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Abstract: The van der Waals equation is well known for the description of two-dimensional
monolayers. The formation of a monolayer is the result of a compromise between the process of
self-organization on the surface and the probabilities of spatial configurations of adsorbate molecules
near the surface. The main reasons for the geometric heterogeneity of the monolayer are the geometric
disorder and the energy inhomogeneity of the surface profile. A monolayer is a statistically related
system and its symmetry causes correlations of processes at different spatial scales. The classical van
der Waals equation is written for the two-dimensional, completely symmetric Euclidean space. In the
general case, the geometry of the monolayer must be defined for the Euclidean space of fractional
dimension (fractal space) with symmetry breaking. In this case, the application of the classical
van der Waals equation is limited. Considering the fractal nature of the monolayer–solid interface,
a quasi-two-dimensional van der Waals equation is developed. The application of the equation to
experimental data of an activated carbon is shown.
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1. Introduction

The concept of a monomolecular layer is widely used in thermodynamics [1,2]. Typically, one has
in mind an adsorption layer of some substance at the interface of any material. The molecules forming
the monolayer create some surface (two-dimensional) pressure [3]. The connection between the
two-dimensional pressure and other parameters of the monolayer (density of molecules, temperature)
is determined by the equation of state. The first two-dimensional equation of the state for the
monolayer at low concentrations has been proposed by Traube [4]. This equation describes some ideal
two-dimensional monolayer: πA = RT, where π is the two-dimensional pressure and A is the area per
one molecule [5]. De Boer [6] proposed an empirical equation of state π(A-b2) = iRT, where parameter
b2 denotes the area per single molecule in a tightly packed layer, i is a measure of the attractive forces.

To date, different equations have been proposed for two-dimensional systems: power-type
equations based on the virial expansions, the Frumkin logarithmic equation, and the Van der Waals
(VdW) equation [7].

Recently, a new two-dimensional equation of the state of the monolayer was proposed [3]:

π =

∫
θ

(
1− θ

dh
dθ

)
dθ

1− θ f ex + ∆π (1)

The first term under the integral takes into account the orientation effect (h is the dimensionless
thickness of the monolayer) of asymmetric molecules. The value ∆π depends on the type of molecular
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interaction, π corresponds to the dimensionless two-dimensional pressure, and θ to the degree of
filling the surface. Molecular interactions are always calculated through the centers of mass of particles,
and therefore two-dimensional pressure is determined not by the real area of the monolayer, but by
the size of the area in which the centers of mass of the particles move. This means that the excluded
area aex must be understood as the area that is inaccessible to the centers of mass. Similarly, a particle
with a center of mass at rest (but rotating along the surface and therefore round) creates an excluded
area in the form of a circle with a radius equal to the sum of the radii of the particle at rest and the
moving particle approaching it. If all particles are of the same size and move independently (the case
of a one-component two-dimensional gas), then a stationary particle of radius r creates an excluded
area, which is four times the landing area a0 = π(2r)2 of the particle. Taking this into account, the
exclusion factor fex as the ratio of excluded and landing areas: f ex = aex

a0
is introduced.

For a monolayer of neutral, spherically symmetric molecules, Equation (1) has the form:

π =

∫
θ

dθ
1− θ f ex − α

′θ2 (2)

The integration of Equation (2) depends on the choice of the exclusion factor f ex and α′ is the
dimensionless constant of intermolecular interaction.

If f ex = constant, the integration of Equation (2) leads to the Frumkin and Planck equation [8,9]:

π = −
ln(1− θ f ex)

f ex − α′θ2 (3)

When f ex = 4 this is a two-dimensional analogue of the Planck equation, and for f ex = 1 this is the
Frumkin equation [3]. The definition of π will be given below.

As a first approximation, the exclusion factor f ex was chosen in the form [3]:

f ex = 4(1− θ) (4)

Then the integration of Equation (2) with (4) yields the two-dimensional equation of VdW

π =
θ

1− 2θ
− α′θ2 (5)

As a next approximation, the f ex dependence [3] was proposed:

f ex =
4(1− θ)
1 + κθ

(6)

where κ is a constant (κ ~ 1.144).
Then, the integration of Equation (2) with (6) yields the two-dimensional equation [3]:

π =
2β+ 4
β2 ln(1 + βθ) −

β+ 4
β

θ
1 + βθ

− α′θ2 (7)

The parameter β is a quantity that depends on the excluded area: β = −1428. The correlations
between κ and β are described in Rusanov [3].

Equation (7) allows us to describe the first three virial coefficients quite accurately.
Although such equations are usually considered two-dimensional, the three-dimensional aspect

of real monolayers is inevitably present. For example, this is due to the influence of the surrounding
bulk phase, the change of the orientation of non-spherical molecules in the monolayer with the change
of the two-dimensional pressure. Therefore, generally speaking, the equation of state for the monolayer
should be considered quasi-two-dimensional.
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The description of the surface in terms of two dimensions is certainly appropriate if bumps and
dips in the surface have extensions much larger than the size of any molecule. Such is no longer true
when the irregularities of the surface are comparable to the size of adsorbate molecules. Consequently,
to describe the irregular surface one should consider its dimension as an appropriate value between
two and three.

Let us now explain the determination of the surface (two-dimensional) pressure. The monolayer
is a real, in general, three-dimensional medium under the influence of molecular interactions. The
influence of external fields will not be considered. A monolayer of spherically symmetric, neutral
molecules on a geometrically and energetically homogeneous surface corresponds to a Euclidean space.

The mechanical state, the surface pressure of the monolayer, is determined by specifying a stress
tensor or a pressure tensor. These tensors differ only in sign. For molecular systems, the pressure
tensor is more generally accepted. In the general case (Adsorption on a fractal surface) the conformal
conditions for a monolayer on a surface are not satisfied. Therefore, it is not possible to determine
two-dimensional pressure in the framework of the classical Gibbs definition. Therefore, the authors
use the definition of surface pressure as: π =

(
∂F
∂A

)
N.T

with free energy F.
Two tangential components of the tensor of excess surface pressure, in general, determine the

surface two-dimensional pressure. The task of strictly calculating the tensor components of the surface
pressure is a very difficult one and practically impossible for the analysis of real (non-model) adsorption
systems. Therefore, the only possible version for the calculation of surface pressure is the calculation
of the value from the pressure of the experimental adsorption isotherm [6].

To correctly describe the state of a monolayer in a two-dimensional Euclidean space in a wide
range of parameter changes, various approximations must be made. These approximations are not
always strictly justified. When describing unordered media by the methods of fractal geometry, one
fundamental assumption is made, namely the hypothesis of scale-invariant structures. This hypothesis
allows us to construct a theory of disordered media using renormalization group methods. This
approach is universal, but is associated with large mathematical (computational) difficulties. These
difficulties were overcome by Mandelbrot’s introduction of the concepts of fractal geometry. Thus,
the description of the thermodynamic system, a quasi-two-dimensional layer of molecules, contains
almost no assumptions or approximations.

The aim of this work is the modification of the two-dimensional VdW equation to a
quasi-two-dimensional one. This procedure is based on the concept of the fractal nature of the
monolayer–solid interface.

2. Theory

The surface pressure is generally defined as work required to change the surface area of the
adsorbed phase on unit value at constant V, N, and T.

The definition of the surface pressure through the grand partition function is as follows [10]:

πA
RT

= ln Ξ∗ (8)

where Ξ∗=Ξ/Ξ0, Ξ0 is the grand partition function for not adsorbed gas in the bulk phase.
The virial expansion method is theoretically exact specifically in the considered case of ethane

adsorption on activated carbon. The logarithm of the grand partition function can be expanded in a
series [10]:

ln Ξ = Z(2D)
1 Z(2D) +

[
Z(2D)

2 −Z(2D)
1

]2
×

[(
Z(2D)

2

)2
]
+

[
Z(2D)

3 − 3Z(2D)
2 Z(2D)

1 + 2
(
Z(2D)

1

)2
](

Z2D
)3

/6 + .. (9)



Colloids Interfaces 2020, 4, 1 4 of 11

Then, the equation for the surface pressure can be obtained by the substitution of the expansion in
Equation (9) into Equation (8) [10]:

πA
RT

= 1 + B2D(Na/A) + C2D(Na/A)2 + .. (10)

where Na is the number of the adsorbed gas molecules and B2D, C2D, . . . are the two-dimensional
virial coefficients. These coefficients are also determined for the three-dimensional case. For a large N,
it is impossible to calculate Z2D

N exactly. Model approaches are necessary. However, the difficulties of
calculation of the higher virial coefficients limit the applicability of this method by small values of the
surface density of matter [10].

The equation for the surface pressure isotherm at high densities can be obtained as the
two-dimensional VdW equation. In the thermodynamics of adsorption, it is more convenient
to use the canonical partition function [10]. The equation that relates the canonical partition function
with two-dimensional (surface) pressure has the form [10]:

π
RT

=

(
∂
∂A

ln ZS
N

)
T,Va,N

(11)

where the configuration interval is given by: ZS
N = Z(2D)

N

(
ZS

1

)−N
.

Let us give some clarifications concerning the value Va. The whole volume V of the gas phase in a
thermostat can be divided into two parts: (1) a small region Va near the surface of the adsorbent, where
the gas density differs substantially from the density in the bulk phase; (2) the part of the volume Vd,
in which gas properties do not differ from the properties of the gas in the main volume.

The configuration integral ZS
N can be represented in two parts:

(1) three-dimensional integrals ZS
1 for an individual molecule on the surface;

(2) a configuration integral Z2D
N in which the integration is carried out in the plane of the

parallel surface.

The configuration integral ZS
1 is calculated by Equation (12):

ZS
1 = Azs

f exp(−εs
1/RT) (12)

In Equation (12) zs
f , the amplitude of the free oscillations of the molecule is perpendicular to the

surface; εs
1 is the magnitude of the energy of the molecule at the minimum of the potential well. The

integral Z2D
N is defined as follows [10]:

Z2D
N = A−N

∫
A

. . . .
∫
A

−

∑
1≤i< j≤N

[
us

(
ri j

)
/RT

]
dr1 . . . dN (13)

In Equation (13), us
(
ri j

)
is the energy of interaction of the i-th molecule with the j-th molecule.

In case of moving (or restrictedly moving) films (here: adsorption layers) the dependence us
(
ri j

)
on

ri j can be neglected. This approximation is valid for the isotherm under consideration. With the
Lennard-Jones potential as the interaction potential of the molecules, the integral in Equation (13) is
transformed to the form:

Z2D
N =

[(
A f /A

)
exp

(
−
φ0

RT

)]N

(14)
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In Equation (14), φ0 is the average energy of lateral interactions per molecule. Then combining
Equations (12) and (14), the configuration integral ZS

N will be written in the form:

ZS
N =

[(
A f zs

f

)
exp

(
−
φ

2RT

)]N

(15)

where A f is an excluded area of the molecule in the adsorption layer, φ is the average energy of
intermolecular interactions in the potential field of the adsorbent. In Equation (15), it is assumed that

A f = A− b2 (16)

φ

2
= −

Na2

A
(17)

b2 = πσ2/2 (18)

a2 = πεσ2 (19)

where σ (molecular diameter) and ε (depth of potential well) are the parameters of the Lennard-Jones
potential for molecules in the monolayer [6].

Let us give some comments concerning the parameter b2. According to Equation (18), the value of
the parameter b2 depends only on the molecular diameter σ. However, in real adsorption monolayers,
the parameter b2 is defined as the area accessible for the molecule at the maximum density of the
monolayer. The maximum density of the monolayer is determined by the type of molecules, by
the properties of adsorbent and by the temperature. Let us denote the number of molecules in the
monolayer at maximum filling for a given temperature as Nm; the number of molecules adsorbed
at given temperature and pressure p is denoted as N. In this case, the number of sites available for
adsorption will be equal to Nm-N. The number of molecules N and Nm are associated with the areas
occupied by a molecule by means of relations [6]:

N ∝ 1/A (20)

Nm ∝ 1/b2 (21)

Usually, the values Nm and N are determined experimentally as the number of moles per unit
weight of the adsorbate and are denoted as Vm and V respectively. Then, from Equations (20) and (21),
we obtain the area occupied by one molecule at an arbitrary p in a dense monolayer:

A =
Sexp

VN
(22)

b2 =
Sexp

VmN
(23)

where V and Vm are the adsorption values at pressure p and in maximum dense monolayer, respectively.
In the Equations (22) and (23), Sexp is the specific surface area of adsorbent. Thus, in future, we

determine the value b2 for each individual isotherm by Formula (23). The same conclusions must be
made concerning parameter a2, as well. The parameters b2 and a2 are determined from the experimental
isotherm in each case separately.

Substituting Equations (15)–(17) into Equation (11), we obtain the well-known VdW equation:

π =
RT

A− b2
−

a2

A2 (24)
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Then, substituting Equations (22) and (23) into Equation (24), we rewrite Equation (24) in the form:

π = RTVmN
Sexp

θ
1−θ − a2

(
VmN
Sexp

)2
θ2

with : θ = V
Vm

(25)

It is also convenient to consider the equation of state of a monolayer in the dimensionless form:

π (T, θ) =
π

RTVm
(26)

In this case, the strictly two-dimensional equation of state has the form:

π(T,θ) = θ
1− θ − a′2θ

2

with : a′2 = a2VmN
RTSexp

(27)

It should be noted that the Equations (16) and (17) are obtained for a homogeneous surface. The
topological dimension of the interface between the monolayer and the surface of the adsorbent is equal
to two. For inhomogeneous adsorbent surfaces, the dimension of the interface between the monolayer
and the surface is defined as fractal, with a fractal dimension DF with DF > 2 [11].

Now, consider the VdW equation for a fractal surface. In order to correctly apply Equations
(16) and (17) to the fractal surface, it is necessary to take into consideration the effect of the fractal
dimension of the surface on the value of area occupied by a molecule. Consider two types of adsorbent
surface: homogenous, with the topological dimension D = 2, and rough, with the fractal dimension DF
> 2. On each surface, let us define an area bounded by the perimeter L. Suppose that the perimeters for
homogeneous and rough surfaces are the same. Then the following equality is fulfilled [12]:

A1/DF
F = A1/2

AF = A(DF/2) (28)

In the future, we will use the notation α = DF/2. Accordingly, the value of the excluded area of
the molecule in the monolayer on the fractal surface will be equal to:

A f ,F = Aα − bα2,F

Now it is necessary to rewrite Equations (16) and (17), taking into account Equations (28). Then
the integral for the monolayer on the fractal surface should be written as:

Z2D
N,D =

AαF − (b2,D)
α

(b2,D)
α exp

(
−

a2,D

2RTAα

)N

(29)

Substituting Equation (29) into (11) we obtain:

πF = α
RTVmN

Sexp

θ
1− θα

− αa2,D

(
VmN
Sexp

)α
θ1+α (30)

It is also convenient to consider the equation of state of a monolayer in the dimensionless form:

πF(T,θ) = α
(

θ
1−θα − a′2,Dθ

1+α
)

;

a′2,D =
a2,D
RT

(
VmN
Sexp

)α−1 (31)

The strictly two-dimensional equation of state, Equation (27), contains one parameter a′2, whereas
the quasi-two-dimensional equation of state, Equation (31), contains two parameters: α and a′2,D.
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In deriving Equation (30), the influence of the degree of disorder of the adsorbent (fractal
dimension) on the properties of Equation (30) is strictly shown. In this case, the dependence of the
excluded volume (the first term of Equation (30)) and of the molecular interaction (the second term of
Equation (30)) on the fractal dimension DF is strictly obtained. If all the states of the adsorption medium
are equally probable, DF = 2 and Equation (30) reduces to the classical equation of van der Waals.

3. Results and Discussion

As an example, consider the adsorption isotherms a(T, p) of ethane at T = 273.15 K (sample№1)
and T = 323.15 K (sample№2) on activated carbon sample with specific surface SBET = 1440 m2/g
(Figure 1). In Figure 1, the points denote the experimental values [13,14] and the lines are computer
fittings to the Toth equation.
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Figure 1. Adsorption isotherms of ethane on KF-1500 at 273.15 K (sample №1) and at 323.15 K (sample №2). 
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Figure 1. Adsorption isotherms of ethane on KF-1500 at 273.15 K (sample №1) and at 323.15 K
(sample№2).

The isotherms of the surface pressure π(T, p) are calculated using the adsorption isotherms as
follows [6]:

π = RT
∫
p

a(T, p)
p

dp (32)

Further, we will determine the value of the surface pressure π, calculated by Formula (25), as
the experimental value and denote as πexp. We assume that we do not know a priori the equation of
the adsorption isotherm a(T, p), but we use Equations (25) and (30) with free parameters for alpha,
a2 , and a2,D. The surface pressure π(T, p) will be calculated by Equation (32) using Newton-Kotes
numerical integration formulas [15]. For further analysis, it is necessary to represent the surface
pressure isotherm π(T, p) in the form π(T,θ), where θ = V/Vm, where the parameter Vmis determined
by the adsorption isotherm a(T, p) [6].

For the adsorption isotherm of ethane on activated carbon (S = 1440 m2/g) at T = 273.15 K
(sample №1) the following values were obtained:a′2 = 0.87; a′2,D = 2.1;α = 1.2. For sample 2:
a′2 = 0.85; a′2,D = 1.75;α = 1.14. The results of comparative graphical analysis of the calculated and
experimental data are presented in the form of graphs:

Y =
π2,cal

π2,exp
= f (θ) (33)
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Figure 2 represents the results of analysis for sample№1 and Figure 3 for sample№2. Figures 2
and 3 are constructed as follows. Ordinates of quantities Y are calculated from Equation (33) of the
knots of the function V(p). As the knots of the function, the values of the argument (the value of the
pressure) at which the adsorption was measured were chosen.Colloids Interfaces 2020, 4, x FOR PEER REVIEW 8 of 11 

 

 
Figure 2. Results of analysis for sample №1 with Formula (33). (a) Equation (27); (b) Equation (31). 

 
Figure 3. Results of analysis for sample 2 with Equation (33). (a) Equation (27); (b) Equation (31). 

For sample 1, Equation (27) describes the experimental surface pressure isotherm for 0 ൏ 𝜃 ൑0.35 with a maximum relative deviation of 9.5% and for sample for 0 ൏ 𝜃 ൑ 0.45 with a maximum 
relative deviation of 9.7%.  

The quasi-two-dimensional Equation (31) describes the experimental surface pressure isotherm 
for sample №1 for 0 ൏ 𝜃 ൑ 0.65 with a maximum relative deviation of 8.5% and for sample 2 for 0 ൏𝜃 ൑ 0.67 with a maximum relative deviation of 8.7%.  

Earlier, the designation 𝛼 = ஽ಷଶ  was introduced. Consequently, the fractal dimension of the 
interface between the monolayer and the surface of the adsorbent is 𝐷ி = 2.4 for sample 1 and is 𝐷ி = 2.28  for sample 2. It is interesting to check the results of the calculation of these fractal 
dimensions obtained with the quasi-two-dimensional Equation (31). In earlier published work, the 
Langmuir adsorption isotherm equation has been investigated in the form [16]: 𝑉 = 𝑉௠ (𝑏𝑝)ఉ1 + (𝑏𝑝)ఉ 

(34) 

In Equation (34), V and Vm are the adsorption values at pressure p and in the maximum dense 
monolayer, respectively; b is an equilibrium constant for 𝑝 → 1; 0 ൏ 𝛽 ൑ 1. If β = 1, Equation (34) turns 
into the Langmuir equation corresponding to the adsorption on a homogeneous surface without 
taking into account the interaction between the adsorbate molecules. It has also been proven 
rigorously that the parameter β and fractal dimension DF of the interface between the monolayer and 
the adsorbent surface are related by the equality: 𝐷ி = 3 − 𝛽 [11]. 

Figure 2. Results of analysis for sample№1 with Formula (33). (a) Equation (27); (b) Equation (31).

Colloids Interfaces 2020, 4, x FOR PEER REVIEW 8 of 11 

 

 
Figure 2. Results of analysis for sample №1 with Formula (33). (a) Equation (27); (b) Equation (31). 

 
Figure 3. Results of analysis for sample 2 with Equation (33). (a) Equation (27); (b) Equation (31). 

For sample 1, Equation (27) describes the experimental surface pressure isotherm for 0 ൏ 𝜃 ൑0.35 with a maximum relative deviation of 9.5% and for sample for 0 ൏ 𝜃 ൑ 0.45 with a maximum 
relative deviation of 9.7%.  

The quasi-two-dimensional Equation (31) describes the experimental surface pressure isotherm 
for sample №1 for 0 ൏ 𝜃 ൑ 0.65 with a maximum relative deviation of 8.5% and for sample 2 for 0 ൏𝜃 ൑ 0.67 with a maximum relative deviation of 8.7%.  

Earlier, the designation 𝛼 = ஽ಷଶ  was introduced. Consequently, the fractal dimension of the 
interface between the monolayer and the surface of the adsorbent is 𝐷ி = 2.4 for sample 1 and is 𝐷ி = 2.28  for sample 2. It is interesting to check the results of the calculation of these fractal 
dimensions obtained with the quasi-two-dimensional Equation (31). In earlier published work, the 
Langmuir adsorption isotherm equation has been investigated in the form [16]: 𝑉 = 𝑉௠ (𝑏𝑝)ఉ1 + (𝑏𝑝)ఉ 

(34) 

In Equation (34), V and Vm are the adsorption values at pressure p and in the maximum dense 
monolayer, respectively; b is an equilibrium constant for 𝑝 → 1; 0 ൏ 𝛽 ൑ 1. If β = 1, Equation (34) turns 
into the Langmuir equation corresponding to the adsorption on a homogeneous surface without 
taking into account the interaction between the adsorbate molecules. It has also been proven 
rigorously that the parameter β and fractal dimension DF of the interface between the monolayer and 
the adsorbent surface are related by the equality: 𝐷ி = 3 − 𝛽 [11]. 

Figure 3. Results of analysis for sample 2 with Equation (33). (a) Equation (27); (b) Equation (31).

For sample 1, Equation (27) describes the experimental surface pressure isotherm for 0 < θ ≤ 0.35
with a maximum relative deviation of 9.5% and for sample for 0 < θ ≤ 0.45 with a maximum relative
deviation of 9.7%.

The quasi-two-dimensional Equation (31) describes the experimental surface pressure isotherm
for sample №1 for 0 < θ ≤ 0.65 with a maximum relative deviation of 8.5% and for sample 2 for
0 < θ ≤ 0.67 with a maximum relative deviation of 8.7%.

Earlier, the designation α = DF
2 was introduced. Consequently, the fractal dimension of the

interface between the monolayer and the surface of the adsorbent is DF = 2.4 for sample 1 and is
DF = 2.28 for sample 2. It is interesting to check the results of the calculation of these fractal dimensions
obtained with the quasi-two-dimensional Equation (31). In earlier published work, the Langmuir
adsorption isotherm equation has been investigated in the form [16]:

V = Vm
(bp)β

1 + (bp)β
(34)
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In Equation (34), V and Vm are the adsorption values at pressure p and in the maximum dense
monolayer, respectively; b is an equilibrium constant for p→ 1; 0 < β ≤ 1 . If β = 1, Equation (34) turns
into the Langmuir equation corresponding to the adsorption on a homogeneous surface without taking
into account the interaction between the adsorbate molecules. It has also been proven rigorously that
the parameter β and fractal dimension DF of the interface between the monolayer and the adsorbent
surface are related by the equality: DF = 3− β [11].

According to Equation (34), sample 1 is characterized by the parameter value β = 0.68. For sample
2, we found β = 0.76. Consequently, the fractal dimension of the interface between the monolayer and
the adsorbent surface for sample 1 is DF = 2.32 and for sample 2 is DF = 2.24. These results agree well
with the values of the fractal dimension determined from quasi-two-dimensional Equation (31).

Now let us give some comments regarding the interval of θ, for which Equation (31) describes
the surface pressure isotherm. To do this, it is convenient to analyze the isotherms for the Graham
functions [17]:

Gr(T, θ) =
θ

1− θ
1
p

(35)

Figure 4 shows the function Gr(T,θ) of the adsorption isotherm for sample№1. The dots denote
the values calculated by Formula (35) based on the experimental adsorption isotherm.
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Such behavior of Gr(T,θ) is typical for the monolayer on non-uniform surface taking into account
the interaction of adsorbed molecules. Figure 4 clearly shows that the function Gr(T,θ) is not
monotonic: it reaches a minimum at θ ≈ 0.65 and then increases sharply. The domain of applicability of
the quasi-two- dimensional VdW equation is limited by the monotonic domain of the function Gr(T,θ).

4. Conclusions

The further development of the two-dimensional van der Waals equation by considering the
fractal nature of the monolayer–solid interface delivered a quasi-two-dimensional van der Waals
equation. The symmetry of the monolayer determines the number of possible equally probable micro
configurations of the macro state of the adsorbate. When adsorbed on a geometrically and energetically
homogeneous surface, the probabilities of all configurations of the monolayer are the same and
independent. The van der Waals equation is strictly valid for the region of the second and third virial
coefficients. In this region, Equation (30) is an analytic function with respect to a variable. When
adsorption on a geometrically and energetically inhomogeneous surface takes place, the symmetry of
the monolayer is broken. In this case, the probability of configurations of the monolayer is not the
same and there are conditional probabilities. However, in this case, individual configurations of the
monolayer can be geometrically ordered based on the scale invariance hypothesis, which makes it



Colloids Interfaces 2020, 4, 1 10 of 11

possible to increase substantially the domain of determination of the van der Waals equation. However,
in this case, the van der Waals equation (Equation (30)) is a nonanalytic function with respect to a
variable θ.

Application of the developed equation to experimental data of two different samples of activated
carbon demonstrated a good compliance of measured and calculated data. The determined fractal
dimensions of the coal samples coincide with the values calculated by another method.

Author Contributions: Writing—review and editing, V.K. and E.S.; methodology, V.K.; formal analysis, V.K.;
investigation, E.S. All authors have read and agreed to the published version of the manuscript.
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Symbols

a adsorbed amount
a2 parameter in Equation (19)
A molecular area
Af excluded area of a molecule
b equilibrium constant (FHH-eq.)
b2 parameter of de Boer equation
b2 parameter in Equation (18)
B2,D virial coefficient
C2,D virial coefficient
DF fractal dimension
fex exclusion factor
F free energy (Helmholtz)
Gr Graham function
h dimensionless thickness
i measure of attractive forces
L perimeter
N number of moles
Na number of adsorbed molecules
Nm number of moles in monolayer
p pressure in bulk phase
rij distance between molecule i and j
R ideal gas constant
Sexp specific surface area
T temperature
us(rij) interaction energy of molecule i and j
V adsorbed volume
Vm maximum of adsorbed volume
Va gas volume where adsorbate exists
Vd gas volume with same density as bulk gas
zs

f amplitude of oscillations
ZN

S, ZN
2D configuration integrals

α
′

dimensionless constant
β parameter (Equation (7))
ε depth of Lennard-Jones potential
π 2-dimensional pressure
π dimensionless pressure
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κ constant (Equation (6))
σ molecular diameter (LJ-potential)
θ degree of pore filling
φ0 energy of lateral interactions (Equation (14))
φ average interaction energy (Equation (15))
Ξ, Ξ0, Ξ* grand partition functions (Equation (8))
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