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Abstract: The diffusiophoresis in a suspension of charged soft particles in electrolyte solution is
analyzed. Each soft particle is composed of a hard core of radius r0 and surface charge density σ and
an adsorbed fluid-penetrable porous shell of thickness a− r0 and fixed charge density Q. The effect
of particle interactions is considered by using a unit cell model. The ionic concentration, electric
potential, and fluid velocity distributions in a unit cell are solved as power expansions in σ and Q,
and an explicit formula for the diffusiophoretic velocity of the soft particle is derived from a balance
between the hydrodynamic and electrostatic forces exerted on it. This formula is correct to the second
orders of σ and Q and valid for arbitrary values of κa, λa, r0/a, and the particle volume fraction of the
suspension, where κ is the Debye screening parameter and λ is the reciprocal of a length featuring
the flow penetration into the porous shell. The effects of the physical characteristics and particle
interactions on the diffusiophoresis (including electrophoresis and chemiphoresis) in a suspension of
charged soft particles, which become those of hard particles and porous particles in the limits r0 = a
and r0 = 0, respectively, are significant and complicated.

Keywords: diffusiophoresis; electrophoresis; charged soft sphere; arbitrary electric double layer;
particle concentration effect

1. Introduction

Diffusiophoresis regards the migration of colloidal particles in a fluid solution caused by an
imposed solute concentration gradient [1–6] and provides a transport mechanism in many practical
applications such as latex film coating [7], autonomous motion of micromotors [8,9], DNA translocation
and sequencing [10], colloidal transport in dead-end pores involved in systems of self-regulated
drug delivery and enhanced oil recovery [11,12], and particle manipulation and characterization
in microfluidic systems [13–16]. For diffusiophoresis of charged particles in electrolyte solutions,
the solute-particle interaction is electrostatic and characterized by the Debye screening length κ−1.
Analytical investigations of the diffusiophoretic motion of charged hard particles (impermeable to
both the solvent and small ions) under a general imposed electrolyte concentration gradient are mainly
restricted to the case of thin electric double layer (κa>>1, where a is the particle radius) [17,18]. With the
assumption of weak imposed electrolyte concentration gradients, diffusiophoretic motions were also
analyzed for a charged hard sphere [19,20], porous sphere (permeable to the ionic solution) [21], soft
sphere (a hard core covered by a surface porous layer) [22], and porous spherical shell (microcapsule) [23]
with arbitrary values of κa.

In real situations of diffusiophoresis, concentrated suspensions of particles may be encountered,
and the particle interaction effects are important. To alleviate the complexity of multiple particles,
unit cell models are often used to evaluate the particle interaction effects on the mean sedimentation
velocity [24–29], average electrophoretic mobility [30–37], and effective electric conductivity [34–38] in
suspensions of spherical particles. An agreement between the experimental electrophoretic velocity in
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a suspension of porous aggregates and the relevant cell-model predictions in a broad range of κa was
obtained [39].

The diffusiophoretic motions in concentrated suspensions of charged hard spheres of constant
zeta potential [40] and porous spheres [41] with arbitrary double-layer thicknesses and particle volume
fractions were analyzed using unit cell models. In this article, these studies will be extended to
suspensions of charged soft particles. An analytical expression for the diffusiophoretic mobility in the
suspension is derived from the balance between the electrostatic and hydrodynamic forces acting on
the particles as a power expansion in the fixed-charge densities of the soft spheres.

2. Electrokinetic Equations

The surfaces of colloidal particles are generally not hard. For instance, surface layers are purposely
formed by adsorbing polymers to make the suspended particles stable against flocculation. Even the
surfaces of silica and polystyrene particles are “hairy” with a gel-like polymeric layer extending from
the bulk material inside the particle. In particular, the surface of a biological cell or enzyme is not a
hard wall, but rather is a permeable rough surface with various appendages ranging from protein
molecules on the order of nanometers to cilia on the order of microns. Such particles can be modelled
as a soft particle having a central rigid core and an outer porous shell.

Consider the diffusiophoresis of a uniform distribution of charged soft spheres in a solution of a
symmetric electrolyte. Each soft sphere of radius a consists of a hard core of radius r0 and a porous
surface layer of constant thickness a− r0. A constant electrolyte concentration gradient ∇n∞ equal to
|∇n∞|ez is imposed, where ez is the unit vector in the z direction, and the diffusiophoretic velocity Uez

of the particles needs to be determined. As shown in Figure 1, we use a unit cell model in which each
soft sphere is enveloped by a concentric spherical shell of the fluid with an outer radius b such that the
volume fraction of the particles in the suspension ϕ = (a/b)3. The origin of the spherical coordinates
(r,θ,φ) is set at the particle center.
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Figure 1. Geometric sketch for the diffusiophoresis of a charged soft sphere in a unit cell.

2.1. Governing Equations

The magnitude of ∇n∞ is assumed to be small (with a|∇n∞|/n∞0 << 1) so that the system is
only slightly distorted from equilibrium. Thus, the electric potential distribution ψ(r,θ), the ion
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concentration (number density) distributions n±(r,θ), and the pressure distribution p(r,θ) may be
written as:

ψ = ψ(eq) + δψ,

n± = n(eq)
±

+ δn±,

p = p(eq) + δp

(1)

where ψ(eq)(r), n(eq)
±

(r), and p(eq)(r) are the equilibrium electric potential, ion concentration, and
pressure distributions, respectively, δψ(r,θ), δn±(r,θ), and δp(r,θ) are the small perturbed quantities,
and the subscripts + and − to variables represent the cation and anion, respectively.

Substituting Equation (1) into the Poisson equation, the continuity equation of each ionic species,
and the equation of fluid motion (Stokes/Brinkman equation), using the Boltzmann equation to relate
the ion concentrations to the electric potential at equilibrium, canceling the equilibrium components,
and neglecting the products of the small quantities δn±, δψ, and fluid velocity field u(r,θ), one obtains
the following linearized electrokinetic equations [21]:

∇
2δψ =

Zen∞0
εkT

[exp(
Zeψ(eq)

kT
)(δµ− + Zeδψ) − exp(−

Zeψ(eq)

kT
)(δµ+ −Zeδψ)] (2)

∇
2δµ± = ±

Ze
kT
{∇ψ(eq)

· ∇δµ± −
kT ∇ψ(eq)

· u
D±

} (3)

∇
2
∇× u− h(r)λ2

∇× u = −
ε
η
∇× (∇2ψ(eq)

∇δψ+∇2δψ∇ψ(eq)) (4)

here, the ionic electrochemical potential energy distributions δµ±(r,θ) are defined as linear combinations
of δψ and δn±,

δµ± = kT
δn±

n(eq)
±

±Zeδψ (5)

n∞0 is the prescribed electrolyte concentration n∞ at z = 0; η and ε are the viscosity and permittivity,
respectively, of the electrolyte solution; λ is the reciprocal of the shielding length for flow penetration
into the porous layer; D± are the diffusion coefficients of the ionic species; Z is the valence of the
symmetric electrolyte; h(r) equals unity if r0 < r < a, and zero if a < r < b.

2.2. Boundary Conditions

The boundary conditions at the interface between the hard core and porous layer of the particle as
well as at the particle surface are:

r = r0: er · ∇δψ = 0, er · ∇δµ± = 0, u = 0, (6)

r = a: δψ, ∇δψ, δµ±, ∇δµ±, u, and er · τ, are continuous, (7)

where τ is the hydrodynamic stress tensor of the fluid and er is the unit vector in the r direction.
In Equation (7), the continuity requirement of the fluid velocity and stress at the particle surface is
physically realistic and mathematically consistent [42] (but the effective viscosity of the fluid inside
the porous layer might be smaller than the bulk viscosity if its porosity is small, which is not the case
considered here).

The boundary conditions at the outer edge of the cell are:

r = b : δψ = −
kT
Ze
βα

r
a

cosθ (8)

δµ± = kT(1∓ β)α
r
a

cosθ (9)
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ur = −U cosθ (10)

for the Happel model:

τrθ = η[r
∂
∂r

(
uθ
r
) +

1
r
∂ur

∂θ
] = 0 (11)

for the Kuwabara model:

(∇× u)φ =
1
r
∂
∂r

(ruθ) −
1
r
∂ur

∂θ
= 0 (12)

where β = (D+ −D−)/(D+ + D−) (for a binary, symmetric electrolyte) and α = a|∇n∞|/n∞0 . Equations
(6) and (10) take a reference frame traveling with the particle, while Equation (8) denotes the
induced electric potential arising from the applied electrolyte gradient with different cation and anion
mobilities [1,2]. The Happel model assumes that the radial velocity relative to the bulk flow and
the shear stress of the fluid on the outer boundary of the cell are zero, while the Kuwabara model
assumes that this radial velocity and the vorticity of the fluid are zero there. The Happel model has an
advantage over the Kuwabara model in that the former does not require an exchange of mechanical
energy between the cell and the environment [43].

3. Solution for the Diffusiophoretic Velocity

3.1. Equilibrium Electric Potential

For a soft sphere with a uniform surface charge density σ of its hard core and a constant space
charge density Q of its porous surface layer in a unit cell, the equilibrium potential distribution ψ(eq)(r)
can be obtained as:

ψ(eq) = ψeq01σ+ψeq10Q + O(σ3, σ2Q, σQ
2
, Q

3
) (13)

where σ = Zeσ/εκkT, Q = ZeQ/εκ2kT, ψeq01(r) and ψeq10(r) are available in the literature [24] and

κ = [2Z2e2n∞0 /εkT]1/2 is the Debye screening parameter. The expression in Equation (13) for ψ(eq)

as a power series in σ and Q up to O(σ,Q) is valid for small values of the electric potential (the
Debye–Hückel approximation).

3.2. Solution to Electrokinetic Equations

The quantities ur, uθ (the r and θ components of u), δp, δψ, and δµ± satisfying Equations (2)–(4)
and the equation of continuity ∇ · u = 0 can be solved in terms of ψ(eq) given by Equation (13) and the
expansion form of the particle velocity U,

U = U01σ+ U10Q + U02σ
2 + U11σQ + U20Q

2
+ . . . (14)

with the results:
δψ =

kT
Ze
α[−βFψ00(r) + Fψ01(r)σ+ Fψ10(r)Q + . . .] cosθ (15)

δµ± = kT(1∓ β)α[Fµ00(r) ∓ Fµ01(r)σ∓ Fµ10(r)Q + . . .] cosθ (16)

ur = {[U01F00r(r) − kT
ηa2 βαF01r(r)]σ+ [U10F00r(r) − kT

ηa2 βαF10r(r)]Q

+[U02F00r(r) + kT
ηa2αF02r(r)]σ

2 + [U11F00r(r) + kT
ηa2αF11r(r)]σQ

+[U20F00r(r) + kT
ηa2αF20r(r)]Q

2
+ . . .} cosθ

(17)

uθ = −
∂(r2ur)

2r∂r
tanθ (18)
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δp =
η
a {[U01Fp00(r) − kT

ηa2 βαFp01(r) − εκ2akT
ηZe βαψeq01(r)Fψ00(r)]σ

+[U10Fp00(r) − kT
ηa2 βαFp10(r) − εκ2akT

ηZe βαψeq10(r)Fψ00(r)]Q

+[U02Fp00(r) + kT
ηa2αFp02(r) + εκ2akT

ηZe αψeq10(r)Fψ10(r)]σ
2

+[U11Fp00(r) + kT
ηa2αFp11(r) + εκ2akT

ηZe α(ψeq01(r)Fψ10(r) +ψeq10(r)Fψ01(r))]σQ

+[U20Fp00(r) + kT
ηa2αFp20(r) + εκ2akT

ηZe αψeq01(r)Fψ01(r)]Q
2
+ . . .} cosθ

(19)

where, F00r(r), Fp00(r), Fi jr(r), Fpij(r), Fµ00(r), Fψ00(r), Fµ01(r), Fµ10(r), Fψ01(r), and Fψ10(r) are
dimensionless functions given by Equations (A1)–(A8) and (A20)–(A23) in the Appendix A, the
particle velocities Ui j are to be determined from a force balance, and the set (i, j) equals (0,1), (1,0),
(0,2), (1,1), and (2,0). The zeroth-order terms of u, δp, and U disappear because the electrolyte solution
around an uncharged particle will not move by imposing an electrolyte concentration gradient if only
the electrostatic interaction is considered. To solve the small quantities δψ, δµ±, u, and δp in terms of
the diffusiophoretic velocity U, these variables can be written as perturbation expansions in powers of
σ and Q. Substituting these expansions and ψ(eq) into the governing Equations (2)–(4) and boundary
conditions (6)–(12) and equating like powers of σ and Q on both sides of the respective equations, we
obtain a group of linear differential equations and boundary conditions of orders 0, 1, and 2. These
perturbation equations can be analytically solved, and the results for the ρ and φ components of

u, δp (to the order of σ2, σQ, and Q
2
), δµ±, and δψ (to the order of σ and Q) in Equations (15)–(19)

are obtained.

3.3. Forces Exerted on the Particle

The total force exerted on a soft particle is the sum of the electrostatic and hydrodynamic forces.
The electrostatic force is determined as an integral of the electric force density over the region a ≤ r ≤ b
(since the overall unit cell is electrically neutral and the electrostatic force acting on its outer boundary
r = b vanishes), with the result

Fe = 4π kT
a α{−β[

εκ2a3

3Ze ψeq01(a)Fψ00(a) − εκ2ab2

3Ze ψeq01(b)Fψ00(b) + J(3)01 (b)]σ

−β[ εκ
2a3

3Ze ψeq10(a)Fψ00(a) − εκ2ab2

3Ze ψeq10(b)Fψ00(b) + J(3)10 (b)]Q

+[ εκ
2a3

3Ze ψeq01(a)Fψ01(a) − εκ2ab2

3Ze ψeq01(b)Fψ01(b) + J(3)02 (b)]σ2

+[ εκ
2a3

3Ze {ψeq01(a)Fψ10(a) +ψeq10(a)Fψ01(a)}

−
εκ2ab2

3Ze {ψeq01(b)Fψ10(b) +ψeq10(b)Fψ01(b)}+ J(3)11 (b)]σQ

+[ εκ
2a3

3Ze ψeq10(a)Fψ10(a) − εκ2ab2

3Ze ψeq10(b)Fψ10(b) + J(3)20 (b)]Q
2
+ . . .}ez

(20)

where the functions J(3)i j (r) are defined by Equation (A11).
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The hydrodynamic force acting on the soft particle may be obtained as an integral of the
hydrodynamic stress over the particle surface (r = a), with the result

Fh =−4π{[ηaC002U01 −
kT
a βαC012 −

ε(κa)2

3
kT
Zeβαψeq01(a)Fψ00(a)]σ

+[ηaC002U10 −
kT
a βαC102 −

ε(κa)2

3
kT
Zeβαψeq10(a)Fψ00(a)]Q

+[ηaC002U02 +
kT
a αC022 +

ε(κa)2

3
kT
Zeαψeq01(a)Fψ01(a)]σ

2

+[ηaC002U11 +
kT
a αC112 +

ε(κa)2

3
kT
Zeα{ψeq01(a)Fψ10(a) +ψeq10(a)Fψ01(a)}]σQ

+[ηaC002U20 +
kT
a αC202 +

ε(κa)2

3
kT
Zeαψeq10(a)Fψ10(a)]Q

2
+ . . .}ez

(21)

where the coefficients C002 and Ci j2 are given in Equations (A1) and (A5). Like the fluid flow field in
Equations (17)–(19), the zeroth-order terms of the electrostatic and hydrodynamic forces vanish.

3.4. Velocity of the Particle

Applying the constraint that the total force acting on the soft sphere is zero at the steady state to
the summation of Equations (20) and (21), we obtain:

Ui j =
εβ(2−i− j)α

ηa
(

kT
Ze

)
2
(κa)2i+ jHi j (22)

where, Hi j are dimensionless functions of the electrokinetic radius κa, radius ratio r0/a, hydrodynamic
resistance parameter λa, and volume fraction ϕ of the particle defined by:

Hi j =
(−1)i+ j−1(Ze)2

C002(κa)2i+ jεakT
{Ci j2 − J(3)i j (b) + εκ2ab2

3Ze [(1− δi j)ψeqst(b)Fψuv(b)

+δi j{ψeq01(b)Fψ10(b) +ψeq10(b)Fψ01(b)}]}
(23)

where the functions J(3)i j (r) are defined by Equation (A11), δi j is the Kronecker delta which equals
unity if i = j but vanishes otherwise, s = i/(i + j), t = j/(i + j), u = (i − 1)s, and v = ( j − 1)t. The
diffusiophoretic velocity of the charged soft sphere is obtained in Equations (14), (22), and (23).

When the hard core of each soft particle vanishes (r0 = 0), it reduces to an entirely porous particle
of radius a and fixed charge density Q, the dimensionless mobility coefficients H01, H02, and H11 (or
U01, U02, and U11) are trivial, and H10 and H20 given by Equation (23) are identical to those available
in the literature [41].

4. Results and Discussion

The mean diffusiophoretic mobility of identical charged soft spheres suspended in a symmetric
electrolyte solution can be determined to the second orders σ2, σQ, and Q2 of their fixed charge densities
using Equations (14), (22), and (23). In this section, we will consider the mobility in a suspension of
hard spherical particles with constant surface charge density σ first and results for a suspension of soft
spheres are then presented.

4.1. Suspension of Hard Spheres

For a suspension of hard spheres with radius a = r0, the dimensionless mobility coefficients
H10, H20, and H11 (or U10, U20, and U11) become trivial, and H01 and H02 calculated from Equation
(23) are functions of the electrokinetic radius κa and volume fraction ϕ (= a3/b3) of the particles. In
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Figure 2, results of the electrophoretic mobility coefficient H01 for a suspension of hard spheres with
constant surface charge density σ are presented up to ϕ = 0.74, the limit for an assemblage of identical
spheres [30]. Evidently, H01 is always positive; thus the direction of the particle movement contributed
by electrophoresis is determined by the sign of the product of the surface charge density σ and the
ionic diffusivity parameter β (along the electrolyte concentration gradient if βσ > 0 and against it if
βσ < 0). For a given value of ϕ, the value of H01 is a monotonic decreasing function of κa from a
positive constant at κa = 0 to zero as κa→∞ . For a given value of κa, the value of H01 decreases
monotonically with an increase in ϕ from a positive constant at ϕ = 0 and the particle interaction
effect on the electrophoretic mobility can be significant. As expected,H01 = 2/3 (the Hückel result
for electrophoresis) in the particular case of ϕ = 0 and κa = 0. The Happel model always predicts
a slightly greater value (weaker particle interaction effect) for the electrophoretic velocity than the
Kuwabara model does. This occurs because the zero-vorticity Kuwabara model yields larger energy
dissipation in the cell than that due to the particle drag alone, owing to the additional work done by
the stresses at the outer boundary [43].Colloids Interfaces 2020, 4, x 8 of 17 
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Figure 2. The electrophoretic mobility coefficient H01 for a suspension of hard spheres versus the
parameters (a) ϕ and (b) κa. The solid and dashed curves represent the calculations for the Happel and
Kuwabara models, respectively, and H01 = 2/3 in the particular case of ϕ = 0 and κa = 0.

The results for the chemiphoretic mobility coefficient H02 of a suspension of hard spheres with
constant surface charge density σ are plotted versus the parameters κa and ϕ in Figure 3. The value of
H02 is always positive (the chemiphoresis is directed along the electrolyte concentration gradient) and
not necessary a monotonic function of ϕ or κa, keeping the other unchanged. For a given value of κa,
the value of H02 first increases with an increase in ϕ from a constant at ϕ = 0, reaches a maximum, and
then decreases with a further increase in ϕ; the particle interaction effect on the chemiphoretic mobility
can also be significant. For relatively concentrated suspensions (say, ϕ ≥ 10−4), H02 is a monotonic
decreasing function of κa from a constant at κa = 0 to zero as κa→∞ . For the particular case of ϕ = 0,
the value of H02 first increases with an increase in κa from zero at κa = 0, reaches a maximum, and
then decreases with a further increase in κa to zero as κa→∞ . The Happel model also predicts a
slightly greater value for the chemiphoretic velocity than the Kuwabara model does.
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Figure 3. The chemiphoretic mobility coefficient H02 for a suspension of hard spheres versus the
parameters (a) ϕ and (b) κa. The solid and dashed curves represent the calculations for the Happel and
Kuwabara models, respectively.

The diffusiophoretic velocity U in Equation (14) for a suspension of hard spheres normalized
by the characteristic value U∗ = (kT/Ze)2εα/ηa as a function of the scaled surface charge density
κaσ = aZeσ/εkT calculated for the Happel model at a typical value of ϕ (ϕ = 0.1) and various values of
κa is plotted in Figure 4. Figure 4a shows the case that the diffusiophoresis is due to the chemiphoresis
entirely (the anion and cation of the electrolyte have the same diffusion coefficient or β = 0). As
expected, the reduced diffusiophoretic mobility U/U∗ is an even function of the surface charge density
and increases monotonically with an increase in κa|σ| for specified values of κa and ϕ. For a relatively
concentrated suspension (say, ϕ ≥ 10−4) with a given value of κa|σ|, U/U∗ decreases with an increase
in κa to zero as κa→∞ . There is no chemiphoresis of the particles for the particular case of κaσ = 0
(or σ = 0). The reduced diffusiophoretic mobility U/U∗ of the particles for a typical case that the cation
and anion have different diffusivities (β = −0.2) is plotted in Figure 4b, where both electrophoresis
and chemiphoresis contribute to the diffusiophoresis. In this case, for constant values of κa and ϕ,
U/U∗ is not necessary a monotonic function of κaσ and the particles may reverse direction of their
diffusiophoretic velocity twice with the variation of their surface charge density due to the competition
between chemiphoretic and electrophoretic contributions. Note that the cases of β = −0.2 and β = 0
may denote the aqueous solutions of NaCl (NaBr, NaI, NaNO3, CaSO4) and KCl (KBr, KI, KNO3,
NH4Cl), respectively.
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Figure 4. The reduced diffusiophoretic mobility U/U∗ for a suspension of hard spheres versus the
dimensionless surface charge density κaσ with ϕ = 0.1 and various values of κa calculated for the
Happel model: (a) β = 0; (b) β = −0.2.

4.2. Suspension of Soft Spheres

For a suspension of soft spheres, the diffusiophoretic mobility coefficients H01, H10, H02, H11, and
H20 calculated from Equation (23) are plotted in Figures 5–9, respectively, for various values of the
electrokinetic particle radius κa, core-to-particle radius ratio r0/a, porous-layer shielding parameter
λa, and particle volume fraction ϕ. In general, these mobility coefficients are positive, decreasing
functions of κa, decreasing functions of λa, and slightly greater as predicted by the Happel model than
the Kuwabara model.
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Figure 5. The electrophoretic mobility coefficient H01 for a suspension of soft spheres: (a) λa = 1 and
r0/a = 0.5; (b) κa = 1 and ϕ = 0.1. The solid and dashed curves represent the calculations for the
Happel and Kuwabara models, respectively.
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Figure 6. The electrophoretic mobility coefficient H10 for a suspension of soft spheres: (a) λa = 1 and
r0/a = 0.5; (b) κa = 1 and ϕ = 0.1. The solid and dashed curves represent the calculations for the
Happel and Kuwabara models, respectively.
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Figure 7. The chemiphoretic mobility coefficient H02 for a suspension of soft spheres: (a) λa = 1 and
r0/a = 0.5; (b) κa = 1 and ϕ = 0.1. The solid and dashed curves represent the calculations for the
Happel and Kuwabara models, respectively.

Colloids Interfaces 2020, 4, x 12 of 17 

 

 

Figure 8. The chemiphoretic mobility coefficient 11H  for a suspension of soft spheres: (a) 1a  

and 0.5/0 ar ; (b) 1a  and 0.1 . The solid and dashed curves represent the 

calculations for the Happel and Kuwabara models, respectively. 

 

Figure 9. The chemiphoretic mobility coefficient 20H  for a suspension of soft spheres: (a) 1a  

and 0.5/0 ar ; (b) 1a  and 0.1 . The solid and dashed curves represent the 

calculations for the Happel and Kuwabara models, respectively. 

The normalized diffusiophoretic velocity 
*/UU  in a suspension of soft spheres as a function 

of the scaled fixed charge density kTZeQaQa  22)(   calculated for the Happel model at 

0 , 0.5/0 ar , 1a , 0.1 , and various values of a  is plotted in Figures 10a,b for the 

cases of 0  and 2.0 , respectively. Similar to the outcomes in Figure 4 for a suspension of 

hard particles, for specified values of ar /0 , a , a  and  , the normalized velocity 
*/UU  for 

the case of 0  (due to the chemiphoresis entirely) is an even function of the fixed charge density 

and increases monotonically with an increase in Qa 2)(  from zero at 0)( 2 Qa , while 
*/UU  

for the case of 2.0  is not necessary a monotonic function of Qa 2)(  and may change its sign 

twice with the variation of their fixed charge density due to the competition between chemiphoretic 

and electrophoretic contributions. 

(a) (b) 

(a) (b) 

Figure 8. The chemiphoretic mobility coefficient H11 for a suspension of soft spheres: (a) λa = 1 and
r0/a = 0.5; (b) κa = 1 and ϕ = 0.1. The solid and dashed curves represent the calculations for the
Happel and Kuwabara models, respectively.
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Figure 9. The chemiphoretic mobility coefficient H20 for a suspension of soft spheres: (a) λa = 1 and
r0/a = 0.5; (b) κa = 1 and ϕ = 0.1. The solid and dashed curves represent the calculations for the
Happel and Kuwabara models, respectively.

Figures 5 and 6 indicate that, for fixed values of r0/a, κa, and λa, the electrophoretic mobility
coefficients H01 and H10 decrease with increases in ϕ from constants at ϕ = 0, with an exception that
H10 may increase with an increase in ϕ when κa is very large. For given values of ϕ, κa, and λa, the
coefficient H10 is a monotonic decreasing function of r0/a (increasing function of 1− r0/a or the relative
volume of the porous surface layer of the soft particle) and vanishes at r0/a = 1 as expected, while H01

increases with an increase in r0/a (or relative surface area of the hard core of the soft particle) from
zero at r0/a = 0, but may attain a maximum and then decreases with a further increase in r0/a (or
hydrodynamic resistance to the electrophoretic motion of the particle caused by the hard core). The
values of H01 and H10 are comparable for the case of medium r0/a (ca. 1/2). Note that the value of H01

always vanishes as κa→∞ but the value of H10 vanishes as κa→∞ only if λa→∞ .
The second-order coefficients H02, H11, and H20 for the chemiphoresis of a suspension of soft

spheres as functions of κa, λa, r0/a, and ϕ are exhibited in Figures 7–9. For given values of κa, λa,
and r0/a, these coefficients (and thus the chemiphoretic mobility) in general first increases with an
increase in ϕ from a constant at ϕ = 0, reaches a maximum, and then decreases with a further increase
in ϕ. For constant values of ϕ, κa and λa, the coefficients H02, H11, and H20 have the same order of
magnitude for the case of r0/a = 0.5 and about two orders of magnitude less than the coefficients H01

and H10. The coefficient H02 in general increases with an increase in the value of r0/a, becomes zero as
r0/a = 0, and does not depend on λa as r0/a = 1, whereas the coefficient H20, in general decreases
with an increase in r0/a and equals zero as r0/a = 1,analogous to the coefficient H10. The coefficient
H11 equals zero in the limits r0/a = 0 and r0/a = 1, and thus a maximal value of H11 exists between the
limits. The location of the maximum shifts to greater r0/a as λa increases, since large volume fraction
of the hard cores in the soft particles favors their migration if the resistance to the fluid motion in the
surface layers is large. For moderate values of r0/a, the three second-order coefficients contribute to
the chemiphoretic velocity of the soft spheres comparably. Note that the coefficients H02, H11, and H20

all vanish as κa→∞ .
The normalized diffusiophoretic velocity U/U∗ in a suspension of soft spheres as a function of the

scaled fixed charge density (κa)2Q = a2ZeQ/εkT calculated for the Happel model at σ = 0, r0/a = 0.5,
λa = 1, ϕ = 0.1, and various values of κa is plotted in Figure 10a,b for the cases of β = 0 and β = −0.2,
respectively. Similar to the outcomes in Figure 4 for a suspension of hard particles, for specified values
of r0/a, λa, κa and ϕ, the normalized velocity U/U∗ for the case of β = 0 (due to the chemiphoresis
entirely) is an even function of the fixed charge density and increases monotonically with an increase
in (κa)2

∣∣∣Q∣∣∣ from zero at (κa)2Q = 0, while U/U∗ for the case of β = −0.2 is not necessary a monotonic
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function of (κa)2Q and may change its sign twice with the variation of their fixed charge density due
to the competition between chemiphoretic and electrophoretic contributions.Colloids Interfaces 2020, 4, x 13 of 17 
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Figure 10. The reduced diffusiophoretic mobility U/U∗ for a suspension of soft spheres versus the
dimensionless fixed charge density (κa)2Q at σ = 0, r0/a = 0.5, λa = 1, ϕ = 0.1, and various values of
κa calculated for the Happel model: (a) β = 0; (b) β = −0.2.

5. Conclusions

The diffusiophoresis of a suspension of charged softs spheres (each is a hard core of surface charge
density σ covered with a fluid-penetrable porous layer of fixed charge density Q) in a symmetric
electrolyte solution with arbitrary values of the electrokinetic particle radius κa, core-to-particle radius
ratio r0/a, porous-layer shielding parameter λa, and particle volume fraction ϕ is analytically studied
in this work. Through the use of a unit cell model, the ionic concentration (or electrochemical potential
energy), electric potential, and fluid velocity distributions are solved as power expansions in σ and Q,
and an explicit expression for the diffusiophoretic velocity of the soft spheres correct to the second
order of σ and Q is obtained from a force balance. The effects of the physical characteristics and particle
interactions on the diffusiophoresis (including electrophoresis and chemiphoresis) in a suspension
of soft particles, which become those of hard particles and porous particles in the limits r0 = a and
r0 = 0, respectively, are significant and complicated. A similar formula for the electrophoretic velocity
of a rigid sphere with low zeta (ζ) potential was shown to give an excellent approximation for the
case of reasonably high zeta potential (with an error of less than 4% in a KCl solution for the case of
ζe/kT ≤ 2) [34]. Therefore, our results might be used tentatively for the situation of reasonably high
electric potentials or fixed charge densities.
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Appendix A

Some functions in Section 3 are given here. In Equations (17)–(19),

F00r(r) = C001 + C002
a
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r
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F00r(r) = C005 + [C006 + C007α1(λr) + C008β1(λr)](
a
r
)

3
, if r0 < r < a (A2)

Fp00(r) = C002(
a
r
)

2
+ 10C004

r
a

, if a < r < b (A3)

Fp00(r) = (λa)2[−C005
r
a
+

C006

2
(

a
r
)

2
], if r0 < r < a (A4)

Fi jr(r) = Ci j1 − J(2)i j (r) + [Ci j2 + J(3)i j (r)] a
r + [Ci j3 −

1
5 J(5)i j (r)]( a

r )
3

+[Ci j4 +
1
5 J(0)i j (r)]( r

a )
2, if a < r < b

(A5)

Fi jr(r) = Ci j5 + [Ci j6 + Ci j7α1(λr) + Ci j8β1(λr)]( a
r )

3
−

2
(λa)2 [J

(0)
i j (r) − ( a

r )
3 J(3)i j (r)

−3 β1(λr)
(λr)3 Jαi j(r) + 3α1(λr)

(λr)3 Jβi j(r)], if r0 < r < a
(A6)

Fpij(r) = [Ci j2 + J(3)i j (r)](
a
r
)

2
+ 2[5Ci j4 + J(0)i j (r)]

r
a

, if a < r < b (A7)

Fpij(r) = λ2ar[−Ci j5 +
Ci j6

2
(

a
r
)

3
] + J(3)i j (r)(

a
r
)

2
+ 2J(0)i j (r)

r
a

, if r0 < r < a (A8)

where the set (i, j) =(0, 1), (1, 0), (0, 2), (1, 1), and (2, 0),

α1(x) = x cosh x− sinhx (A9)

β1(x) = xsinhx− cosh x (A10)
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∫ r
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a
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Gi j(r)dr (A11)
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dr
(A16)

G11(r) = −
εκ2a4

3Zer
[W01(r)

dψeq10

dr
+ W10(r)

dψeq01

dr
] (A17)

G20(r) = −
εκ2a4

3Zer
W10(r)

dψeq10

dr
(A18)

Wi j(r) = Fµi j(r) +
Ze
kT
ψeqi j(r)Fµ00(r) (A19)
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In Equations (15), (16), and (A19),

Fµ00(r) = Fψ00(r) =
2r3 + r3

0

2ar2ν
(A20)

Fµi j(r) = −1
6br2 {

1
νb3 (2r3 + r3

0)[2r3
0K(3)

i j (a, b) + b3K(0)
i j (a, b)] + 1

ν [2(1− ν)r
3 + r3

0]

×[2K(3)
i j (r0, a) + K(0)

i j (r0, a)] + 2r3
0K(3)

i j (a, r) − 2r3K(0)
i j (a, r)}, if a ≤ r ≤ b

(A21)

Fµi j(r) = −1
6abr {[2r3

0K(3)
i j (r0, b) + b3K(0)

i j (r0, b)]
2r3+r3

0
νb3 + 2r3

0K(3)
i j (r0, r) − 2r3K(0)

i j (r0, r)},

if r0 < r < a
(A22)

Fψi j(r) = 1
Aκ2r2 {ALαi j(r)β1(κr) −ALβi j(r)α1(κr)

+
[
BLαi j(r0) −CLβi j(r0)][β1(κb)α1(κr) − α1(κb)β1(κr)]

+Lαi j(b)β1(κb)[Eα1(κr) −Dβ1(κr)] + Lβi j(b)α1(κb)[Bα1(κr) + Cβ1(κr)]}

(A23)

where ν = 1 + r3
0/2b3,

K(n)
i j (r1, r2) =

Ze
kT

∫ r2

r1

(
r
r0
)

n
[1− (

r0

r
)

3
]
dψeqi j

dr
dr (A24)

Lαi j(r) =
Ze
kT

∫ r

a
κα1(κr)Wi j(r)dr (A25)

Lβi j(r) =
Ze
kT

∫ r

a
κβ1(κr)Wi j(r)dr (A26)

A = κ
(
2b + bκ2r2

0 − 2r0
)

cosh[κ(b− r0)] −
(
2 + κ2r2

0 − 2κ2br0
)
sinh[κ(b− r0)] (A27)

B = κ2r2
0 cosh(κr0) − 2β1(κr0) (A28)

C = 2α1(κr0) − κ
2r2

0sinh(κr0) (A29)

D = 2κr0 cosh(κr0) −Nsinh(κr0) (A30)

E = 2κr0sinh(κr0) −N cosh(κr0) (A31)
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