, and packing oil-coated proppants tightly and reproducibly is more challenging
than packing unaged proppants. Thus, for the objectives of this investigation and the
importance of reproducibility, unaged, water-wet proppants were used for creating the
proppant pack, which would then be flooded to residual oil saturation.

4. Methodology
4.1. Experimental Core Flooding Setup

Figure 13 shows the setup used to conduct the foam transport through porous medium
experiments. Boosters 1 and 2 are air-driven gas booster pumps. Booster 1 is used to fill
and boost the methane accumulator to the desired pressure, and Booster 2 is used to fill
and boost the nitrogen accumulator. Pump 1 controls the injection of gas into the proppant
pack and the backpressure regulators (BPRs). BPRs are dome-loaded ultra-low flow BPRs,
which are used to ensure safe, stable decompression of the system effluent and regulate the
inlet pressure of gas into the proppant pack. Pump 2 controls the injection of the aqueous
solutions into the pack. Pump 3 is used for the injection of crude oil into the pack. APTs are
absolute pressure transducers used to measure the pressure differential in the proppant
pack. Throughout the system, there are also several pressure gauges to ensure proper
pressure regulation.
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4.2. Surfactant Characterization

The surfactant characterization included the effect of oil on foam stability and oil–brine
emulsion tendency.

4.3. Effect of Oil on Foam Stability

An 8 mL sample of the surfactant solution was added to a 40 mL glass vial with no
oil added. The sample was sealed and heated up to 388 K. Before proceeding to the foam
stability test, the aqueous stability of the surfactant solution was confirmed. Next, the vial
was shaken vigorously for about 3 s, and the time to complete foam decay was measured.
This measurement was repeated 2 more times to find the average foam lifetime. This test
was performed to qualitatively confirm the aqueous stability and evaluate foam stability at
the target temperature and salinity.

The bulk foam test was completed for the samples with and without oil added at
various pressures and temperatures, as outlined in Table 2. A 4 mL sample of the formu-
lation was added to a 15 mL sapphire glass cell. For tests that required oil, 0.4 mL of the
sweet crude oil was added to the cell as well. After the appropriate liquid phases were
added, the cells were sealed and pressurized to the desired level using methane. For the
high-temperature tests, the cells were filled to approximately 2000 psi at room temperature
and then heated to 388 K, at which point the pressure would reach about 3000 psi. The cells
can only be pressurized from the bottom, so the cells were flipped during pressurization so
the methane could enter the cell without going through the liquid phase(s). After the cells
reached the desired pressure and temperature, they were vigorously shaken for about 5 s.
The foam height was measured intermittently until complete foam decay or a maximum of
90 min. These tests evaluated the foamability of the surfactant solution at elevated pressure
and temperature in the presence of oil.

Table 2. Bulk foam test conditions.

Temperature (K) Pressure (psi) Oil Volume (mL) Surfactant
Concentration (wt%) Salinity (ppm)

298 0, 2000, 3000, 4000 0, 0.4 0.5 30,000
388 3000 0, 0.4 0.5 30,000

4.4. Emulsion Tendency Test

In the emulsion tendency test, 2 mL of the surfactant solution and 1 mL of the crude
oil were added to a 5 mL glass pipette, which was then sealed. The pipette was then placed
in the oven and heated to 363 K (not at 388 K because of the low pressure tolerance of the
glass pipette) over several days while periodically gently mixing the phases. To start the
emulsion tendency test observation, the phases were again gently mixed by repeatedly
inverting the pipettes. Once mixed, the pipettes were returned to the oven and observed
for several days, with pictures taken at timestamps of 0 min, 30 min, 1 h, 1 day, and 3 days.
This test was conducted to ensure the formulation did not create long-lasting, viscous
emulsions with oil that could adversely impact in situ oil mobility and cause issues during
the post-production separation process.

4.5. Proppant Pack Preparation

A thorough packing procedure was developed to ensure proper consolidation of the
proppant and the repeatability of the procedure. Through a funnel, proppant is slowly
poured into the column from the inlet side while the column is attached to a vibrating table
set to a medium vibration level of about 1600 rpm. Proper precautions are taken to ensure
no proppant transfers into the column’s seals, which could degrade the threads and the
column’s integrity. Periodically, the column is moderately tapped for better consolidation
before continuing to pour proppant into the pack. After the column is filled with proppants,
it is sealed and leak-tested with nitrogen at about 4500 psi.
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The pack is installed into the core flood setup, and the system was leak tested to 4500
psi before being vacuumed at room temperature. Next, brine is injected into the system
section by section to measure the respective dead volumes (1) and the pore volume of the
pack (VP), which is used to calculate its porosity (ϕ) using Equation (1), in which VB is the
bulk volume of the pack.

ϕ =
VP
VB

(1)

After the porosity has been measured and the system is saturated and pressurized to
3000 psi with brine, the permeability (k) of the pack is calculated at room temperature by
measuring the pressure drop (∆P) at flow rates (Q) of 12.5, 15, 17.5, and 20 cc/min. The
slope of this ∆P vs. Q line was found, and the permeability was then determined using
Equation (2). Equation (2) is a derivative of Darcy’s Law for non-SI units, in which A is
the cross-sectional area of the proppant pack, µ is the apparent viscosity of the injected
fluid, and L is the length of the proppant pack. To ensure the permeability for the pack was
repeatable, permeability tests were completed in triplicate using several packs filled with
the 30/50-mesh white Ottowa sand. These tests validated the reproducibility of both the
packing procedure and the permeability measurement.

Q =

(
4.083kA

µL

)
∗ ∆P (2)

Next, the system is heated up to 388 K, followed by the injection of oil into the system
until complete saturation, which was confirmed when the effluent was just oil. Then, brine
was injected into the system until the effluent contained no oil. At this point, the volume of
oil injected (Vo,inj), the volume of oil collected in the effluent (Vo,e f f ), and the appropriate
dead volumes (Vdead) were used to calculate the residual oil saturation of the pack (Sor),
using Equation (3).

Sor =
Vo,inj − Vo,e f f − Vdead

VP
(3)

Following the packing and preparation procedures resulted in a proppant pack with
a porosity of about 37.3% and a permeability of 25.18 ± 2.04 Darcy (d). The Sor of the
pack was approximately 18.9 ± 1.4%. This same pack was used throughout all foaming
experiments. The residual oil saturation is slightly higher than the approximate 10–13%
reported in the literature for high-permeability sand packs [100,103]. In recognition of
this, the residual oil saturation procedure was repeated after the pack was cleaned of
oil. The results quantitatively confirmed the reproducibility of the residual oil saturation
reported. In addition, the effluent from the floods was observed at the end of every
foaming experiment to confirm if any additional oil had been produced from the pack. The
proceeding floods did not show any evidence of oil in the effluent, which qualitatively
confirmed that residual oil saturation was indeed achieved.

4.6. Flood Procedure

The aqueous and gas phases are co-injected into the proppant pack at a temperature
of 388 K at various foam qualities, flow rates, and pressures, as outlined in Table 3. The
use of a co-injection as opposed to a surfactant alternating gas (SAG) was found to be an
effective mode of injection for strong foam generation in fractures by previous studies [24].
Foam quality (FQ) is defined by Equation (4), where qgas is the interstitial flow rate of the
gas phase and qliq is the interstitial flow rate of the aqueous phase [76].

FQ =
qgas

qgas + qliq
(4)
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Table 3. Flooding schemes.

Flood Series 1 (Baseline) 2 (Residual Oil) 3 (No Oil) 4 (Nitrogen)

Temperature (K) 388 388 388 388

Pressure (psi) 4000 4000 1000, 2000, 3000 4000 2000, 3000 2000, 3000, 4000

Flow Rate (cm/s) 0.0176,
0.176

0.0176, 0.0529,
0.106,
0.176

0.0176, 0.0529,
0.106

0.0176, 0.0529,
0.106 0.0529 0.0529

Foam Quality (%) 60, 80, 90, 95 60, 80, 90, 95 60, 80, 90, 95 60, 80, 90, 95

Brine Salinity (ppm) 30,000 30,000 30,000 30,000

Surfactant
Concentration (wt%) 0 0.5 0.5 0.5

Oil Saturation Residual Residual None None

Injection Gas Methane Methane Methane Nitrogen

The initial flood series is a baseline series where brine and methane are co-injected to
determine a baseline pressure drop. After that, the brine is replaced with the surfactant
solution, and the foaming ability of the solution is factorially analyzed under various foam
qualities, flow rates, and pressures. The range of these conditions was decided based on
realistic values of HnP processes in the field. Previous literature reported that 70% to 85% is
the optimum foam quality for strong foam generation and minimal surfactant consumption,
so the range of foam qualities to be tested was set at 60% to 95% [24,74,104–106]. The flow
rate range tested was mainly between 0.0176 cm/s and 0.106 cm/s. This flow rate range
was chosen to simulate quick gas breakthroughs during field implementation of the gas
HnP process [9,24]. Lastly, as mentioned previously, HnP pressure fluctuation is usually
between 2000 and 6000 psi [27]. To account for personnel safety and material pressure
rating, the pressure scan was limited to 1000 psi to 4000 psi.

Once foam quality scans were completed for all pressures and flow rates, the pack
was cleaned of all oil using dichloromethane so that the foaming ability of the solution
can be observed in an oil-free environment. With the pack clean of oil, foam quality scans
were completed for select pressures and flow rates, still using the same formulation and
methane. A full pressure scan at one flow rate was then performed for the co-injection of the
surfactant solution with nitrogen to see if there was any effect of hydrophobic interactions
between the methane and the surfactant.

A full foam quality scan, in ascending order, was conducted for each pressure and
flow rate. Before each foam quality scan, the system was shut in, and an offset pressure
drop was averaged over one minute under no flow conditions. While flooding, the pressure
drop in the pack was measured, and each foaming experiment was continued until the
pressure drop reached a steady state. This steady-state pressure drop was then used to
calculate foam viscosity (µ) using Equation (2). Additionally, the effluent after each foam
quality scan was inspected to make sure there was no sand or oil production.

5. Conclusions

With the work presented, several conclusions can be drawn about the formulation’s
ability to generate foam and how such foam will propagate in a proppant-fractured reservoir.

(1) The developed foaming formulation can generate high-viscosity (on the order of
100 cP) foam for use in the high-pressure, high-temperature, and high-permeability
conditions of proppant-fractured reservoirs.

(2) The foaming formulation can continue to generate foam in very dry conditions (up
to 95% FQ) without sacrificing strength, which enables less water and surfactant
consumption for foam generation.
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(3) The fluid-shear dependency confirmed strong shear-thinning rheology in the practical
flow rate range for HnP processes. This shear-thinning behavior is indicative of the
formulation’s ability to produce strong foam, maintain conformance control, and
minimize loss of injection gas as it propagates deeper into the fracture, as well as its
favorable injectivity in the near-wellbore region.

(4) The inversely linear dependency of foam viscosity on system pressure is a novel
finding of significant interest. Foam viscosity was observed to linearly decrease with
increasing system pressure, regardless of foam quality and total flow rate. This inverse
trend could be beneficial for HnP applications because it can act as a negative feedback
regulator for injection gas loss and would prevent diversion of mobilized oil during
the puff stage. The mechanism causing this trend was proved not to be related to oil
swelling and interfacial hydrophobic attraction between surfactant and hydrocarbon
gas phase at higher pressure. The observation of different pressure trends with other
tested surfactants warrants the need for future work on the behaviors of surfactants
and foam at high pressure, with a focus on interfacial adsorption and the properties
of surfactants.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/colloids8010013/s1, Figure S1: Pressure sensitivity analysis for Surfactant
A and Surfactant B.
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