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Abstract: Optical switches in lipid membranes are an emerging tool to tune the properties of the
bilayer or membrane protein integrated therein. Here, we use simple geometry and physics consider-
ations to deduce structural criteria to design efficient photoactivated switches for lipid membranes.
We compare how the area of projection on the bilayer of various classes of photoswitches changes
upon the trans/cis or open/closed transition and show that azobenzene and stilbene should distort
the bilayer structure the most. We also conclude that planar-elongated molecules, in which atoms
of isomerizable double bond have no additional substituents, while substituents of the fragments
adjacent to the double bond prevent formation of the planar molecule in cis configuration, are to be
the best photoswitches for lipid membranes.

Keywords: optical switches; molecular motors; trans–cis isomerism; lipid bilayer; lipid membrane;
lateral stress profile

1. Introduction

Molecular motors are molecules that transform external energy into mechanical energy.
The best-known molecular motor is the myosin protein. It transforms chemical energy
stored in ATP into muscle contraction. The efficiency of laboratory-tailored molecular
motors is many times lower than that of myosin; therefore, such molecules have not gained
application yet. However, the ongoing work in this direction is intensive.

Optical switches are a type of molecular motors; they change conformation under the
effect of light. To produce a controlled effect on a lipid bilayer, special optical switches
are being developed. These switches are promising membrane permeability regulators or
antimicrobial agents inducing membrane lysis. The optical switch activity is regulated by
an external stimulus, i.e., the light of a specific wavelength.

Lipid chemistry utilizes azo-dyes as optical switches. Azo-dyes structurally similar
to fatty acids and lipids have been synthesized back in 1980s, but the first report on the
application of isomerization of an azo-dye to control natural lipid membrane properties was
published by Fujiwara and Yonezawa in 1991 [1]. Later on, Song, Perlstein, and Whitten
developed phospholipids with azobenzene integrated in the acyl chains [2]. However, lipid
and fatty acid-based optical switches drew intense attention by the end of 2000s and have
been growing ever since. We consider as landmark works the recent publications on the ap-
plication of optical switches to control lipid phase segregation behavior in membranes [3–5]
or modulate protein kinase C [6], TRPV1 receptor activity [7], or model ion channels [8].

Practically, in all known cases, the optical switches based on unsubstituted azobenzene
are used in lipid membrane. There has been a single report on ortho-fluoro derivatives
of azobenzene applied [9]. However, optical switches as such are represented by a rather
wide range of structures, which, in addition to azobenzene derivatives, include deriva-
tives of alkene, green fluorescent protein chromophore, structures based on retinal and
hemithioindigo dye, diarylethene, spirooxazine, spiropyran, and donor-acceptor Stenhouse
adducts (DASA). The aim of this work is to elucidate the applicability of these classes of
molecules as optical switches in lipid membranes.
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2. Objects and Methodology
2.1. Objects

Today, photoswitches are based on reactions of E/Z isomerization of azobenzenes,
alkenes (such as stiff-stilbene and particularly sterically hindered alkenes), retinal analogs
(NABP and NAIP), derivatives of green fluorescent protein (GFP), and hemithioindigo.
For a detailed description, see the example review [10]. Another type of photoswithes is
based on the ring open/close reaction of DASA [11], diarylethene [12,13], spiropyran [14,15],
and spirooxazine [14]. Photoswitches possess diverse chemical structures. Figure 1 presents
the molecules used in the work.

Figure 1. Structures of molecules used in the work. (A) Optical switches based on cis/trans
isomerism (E/Z-switches). OHBP, trans1,1’,2,2’,3,3’,4,4’octahydro4,4’biphenanthrylidene (an over-
crowded alkene); NAIP, Nalkylated indanylidene pyrroline (retinal analog); GFP, green fluorescent
protein fluorophore; NABP, Nalkylated benzylidene pyrroline (retinal analog). (B) Optical switches
based on ring open/closed reaction (O/C-switches). DASA, donor-acceptor Stenhause adducts.
For the sake of simplicity merocyanine and fulgide are named as open forms of spyropyran and
spyrooxazine, respectively.

E/Z photoswitches are molecules combining two fragments joined by a C=C or N=N
double bond. The two fragments can be either in an trans or cis configuration with respect
to the double bond. Change of the configuration occurs upon irradiation with a light of the
appropriate wavelength.

Open/closed (O/C photoswitches are molecules able reversibly form intramolecular
cycles upon irradiation with a light of the appropriate wavelength.

2.2. Physical Model

Two factors act upon a hydrophobic molecule in the lipid bilayer. The first factor is hy-
drophobicity. The alien molecule arranges in the bilayer so that the area of contact between
its hydrophobic surface and water is minimal. The factor pushes the alien molecule deeper
in the bilayer. Inside the bilayer, in the area of the lipid tails, the packing density is high,
or in other words, the lateral pressure is high. The pressures are directed perpendicular to
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the normal bilayer (that is parallel to the surface). The value of the lateral pressures varies
along the depth of the bilayer. The variation is described by the lateral pressures profile.
The latter can be obtained by molecular modeling (MD) [16] or analytically [17,18]. The
profiles obtained by MD are lipid structure specific. However, the general shape of the
profile is the same independently of the method.

The energy of a molecule inside a lipid bilayer can be equaled to the work spent on
the expansion of the lipid monolayer against the lateral pressure

W =
∫ z0+

z1
2

z0−
z1
2

A(z)P(z)dz (1)

where z is the coordinate on the axis parallel to the average lipid tail direction; z0 is the
coordinate of the center of the mass of the molecule in the bilayer; z1 is the molecule length
along the axis; A(z) is the molecule cross-section area in the plane perpendicular to the
lipid bilayer normal; and P(z) is the lateral pressure applied to this area. (See Figure 2 for
the explanation; also, the approach has been applied for fluorescent lipid probes [19] and
lipophilic prodrugs [20]).

Figure 2. (A) Lateral pressure profile in the hydrophobic region. (B) Schematic representation of a
molecule in the lipid layer; (C) same as (B), top view. The area of a molecule projection onto the plane
perpendicular to normal bilayer should be minimal.

The system tends to minimize the energy W. In the model, the minimum W can be
achieved by two ways: (1) the molecule is pushed to the area of minimal lateral pressure;
(2) the molecule turns so that the projection area A is the lowest. The last effects the
molecule tilting inside the bilayer.

Lateral pressure profile is unique for a lipid composition, while projection area A
depends on the molecule geometry. Since W depends on A linearly, for each lipid composi-
tion, the energy of the molecule is determined by its ability to turn within the bilayer so
that area A is minimized.

Thus, the greater the change in the switch molecule projection area upon the cis/trans
isomerization or open/closed reaction, the greater will be the produced lipid membrane
distortion. Then, in search for an efficient optical switch for a lipid membrane, we should
calculate the projection areas of the switch molecules in cis and trans (or open and closed)
configurations and the difference between them.

2.3. Calculation Algorithm

Each of the molecules presented at Figure 1 in cis, trans or open and closed config-
urations was built in a chemical editor (we used Marvin Sketch, but any other will do).
Then, geometries were optimized using quantum mechanics approaches in the ORCA [21]
software package in two steps. First, the Hartree–Fock method utilizing the def2-SVP [22]
basis was used. Next, the structure was optimized according to the B3LYP approach on the
def2-TZVPP [22] basis. These yielded accurate geometries of the molecules (Figure 3A).
The geometries are coordinates of atom centers. They were complemented with refined
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van der Waals radii of the atoms [23] to build molecule surfaces; that is, define coordinates
of points on the molecular surface (Figure 3B).

Figure 3. Algorithm of the projection area calculation. (A) Optimized geometry of cis stilbene.
(B) cis stilbene with accurate van der Waals radii and its projections onto three planes. (C) Change in
the XY projection area upon the molecule rotation around the X (angle Θ) and Y (angle Φ) axes.

The coordinate system was oriented in such a way that the Z axis was parallel to
the normal bilayer. A plain XY was parallel to the bilayer surface. The molecule rotation
around the Z axis did not lead to changes in the area of XY projection. The molecule was
rotated independently around the X (angle Θ) and Y (angle Φ) axes with an increment of
0.0628 radian over 360 degrees (6.28 radian). For each pair of rotation angles, Θ and Φ, the
projection area on the XY plain was calculated using the coordinates of the molecule surface
(Figure 3C). Maximum and minimum projection areas were selected from the data set.

3. Results and Discussion
3.1. UV-Switch Geometry

Traditional 2D representation of molecules (Figure 1) does not always provide the
correct idea of a molecule spatial structure. Optimized geometries of optical switches in
trans and cis configurations are presented in Figure 4A. The geometrical parameters are
reported in Table 1. For example, spatial configurations of a retinal analog NAIP and
an overcrowded alkene OHBP are not planar. At the same time, stilbene, stiff-stilbene,
azobenzene, GFP chromophore, and hemithioindigo are planar molecules. NABP is not
planar, however, a deviation from plain in this case is much lower than for NAIP or OHBP.
Figure 4B and Table 2 represent optimized geometries and parameters of O/C switches.

In a simplistic way, molecules can be viewed as rotational ellipsoids. There are two
kinds of ellipsoids: prolates, which are elongated along the rotation axis, and oblates, which
are flattened along the rotation axis.
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Figure 4. Optimized geometries of photoswitches in trans, cis (A), and open/closed (B) configurations.

Table 1. Characteristics of E/Z optical switches in cis and trans configurations.

Isomer Parameter Stilbene Stiff-Stilbene OHBP Azobenzene NAIP NABP GFP Hemithioindigo

Trans Amax (Å2) 78.04 93.44 107.3 76.28 77.78 67.72 69.02 90.23
- Amin (Å2) 21.21 30.87 61.73 21.27 46.79 28.22 22.61 24.89
- Amax/Amin 3.68 3.03 1.74 3.59 1.66 2.4 3.05 3.63

Cis Amax (Å2) 68.65 84.95 96.05 59.6 78.01 78.03 68.1 86.49
- Amin (Å2) 35.30 40.38 65.06 36.55 43.18 28.71 22.28 24.63
- Amax/Amin 1.94 2.1 1.48 1.63 1.81 2.54 3.06 3.51
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Table 2. Characteristics of O/C optical switches in open and closed configurations.

Isomer Parameter DASA Diarylethene Spirooxazine Spiropyran

Open Amax (Å2) 97.22 82.29 74.53 85.90
- Amin (Å2) 39.10 62.18 46.65 46.75
- Amax/Amin 2.49 1.32 1.60 1.84

Close Amax (Å2) 94.75 85.75 78.19 82.18
- Amin (Å2) 49.90 50.41 41.89 44.88
- Amax/Amin 1.90 1.70 1.87 1.83

Trans isomers of stilbene, azobenzene, GFP chromophore, and hemithioindigo are
elongated. The ratio between the maximum projection area to the minimum projection
area of these molecules exceeds three (Table 1). These molecules can be referred to as
prolates. Among O/C switches, only DASA in the open configuration could be referred to
as a prolate.

The overcrowded alkene, NAIP, as well as spiopyran, spirooxazine and diarylethene
are molecules with the least difference between the largest and the smallest projection areas
These molecules are described as oblates.

The spaces of values of XY plain projection areas of each molecule are presented in
Figure 5. For prolates (trans-stilbene, trans-azobenzene, GFP, hemithioindigo in both cis
and trans configurations and DASA in open configuration) the range of the values is higher,
with pronounced extremums. On the contrary, for oblates (cis-stilbene, cis-azobenzene,
NABP, and OHBP in both cis and trans configurations, spiro-compounds and diarylethene
in both open and closed configurations), the space is rather flat, and the extremums are
not pronounced.

3.2. Trans/cis (Open/Closed) Transition, and Change in the Projection Area of the Molecules

Shape of the molecule changes upon transition from trans into cis (or from open into
closed) configuration (Figure 4). Stilbene, stiff-stilbene, and azobenzene turn from planar
into non-planar molecules. OHBP and NAIP remain non-planar; GFP chromophore and
hemithioindigo, on the contrary, remain planar. NABP in both cis and trans configurations
remains somewhat non-planar. Spiro-compounds and diarylethene are non-planar in
any configuration.

A change in the configuration leads to a change in the projection area (Figure 5
and ∆Amin parameter (Tables 3 and 4)). The space of projection areas strongly changes
for stilbene, azobenzene, and DASA, and remains practically unchanged for GFP chro-
mophore, hemithioindigo, and NAIP. The space of projection areas of spiro-compounds
and diarylethene changes but not so strongly as for stilbene and azobenzene.

The trans/cis transition causes prolate stilbene, azobenzene, and DASA to become
oblate. Their spaces of values lose extremums and become flatter.

To evaluate the molecule potency as a membrane optical switch, a simple criterion can
be used. Since we assume that a molecule takes on the orientation producing the smallest
projection area Amin, the more Amin changes upon the transition from trans to cis, the more
efficient is the optical switch. The change can be evaluated by the ratio

S =
Acis

min
Atrans

min
or S =

Aclose
min

Aopen
min

(2)

where Acis
min and Atrans

min are the minimal projection areas for cis and trans conformers of a
E/Z switch, respectively. and Aclose

min and Aopen
min are minimal projection areas for closed and

open configurations of a O/C switch, respectively. The higher the S value is, the better.
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Figure 5. The space of the projection areas A (Å2) of the molecules onto XY plane obtained upon
scanning of the projection area upon rotation of the molecule over Θ and Φ. (A) E/Z-switches.
(B) O/C-switches.
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According to Tables 3 and 4, the most promising optical switches among those ana-
lyzed herein for lipid membranes are stilbene and azobenzene. For example, the minimum
projection area of azobenzene upon the trans/cis transition increases by over 70% (as in the
case of azobenzene). At the same time, the projection area of optical switches based on
retinal analogs (NABP), GFP chromophore, and hemithioindigo practically does not change
(below 2%). The latter are not suitable for application as optical switches in membranes.
O/C-switches does not demonstrate high S values. These should not be as efficient as
azobenzene and stilbene derivatives.

Table 3. Change of the geometry upon the cis/trans transition.

Stilbene Stiff-Stilbene OHBP Azobenzene NAIP NABP GFP Hemithioindigo

S 1.66 1.31 1.05 1.72 0.92 1.02 0.99 0.99
∆Amin (Å2) 12.09 9.51 3.33 15.28 3.61 0.49 5.94 0.26

Table 4. Change of the geometry upon the open/closed transition.

DASA Diarylethene Spirooxazine Spiropyran

S 1.28 0.81 0.90 0.96
∆Amin (Å2) 10.0 11.77 4.76 1.87

3.3. Structural Features of Promising Optical Switches

To find structural features of optical switches that make them promising for use in
lipid membranes, we analyzed the geometry of the isomerizable double bond (Table 5).
Values in columns corresponding to the compounds with the highest ratio S are highlighted
in bold. (For atom numeration, see Figure 1).

Table 5. Geometry of the isomerizable double bond in optical switches.

Isomer Parameter Stilbene Stiff-Stilbene OHBP Azobenzene NAIP NABP GFP Hemithioindigo

Trans Dihedral
angle◦ (1-2-3-4) 180 179.8 155 180 167.1 178.6 180.0 180.0

- Angle◦ (1-2-3) 127.1 125.1 123.4 116.6 126.4 128.9 130.3 119.5
- Angle◦ (2-3-4) 127.1 125.1 123.4 116.6 130.5 126.4 122.3 132.6

Cis Dihedral
angle◦ (1-2-3-4) 4.5 9.9 16.9 5.4 10.3 2.0 0.1 0

- Angle◦ (1-2-3) 129.7 123.2 123.6 124.4 131.4 129.0 134.9 131.8
- Angle◦ (1-2-3) 129.7 123.2 123.6 124.4 133.1 132.2 132.6 136.2

The highest S values are characteristic of molecules that are plain in the trans con-
figuration (dihedral angel equals 180◦) and have a dihedral angle other than 0◦ upon the
transition to a cis configuration. In such molecules, substituent groups do not prevent
the formation of a plain structure in the trans configuration and, on the contrary, hinder
plain configuration for the cis isomer. Then, elongated molecules with substituents in
meta and para positions with respect to the isomerizable double bond should be promising
optical switches. To verify the hypothesis, we studied molecules with methyl, cyclopentyl,
and cyclohexyl substituents (Figure 6) in either one of the molecule fragments or both.
All molecules in Figure 6 can be described as prolates, with one dimension exceeding the
other two. The ratio of maximum and minimum projection areas is over 3 for all of them
(Table 6). All these molecules turned out to have a high S value and thus can be used as
optical switches in lipid membranes.
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Figure 6. Predicted structures of efficient optical switches for lipid membranes.

Table 6. Characteristics of predicted optical switches (depicted in Figure 6) in cis and trans
configurations.

Isomer Parameter Dimethyl
mono

Dimethyl
bis

Cyclopentyl
mono

Cyclopentyl
bis

Cyclohexyl
mono

Cyclohexyl
bis

Trans Amax (Å2) 85.71 99.56 87.03 98.65 92.66 108.41
- Amin (Å2) 26.83 28.92 28.32 32.73 30.20 33.73
- Amax/Amin 3.19 3.44 3.07 3.01 3.07 3.21

Cis Amax (Å2) 70.27 79.44 73.09 80.94 78.22 93.04
- Amin (Å2) 42.47 50.1 42.24 52.71 44.12 51.21
- Amax/Amin 1.65 1.59 1.73 1.54 1.77 1.82

- S 1.58 1.73 1.49 1.61 1.46 1.52
- ∆Amin (Å2) 15.44 21.18 13.92 19.98 13.92 17.48

4. Conclusions

Among optical switches used today, those based on stilbene and azobenzene are the
most suitable for lipid membranes. They are characterized by the highest change of the
area of projection onto the bilayer. The design of new optical switches for lipid membranes
should take into account that substituents at the double bond that decrease the angle of
the sp2 atom, for example the 5-membered cycle, decreases the S factor: the cis isomer is
as planar as the trans isomer. At the same time, spatial hinderances leading to non-planar
trans isomers decrease the S factor as well. Efficient optical switches are planar elongated
molecules, in which atoms of isomerizable double bond have no additional substituents,
while substituents of the fragments adjacent to the double bond prevent formation of the
planar molecule in the cis configuration to make the S factor high.
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