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Abstract: Temperature-programmed desorption mass spectrometry (TPD MS) was used to study the
pyrolysis of p-coumaric acid (pCmA) on the nanoceria surface. The interaction of pCmA with the
CeO2 surface was investigated by FT-IR spectroscopy. The obtained data indicated the formation on
the nanoceria surface of bidentate carboxylate complexes with chelate (∆ν = 62 cm−1) and bridge
structure (∆ν = 146 cm−1). The thermal decomposition of pCmA over nanoceria occurred in several
stages, mainly by decarboxylation. The main decomposition product is 4-vinylphenol (m/z 120).
The obtained data can be useful for studying the mechanisms of catalytic thermal transformations
of lignin-containing raw materials using catalysts containing cerium oxide and the development of
effective technologies for the isolation of pCmA from lignin.

Keywords: temperature-programmed desorption mass spectrometry; FT-IR spectroscopy; 4-vinyl
phenol; lignin; biomass conversion

1. Introduction

p-Coumaric acid belongs to the class of hydroxycinnamic acids and is a biologically
active compound of natural origin [1,2]. Free and bound pCmA is widely distributed in
fruits, vegetables, and cereals [2]. pCmA is found in large quantities in lignin [3,4], ubiqui-
tous in herbal lignin [4]. pCmA residues are attached to the main lignin macromolecule
via ether bonds [5–8]. Lignin is a complex natural polymer; the monomeric units of which
are p-coumaryl, coniferyl, and sinapyl alcohols linked by different types of C–O bonds [9].
Together with other components of lignocellulose (hemicellulose, cellulose), it is considered
a potentially important source of valuable chemicals (biofuels, polymers, etc.). In particular,
it can serve as a source of a wide range of aromatic compounds [10]. It is known that
the pyrolysis of coumaric acid leads to the formation of 4-vinylphenol [11]. The presence
of pCmA and other hydroxycinnamates in the plant biomass encourages the search for
new cost-effective technologies to extract this acid from lignin and the selection of new
herbaceous species enriched with this biologically active compound [4].

The development of such technologies is due to the need for a more efficient use
of plant materials processed on biorefineries. It also speeds up the transition from fossil
resources to more accessible, environmentally friendly, and renewable ones. The current
wealth of genetic resources makes it possible to upregulate and downregulate the produc-
tion of hydroxycinnamates with relative ease and to engineer plants that produce only
pCmA [4]. Pyrolysis is one of the most promising methods for the conversion of lignocellu-
losic biomass [5]. Pyrolysis Mass Spectrometry is actively used in the quantitative analysis
of pCmA in lignin-containing raw materials [7,8,12–14].

The use of catalysts is one way to achieve a more selective analysis, as well as biomass
conversion [5]. Cerium dioxide, due to its catalytic properties [15], can be used both for
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processing lignin products [16–18] and in the conversion of lignocellulosic raw materi-
als [19,20]. However, its potential in this area is still insufficiently disclosed. Metal oxide
catalysts CeO2/MexOy (Me = Si, Al, Zr, etc.), with an active phase deposited on a substrate,
resulted in especially effective catalytic systems [21–23]. The acid-base surface properties
of the support lead to a synergistic effect due to the interaction of the active phase with the
support and, as a result, to an increase in the catalytic activity of such systems [21–26].

In our work, we studied pCmA complexes on the CeO2 surface and their thermal
transformations using TPD MS, FT-IR spectroscopy and thermogravimetric analysis. The
results of this work can be helpful for the development of new technologies for the isolation
of coumaric acid, as well as the pyrolytic processing of lignin using CeO2-based catalysts.
This result can be useful for the development of pyrolytic methods for obtaining renewable
4-vinylphenol as a monomer block for new types of polymeric materials based on poly-(4-
hydroxystyrene) [27,28].

2. Materials and Methods

Nanosized cerium dioxide (99.5%, SAr = 71 m2/g,) and pCmA (≥98%) were purchased
from (Alfa Aesar, Karlsruhe, Germany). No further purification of these compounds was
conducted in this work. CeO2 was pre-calcined at 500 ◦C for 2 h to remove organic matter.

A series of samples pCmA/CeO2 with pCmA concentrations in 0.1, 0.3, 0.6, 0.9, and
1.2 mmol/g were prepared (Table 1). The concentration range of 0.1–1.2 mmol/g was
selected based on previous studies [29]. According to [29], the maximum adsorption values
for cinnamic acids were almost equal and amounted to ≈2.9 × 10−4 mol/g, irrespective
of the differences in the reaction sites of their molecules. The samples were prepared by
impregnating CeO2 (100 mg) with pCmA ethanolic solution (2 mL). The suspensions were
stirred for several minutes and then dried at room temperature in the air.

Table 1. The composition of the studied samples.

Sample The Content of p-Coumaric Acid (mmol/g)

pCmA/CeO2

0.1
0.3
0.6
0.9
1.2

Infrared spectra were obtained on a Thermo Nicolet Nexus FT-IR instrument (Ther-
moNicolet Corporation, Madison, WI, USA) in the range 4000–400 cm−1, operating in the
diffuse reflection mode. The resolution was 4 cm−1, and the number of scans was 50. For
FT-IR studies, pure CeO2 and pCmA/CeO2 samples were mixed with KBr (1:10). Pure
pCmA was mixed with KBr (1:100).

Thermal transformations of coumaric acid over nanoceria were studied using temperature-
programmed desorption mass spectrometry on an MX-7304A monopole mass spectrometer
(Electron, Sumy, Ukraine) with electron ionization, as described previously [30–34]. A
sample weighing 10–20 mg was placed in a quartz-molybdenum ampoule and pumped
out to a pressure of 5.5 × 10−4 Pa, after which it was heated at a rate of 0.17 ◦C/s from 20
to 750 ◦C. The range of the studied masses was m/z 1–210.

Thermogravimetric analysis was performed using a TGA/DTA analyzer (Q-1500D,
Budapest, Hungary). Samples weighing 100 mg were heated from room temperature to
1000 ◦C. The heating rate was 10 ◦C/min in the air.

3. Results and Discussion
3.1. Fourier Transform–Infrared (FT–IR) Spectroscopy

The results of the FT-IR spectroscopic studies of pCmA/CeO2 samples (0.1–1.2 mmol/g)
are presented in Figure 1.
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Figure 1. Fourier transform-infrared (FT-IR) spectra of pure pCmA (a), samples of pCmA/CeO2 with
different contents of pCmA (1.2: b, 0.9: c, 0.6: d, 0.3: e, and 0.1 mmol/g: f) and pure CeO2 (g).

The main absorption bands (Table 2) were assigned based on the literature data [16,34–38].
The symbol “ν” denotes stretching vibrations, “β” denotes in-plane deformations, and “δ”
denotes out-of-plane deformations; the band is marked with “as”—asymmetric vibrations,
“s”—symmetric, and “ar”—vibrations of the aromatic ring.

Table 2. Assignments of characteristic infrared bands of pure pCmA and of pCmA/CeO2

(0.6 mmol/g).

Assignments Frequency (cm−1)

pCmA pCmA/CeO2

δ(COH) 945 –
ν(C-O)ar 1284 1279, 1290
ν(CC)ar 1450 –

ν(COO−)s – 1396–1410
ν(COO−)s – 1440
ν(CC)ar 1514 1516

ν(COO−)as – 1502
ν(COO−)as – 1556
ν(CC)ar 1603 1608
ν(C=C) 1628 1633
ν(C=O) 1674 –
ν(C=O) – 1684

Figure 1 showed that for samples of pCmA/CeO2 (0.1–0.3 mmol/g) there was no band
of carboxyl groups at 1674 (ν(C=O)) [35] and band of 945 cm−1, where vibrations (δ(OH))
were usually observed for carboxylic acids [34]. At the same time, carboxylate bands
appeared at 1396 (ν(CO)), 1410, 1440 cm−1 (νs(COO−)), and about 1502 and 1556 cm−1

(ναs(COO−)). The ∆ν values (∆ν = νas(COO−)− νs(COO−) [39,40]) were 62 and 146 cm−1,
and indicated the formation of bidentate carboxylate complexes with chelated and bridged
structures. The ν(C=O) vibrations for monodentate complexes could be located in the re-
gion of ~1600 cm−1 [41], but the presence in this part of the spectrum of intense absorptions
ν(CC)ar and ν(C=C) did not allow for them to be detected.

The appearance of bands of pure pCmA in the spectra of pCmA/CeO2 (0.6–1.2 mmol/g)
samples was caused by the formation of pCmA associates on the oxide surface at concen-
trations close to or exceeding the value of the adsorption capacity [29].

Significant changes in the IR spectra of pCmA/CeO2 samples, compared with pure
acid, were found in the range of 1200–1400 cm−1. CH and COH vibrations [34,35] could
appear here. From Figure 1, it was seen that in the spectra of pCmA/CeO2 (0.1–0.6 mmol/g)
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at 1217 cm−1 the absorption of β(CH) [35] disappeared. The 1246 cm−1 (β(OH)ar–[35])
band for all pCmA/CeO2 samples was shifted to 1250 cm−1, and for concentrations
0.1–0.6 mmol/g its intensity slightly decreased as compared to pCmA. Instead of a maxi-
mum at 1284 cm−1 (ν(C–O)ar)–[35]), two peaks at 1279 and 1290 cm−1 were detected for
these samples. In addition, the intensity of the band at 1315 cm−1 decreased, and the
maximum of 1329 cm−1 was absent. The origin of these bands was difficult to establish. In
the study put forth by [35], the pCmA absorption in this region was attributed to β(CH)C=C.
Although it was known that for phenolic acids (ferulic, vanilla, and caffeic), β(OH) bands
could also be found in this part of the spectrum [16,36–38,40]. The detected changes may
have been due to the formation of carboxylate complexes on the oxide surface. At the same
time, there were signs of phenolic group interaction with the CeO2 surface.

The interaction with the CeO2 surface also affected the other vibrations pCmA groups.
In particular, for the pCmA/CeO2 (0.1–0.6 mmol/g) samples, the maximum at 1450 cm−1

(ν(CC)ar–[35]) became invisible. Additionally, for all pCmA/CeO2 samples, there was a
new peak at 1440 cm−1. It was known by [42] that carboxylate bands could occur in this
area. The aromatic ring bands at 1514 and 1603 cm−1 were shifted to the high-frequency
region up to 1516 and 1608 cm−1, respectively. The ν(C=C) absorption at 1628 cm−1 [35]
was shifted to 1633 cm−1.

3.2. Pyrolysis of p-Coumaric Acid over Nanoceria

The results of the TPD MS study of pCmA/CeO2 samples were presented in Figures 2–5.
Comparative analysis of the curve P = f(T) (Figure 2), mass spectra (Figure 3), and TPD
curves for molecular and fragment ions of the main decomposition products (Figures 4 and 5)
showed that the peak at ~150 ◦C on the P/T-curve was due to the process decarboxylation.
The thermal decomposition of pCmA on the CeO2 surface occurred in several stages from
70 to 700 ◦C. The maximum intensity of desorption gaseous products was registered at
~150 ◦C.
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Earlier, we found that coumaric acid is a thermally unstable compound and decom-
poses via heating. Direct pyrolysis of coumaric acid proceeds as a decarboxylation reaction
with the following kinetic parameters: temperature of the maximum desorption rate
Tmax = 115 ◦C, reaction order n = 1, activation energy E 6= = 79 kJ/mol, pre-exponential
factor ν0, = 2.74 × 108 s, and activation entropy ∆S 6= = −20 cal K−1mol−1 [11]. According
to the calculated kinetic parameters [11], especially a negative value ∆S 6=, decarboxylation
proceeds as an elimination reaction through a cyclic transition state.

The mass spectra of gaseous products of catalytic pyrolysis at 20–700 ◦C lacked the
molecular ion of coumaric acid with m/z 164 and its most characteristic fragment ions
with m/z 147, 119, 118, etc. (Figure 3). According to the standard database NIST Chemistry
WebBook [43], in the electron ionization spectrum of trans-p-coumaric acid, the following
ions were present: m/z 164 (100%), m/z 147 (~48%), m/z 119 (~39%), m/z 91 (~38%),
m/z 65 (~28%), m/z 118 (~27%), m/z 39 (~19%), and m/z 107 (~15%).

Catalytic pyrolysis of coumaric acid also occurred due to decarboxylation with the
release of CO2 (m/z 44, 28) and 4-vinylphenol. The TPD curves of molecular and fragment
ions of 4-vinyl phenol (M.r. = 120 Da, m/z 120, m/z 94 (C6H5OH), m/z 91 (C7H7)+,
m/z 77 (C6H5)+, m/z 65 (C5H5)+, m/z 39 (C3H3)+, and m/z 105 (C7H4OH)+) repeated the
shape of each other. However, this process on the surface of CeO2 proceeded in the broader
temperature range of ~80–400 ◦C. In contrast, direct pyrolysis proceeded in the narrow
range of ~80–160 ◦C.

The deconvolution of the TPD curve of 4-vinylphenol showed that this curve was
likely a result of superposition of four TPD peaks at 118, 138, 184, and 262 ◦C, as shown in
Figure 6. Moreover, the Tmax of peak I and its localization (~80–150 ◦C) were very close
to those in the case of direct pyrolysis. Therefore, peak I was due to the decomposition of
molecules, which was located on the surface, in the form of associates (Scheme 1). Their
formation on the CeO2 surface was confirmed by the presence of absorptions in the IR
spectra at 1684 cm−1 and in the region of 2400–2700 cm−1 (Figure 1, Table 2).

Analysis of our previous data of catalytic pyrolysis of cinnamic acids [16,40] and the
results of deconvolution of the TPD curve for ion with m/z 120 (4-vinylphenol) suggested
that following peaks II–IV (Figure 6) were due to decarboxylation of different types of
surface complexes (Scheme 2).
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Scheme 2. Decarboxylation of bidentate bridging and bidentate chelate carboxylate complexes of
coumaric acid.

Peaks II, III, and IV were likely due to decarboxylation of monodentate, bidentate
bridging, and bidentate chelate carboxylate complexes, respectively (Schemes 1 and 2). The
presence of these complexes was confirmed by IR spectroscopy data (Figure 1 and Table 2).
Although the decomposition products of these complexes were the same (4-vinylphenol
and CO2), the temperatures of the maximum desorption rate of these products differed.
This fact was due to the strength of the complexes formed. The more strongly the complex
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was bound to the surface, the higher the temperature of its decomposition and, accordingly,
the activation energy of the decarboxylation reaction.

It is known that the strength of carboxylate complexes increases in the following
order: monodentate < bidentate bridging < bidentate chelate. The temperature of the peak
maximum Tmax was usually used for semi-quantitative estimates of the activation energies
of reactions [25,26,30,44–46]. We used the modified Equation (1) suggested by Kislyuk and
Rozanov based on the Redhead equation [44,45]:

E 6= = R Tmax ln(B/lnB) (1)

B = (nν0TmaxCmax
n−1)b (2)

where n is the reaction order, ν0 is the pre-exponential factor, Cn−1
max is the concentration

of the adsorbate at Tmax, and b is the value of the sample heating rate. The activation
energies for decarboxylation of surface complexes of coumaric acid were calculated using
Equation (1) and on the assumption that the reaction order and the pre-exponential factor
for decarboxylation of these complexes were equal to the same as for the condensed state
(n = 1, ν0 = 108 s) (Table 3). Due to the deconvolution of the TPD curve of the molecular
ion of 4-vinylphenol (Figure 6), it was possible to roughly estimate the relative amount of
surface complexes (Table 3). It resulted that the largest amount of the most stable chelate
complexes were formed, at about 35%.

Table 3. The calculated integral intensities for the peaks of molecular ions of 4-vinylphenol with m/z = 120; the relative
amount of coumaric surface complexes.

№ Surface Complexes (SC) m/z Tmax (◦C) a E 6=, kJ·mol−1 Scheme Peak Area (a.u.) %

I H-bonded associates 120 118 80 1 69 27

II Monodentate bonded
complexes 120 138 84 1 51 19

III Bidentate bridging
carboxylates 120 184 93 2 50 19

IV Bidentate chelate
carboxylates 120 262 109 2 90 35

a E 6= = R Tmax ln(B/lnB), n = 1, ν0 = 108 s.

No transformations could be clearly associated with the decomposition of phenolate
complexes, in contrast to other carboxylic acids (caffeic, ferulic, and vanillic) on the CeO2
surface [16,40]. In the presence of one OH group in the para-position of the aromatic ring,
the interaction of carboxylic acids with the CeO2 surface through the carboxyl group could
likely be energetically more favorable

3.3. Thermogravimetric Analysis

According to TGA/DTG/DTA data (Figure 7 and Table 4), the decomposition of the
pCmA/CeO2 sample occurred in the temperature range of 70 to 500 ◦C in four stages. All
stages were exothermic. Comparing the DTG (Figure 7) and TPD MS (Figure 6) data, it
was found that the number of pCmA/CeO2 degradation steps were the same.

Table 4. Thermolysis yields obtained during thermogravimetric analysis of the sample of
pCmA /CeO2 (0.6 mmol/g).

Sample Stage Tmax (◦C) Weight Loss (%)

pCmA/CeO2

I 90 4
II 153 16
III 255 33
IV 288 47
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Figure 7. Differential thermal analysis (DTA), differential thermogravimetric analysis (DTG), and
thermogravimetric (TG) curves for pCmA/CeO2 (0.6 mmol/g).

The most significant weight loss corresponding to the fourth stage (~290 ◦C) occurred
mainly due to the decomposition of carboxylates with a chelating bidentate type of coordi-
nation (Table 4). This fact was in complete agreement with the data of a semi-quantitative
assessment of the relative amount of these complexes, and the activation energy of their
decomposition, according to TPD MS data (Table 3).

4. Conclusions

In the study of pCmA on the nanoceria surface by FT-IR spectroscopy and TPD
MS, it was found that the pCmA interaction with oxide occurred mainly through the
participation of the carboxyl group. Carboxylate complexes, formed on the nanoceria
surface, were monodentate and bidentate with bridge and chelate structures. Their thermal
destruction occurred by decarboxylation. The obtained data could help study and control
the mechanisms of pyrolytic transformations of lignin-containing raw materials using
catalysts containing cerium dioxide.
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