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Abstract: Most inorganic material surfaces exposed to ambient air can adsorb water, and hydrogen
bonding interactions among adsorbed water molecules vary depending on, not only intrinsic
properties of material surfaces, but also extrinsic working conditions. When dimensions of solid
objects shrink to micro- and nano-scales, the ratio of surface area to volume increases greatly and
the contribution of water condensation on interfacial forces, such as adhesion (Fa) and friction
(Ft), becomes significant. This paper reviews the structural evolution of the adsorbed water layer
on solid surfaces and its effect on Fa and Ft at nanoasperity contact for sphere-on-flat geometry.
The details of the underlying mechanisms governing water adsorption behaviors vary depending on
the atomic structure of the substrate, surface hydrophilicity and atmospheric conditions. The solid
surfaces reviewed in this paper include metal/metallic oxides, silicon/silicon oxides, fluorides, and
two-dimensional materials. The mechanism by which water condensation influences Fa is discussed
based on the competition among capillary force, van der Waals force and the rupture force of solid-like
water bridge. The condensed meniscus and the molecular configuration of the water bridge are
influenced by surface roughness, surface hydrophilicity, temperature, sliding velocity, which in turn
affect the kinetics of water condensation and interfacial Ft. Taking the effects of the thickness and
structure of adsorbed water into account is important to obtain a full understanding of the interfacial
forces at nanoasperity contact under ambient conditions.

Keywords: water adsorption; water condensation; molecular configuration; adhesion force;
friction force

1. Introduction

Understanding interfacial properties of water adsorbed on/at solid surfaces is a central theme
across many scientific disciplines [1,2]. Adsorption of water from the surrounding environment onto
solid surfaces is inevitable unless the surface is chemically inert or its surface energy is extremely
low. The extent of adsorption plays a crucial role in a broad range of industrial processes, such as
microelectromechanical systems, nanomanufacturing, heterogeneous catalytic reactions, electronic
devices/sensors, nanomechanics, and lubrication [3–6]. Indeed, water condensation causing high
interfacial forces, such as adhesion (Fa) and friction (Ft), is a serious problem in micro/nanomaterial
engineering when the surface-to-volume ratio becomes significantly large and the surface properties
dominate the material performance [7–9].

Water adsorption on solid surfaces is governed by the subtle balance between water-water
hydrogen-bonding (H-bonding) and water-solid H-bonding as well as dispersive interactions governed

Colloids Interfaces 2019, 3, 55; doi:10.3390/colloids3030055 www.mdpi.com/journal/colloids

http://www.mdpi.com/journal/colloids
http://www.mdpi.com
https://orcid.org/0000-0002-8575-7269
http://dx.doi.org/10.3390/colloids3030055
http://www.mdpi.com/journal/colloids
http://www.mdpi.com/2504-5377/3/3/55?type=check_update&version=2


Colloids Interfaces 2019, 3, 55 2 of 31

by Lifshitz theory. These interactions determine the molecular configuration of water molecules in the
adsorbed layer. The structure of the adsorbed water layer on a solid surface has been analyzed with
various spectroscopic techniques and molecular dynamics (MD) simulations [10–13] and found to be
quite different from bulk water (or liquid water). For instance, the structure of the adsorbed water layer
is determined by the extension of water-solid interactions from the interior to the exterior of the surface.
If a solid surface is hydrophilic, strong interactions between the solid surface and water molecules may
result in the formation of a strongly H-bonded water layer, also denoted as ordered water, solid-like
water, ice-like water, or quasi-ice, in the adsorbed layer [10]. Water condensation around nanoasperity
contacts varies with not only the intrinsic properties of the contacting surfaces (e.g., atomic structure,
dangling bond, wettability, chemical activity, and surface roughness), but also the working conditions
(e.g., temperature, humidity, sliding velocity, and atmosphere) (Figure 1) [14–16]. Apart from the
amount of adsorbed water, the structure of the adsorbed water layer also plays a significant role in
interfacial forces at the nanoasperity contact, especially under ambient conditions.
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chemistry as well as atmosphere conditions on water adsorption behaviors on metal/metallic oxides, 
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forces at the nanoasperity contact, including Fa and Ft, are discussed. 
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The unique properties of water in the liquid state stem largely from its dipole moment and 
H-bonding capability [17,18]. When water is adsorbed on solid surfaces, interactions with the solid 
surface cause its properties to deviate from that of liquid water [19,20]. One of the most typical 
characteristics of adsorbed water is that an ordered structure can exist on some solid surfaces due to 
strong hydrogen-bonded interactions between the water molecules and substrate atoms [13,21]. 
Using ultrafast electron crystallography with a spatial resolution of 0.01 Å, Ruan et al. [22,23] 
measured the structures and dynamics of interfacial water on Cl- and H-terminated Si(111) surfaces 

Figure 1. (a) The molecular configuration of adsorbed water layer on solid surfaces is governed by
atomic structure of substrates, terminated groups on solid surfaces, and atmosphere conditions. A
dynamic equilibrium exists in adsorbed water layer on solid surfaces with continuous evaporation and
chemi/physi adsorption. (b,c) Schematically showing meniscus bridge formation at contacting and
near-contacting asperities at multi-asperity contact and at single nanoasperity contact, which strongly
affects the interfacial forces (i.e., adhesion force and friction force). The single-asperity contact in (c) is
also regarded as a microscopic prospective of the multi-asperity contact in (b).

This review focuses on water adsorption behaviors on solid surfaces and their effects on Fa and
Ft at nanoasperity contacts for a sphere-on-flat geometry. The influences of surface structure and
chemistry as well as atmosphere conditions on water adsorption behaviors on metal/metallic oxides,
Si/Si oxides, fluorides, two-dimensional (2D) materials, and other material surfaces are summarized.
The changes in the kinetics of water condensation due to these factors and their effects on interfacial
forces at the nanoasperity contact, including Fa and Ft, are discussed.

2. Water Adsorption on Solid Surfaces

2.1. Effect of the Surface Atomic Structure on Water Adsorption

The unique properties of water in the liquid state stem largely from its dipole moment and
H-bonding capability [17,18]. When water is adsorbed on solid surfaces, interactions with the solid
surface cause its properties to deviate from that of liquid water [19,20]. One of the most typical
characteristics of adsorbed water is that an ordered structure can exist on some solid surfaces due to
strong hydrogen-bonded interactions between the water molecules and substrate atoms [13,21]. Using
ultrafast electron crystallography with a spatial resolution of 0.01 Å, Ruan et al. [22,23] measured
the structures and dynamics of interfacial water on Cl- and H-terminated Si(111) surfaces and
observed the coexistence of ordered water and crystal-like ice structures on Cl-terminated surfaces at
a cryogenic temperature (Figure 2). The analysis of surface diffraction features indicates that water
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molecules adsorbed at the Cl interface are undissociated. Compared with those on H-terminated
surfaces, the interactions of water with Cl-terminated Si(111) are relatively stronger because of
electrostatic contributions [24]. These interactions explain why the ordered structure of water forms
on Cl-terminated Si(111) but not on the H-terminated Si surface. Using scanning tunnel microscope
(STM), a self-assembled molecular water monolayer with a long-range order structure was shown to
form on a TiO2 anatase (101) surface without any other termination groups [25].
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Figure 2. (a) Schematic illustrating the structural water adsorbed on the Cl-terminated Si(111) surface.
This ordered water film structure lasts up to three to four layers and forms crystalline islands. (b–e)
showing the evolution of in situ growth of ordered ice water on the Cl-terminated silicon surface at a
cold temperature of 110 K. The adsorption of water on the substrate can be seen from the disappearance
of 111 silicon Bragg points (b) and the formation of 111 crystal ice Bragg points, along with the
diffraction ring of amorphous ice (c). The structure is stable when the rings, spots and fringes are almost
unchanged as diffraction shows (d,e). Reprinted from Ref. [22,23], Copyright 2004, with permission
from Science.

Both the structural and dynamic properties of the adsorbed water layer depend on the atomic-scale
geometry and chemical properties of solid surfaces [26]. For example, the structure of water adsorbed
on Cu(110) is a quasi-one-dimensional (1D) chain. However, the adsorbed water on Cu(111) behaviors
a three-dimensional (3D) hexagonal structure. Moreover, 2D overlayers with mixtures of pentagons
and heptagons were observed on Pt surfaces, but no uniform 2D ice layer has been detected [27–30].
Another example is water-silica interfaces, which are probably one of the most extensively studied
systems [31–35]. Based on density functional theory and MD simulations, a well-ordered 2D structure
with quadrangular and octagonal patterns of H-bond networks, also known as an ice tessellation, is
expected to form on a β-cristobalite(100) surface due to strong H-bond interactions between water
molecules and geminal silanol groups (Figure 3a). In contrast, only isolated water molecules would
exist on β-cristobalite(111) surfaces because silanol groups on this surface do not interact with each
other (Figure 3b) [36]. This surfacial atomic structure dependence of water adsorption is also found
on other solid surfaces. Zhang et al. [37] investigated the adsorbed water film on 111 and 100
crystal surfaces of calcium fluorite (CaF2) using MD simulations and sum frequency generation (SFG)
vibrational spectroscopy; they reported that a gap exists between surface fluoride ions and interfacial
water molecules in the (111) surface (Figure 4a). This surface is modestly hydrophobic with a water
contact angle of ~20◦. By contrast, the (100) surface is hydrophilic, has a zero contact angle, and is fully
hydrated by water molecules (Figure 4b). Up to three water layers can interact with the (100) surface,
whereas only two water layers interact with the (111) surface. These studies show that the different
atomic structures or termination groups of solid surfaces not only affect the structure and morphology
of the adsorbed water layer, but also change the hydrophobicity.
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adsorbed water assumes a more liquid-like structure on hydrophobic surfaces [41]. Using MD 
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demonstrated that water molecules on graphite do not form H-bond interactions with the surface. 
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Figure 3. Water adsorption on different crystallographic planes obtained in molecular dynamics (MD)
simulations. (a) Adsorbed water structure on two different adsorption sites of the β-cristobalite(100)
surface, i.e., the bridge site of two adjacent vicinal hydroxyl groups (a,b) and that of two adjacent
geminal silanols (c,d). The water molecules have been colored with black oxygen and white hydrogen to
distinguish from the hydroxyl groups on the surface (colored dark gray and light grayd). (e) Adsorbed
water structure on the β-cristobalite(111) surface. Reprinted from Ref. [36], Copyright 2005, with
permission from APS publications.
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Figure 4. MD simulation snapshot of the equilibrium configuration of water molecules at fluorite (111)
surface (a) and (100) surface (b) (green: fluorine; cyan: calcium). Reprinted from Ref. [37], Copyright
2015, with permission from ICE Virtual Library.

2.2. Effect of Surface Wettability on Water Adsorption

In generally, surface wettability (hydrophilicity/hydrophobicity) is assessed by the contact angle
of a water droplet [38]. The water contact angle on a highly hydrophilic surface may be as low as nearly
zero and rises with the hydrophobicity of the solid surface [39,40]. Qualitatively, water adsorption
preferentially occurs on hydrophilic surfaces [41–46]. Apart from the amount or thickness of the water
layers adsorbed on a surface, the surface chemistry can also alter the configuration of water molecules
in the adsorbed layer. When a surface is hydrophilic, both ordered and liquid-like water structures can
coexist as the outermost adsorbed layer [10,47]. In contrast, adsorbed water assumes a more liquid-like
structure on hydrophobic surfaces [41]. Using MD simulations, Willard et al. [48] reported that water
molecules adsorbed on hydrophobic surfaces showed diffusive behavior due to the lack of strong
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interactions with the surface. Gordillo et al. [49] demonstrated that water molecules on graphite do
not form H-bond interactions with the surface.

Chen et al. [41] compared the configurations of adsorbed water layer on a hydrophilic Si oxide
surface (terminated with Si–OH groups, water contact angle <5◦) and a relatively hydrophobic Si
surface (terminated with Si–H groups, water contact angle ≈ 83◦) by characterizing O–H stretching
vibrations using attenuated total reflection infrared (ATR-IR) spectroscopy. As shown in Figure 5a and
b, the difference in the H-bonding interactions of water molecules adsorbed on these two surfaces is
manifested in the peak shape of the O–H stretching mode in the range of 3000–3800 cm−1. In general,
ice water shows a peak centered at ~3220 cm−1 [50,51], while liquid water exhibits a broad peak
centered at ~3400 cm−1 [52,53]. Thus, the OH stretching band can be deconvoluted into these two
components: A solid-like component with a strongly H-bonded, relatively ordered structure and a
liquid-like component with a disordered structure [53].
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Figure 5. Water adsorptions on hydrophilic OH-terminated silicon oxide surface and hydrophobic
H-terminated silicon surface. ATR-IR spectra of the O-H stretching region of water adsorbed on (a)
hydrophilic OH-terminated silicon oxide surface (Si-OH) and (b) hydrophobic H-terminated silicon
surface (Si-H) at relative humidity (RHs) of 15%, 30%, 45%, 60%, 75% and 90%. The insets schematically
show the Si-OH functional groups on a native oxide layer and the Si-H groups on the HF-etched surface.
Si: blue, O: red, H: grey. The O-H stretching region is fitted with two components-strongly H-bonded
water (blue lines centered at 3200~3275 cm−1) and weakly H-bonded water (green lines centered at
3400~3450 cm−1). (c) and (d) respectively illustrating the schematic of structural of adsorbed water
layer on hydrophilic Si-OH and hydrophobic Si-H surfaces. The dotted yellow lines represent hydrogen
bonds. Note that illustration is not to scale. Upper-right inset in (d) showing the schematic of clusters
of water molecules on the hydrophobic Si-H surface. Reprinted from Ref. [41], Copyright 2018, with
permission from ACS publications.

On the hydrophilic OH-terminated Si oxide surface, the dominance of the peak at ~3220 cm−1 (blue
line in Figure 5a) implies the abundance of the ordered water structure over the disordered structure
(Figure 5c). This configuration is congruent with the structures previously proposed from other
spectroscopic observations [13,51,54] and MD simulations [55,56]. A similar water adsorption behavior
has been observed on other hydrophilic surfaces reported by Thiel, et al. and Beaglehole, et al. [57,58].
On the hydrophobic H-terminated Si surface, the main peak was observed at ~3400 cm−1 (green
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line in Figure 5b), indicating the weakly H-bonded disordered structure is dominating. While the
thickness of water increases up to four layers of hydrophilic OH-terminated Si oxide surfaces at
near-saturation humid conditions, it remains less than a monolayer coverage on the hydrophobic Si
surface (Figure 5d) [59]. On hydrophobic surfaces, adsorbed water molecules would form clusters.
Based on the spectral shape of the OH stretching mode (Figure 5b), the structure of these clusters
appears to be highly disordered or dynamically changing, regardless of the relative humidity (RH) of
the environment [60]. Using atomic force microscopy (AFM), Cao et al. [61] visualized the microscopic
structures of adsorbed water on H–Si(111), graphite, and functionalized mica, and found that water is
adsorbed as nanodroplets ~10–100 nm in size on these surfaces under ambient conditions.

Apart from the molecular configuration of the adsorbed water layer, the entropy of water
adsorption depends on the surface wettability [60]. The water layer adsorbed on hydrophilic surfaces at
low humidity seems to have much lower entropies than bulk water, and the entropy of the water layer
increases as the surface becomes more hydrophobic. MD simulation studies showed that interfacial
water molecules on a hydrophilic surface remained in the interfacial region longer than those on a
hydrophobic surface [10–13]. The physical structure of the material surface can also determine the
configuration of the adsorbed water layer. Chen et al. [62] varied the contact angle of a Si surface from
~0◦ to ~85◦ via aging of the H-terminated Si surface in various environments (e.g., DI water, humid
air, anhydrous ethanol). Their study showed that the amount of adsorbed water as well as solid-like
structure decreases with the increase in hydrophobicity of flat substrate surfaces. However, the aged
surface with a gel-like structure could uptake significantly more water from humid air than flat Si
surfaces with complete OH-termination (SiOx/OH) even if the latter is more hydrophilic (Figure 6).
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Miranda et al. [63] studied water adsorption on mica at various RH conditions using SFG vibrational 
spectroscopy. The results of this work revealed that the structure of the adsorbed water layer evolves 
with RH. In the adsorption spectrum of heavy water (D2O), the sharp peak at 2740 cm−1 corresponds to 
the O–D stretching of non-H-bonded O–D groups (free O–D stretching), while the broad peaks at 2375 
and 2510 cm−1 represent O–D stretching modes associated with ordered and disordered H-bonded 
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Figure 6. The relationship between adsorbed water thickness and the water contact angle on Siwater,
Siair, Sialcohol, and SiOx/OH surfaces. Insets: schematic illustrating water adsorption on Siwater surface
with gel-like chains network formed in DI water (upper) and the transform from hydrophobicity to
hydrophilicity (bottom). The gray shadow area and the dashed line are drawn to guide eyes for these
two conditions. The RH for all measurements is controlled at 35 ± 5%. Reprinted from Ref. [62].

2.3. Effect of External Environments on Water Adsorption

In addition to the intrinsic surface properties of materials described above, the external
environmental conditions such as RH, temperature, and storage time can influence water adsorption.
Miranda et al. [63] studied water adsorption on mica at various RH conditions using SFG vibrational
spectroscopy. The results of this work revealed that the structure of the adsorbed water layer evolves
with RH. In the adsorption spectrum of heavy water (D2O), the sharp peak at 2740 cm−1 corresponds to
the O–D stretching of non-H-bonded O–D groups (free O–D stretching), while the broad peaks at 2375
and 2510 cm−1 represent O–D stretching modes associated with ordered and disordered H-bonded
networks, respectively (Figure 7a) [51,64]. The O–D stretching modes associated with H-bonded O–D
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groups begin to emerge at RH of 23%, and the component corresponding to the ordered structure
becomes stronger than the component corresponding to the disordered structure at RH ≥ 40%. When
RH exceeds 90%, the spectrum is completely dominated by the ordered O–D peak, indicating the
domination of the ordered structure over the disordered one in the adsorbed water layer. Xu et al. [65]
investigated the evolution of the adsorbed water layer on a mica surface with changes in RH by
modifying the water structure by contacting with the tip of a scanning polarization force microscope.
The tip contact produced a circular depression in the local polarizability at low RH (<20%), and
capillary condensation induced the formation of water droplets and 2D islands around the contact
point at other high RHs. In contrast to the evaporation of droplets over a short period of time, the
ordered structure islands can remain much longer time (Figure 7b). However, the water droplets
rapidly evaporated as RH decreased from 33% to 24%. The water molecules were condensed again as
RH was increased back to 35%, and the recovery of the islands ceased after 38 min (Figure 7c).
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oxide surface that propagates for up to ~3 layers from the surface. The solid-like structure, also 
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on the RH dependence of adsorbed water structures have been obtained by MD simulations [41]. 
Rahaman et al. [67] studied the dynamics of water adsorption on calcite surfaces as a function of RH 

Figure 7. (a) Sum frequency generation (SFG) spectra of a water (D2O) film on a mica surface as a
function of RH at room temperature (296 K); The spectrum of the bulk waver/vapor interface is added
as a comparison (the bottom trace). (b) SPFM images (6 µm × 6 µm) showing the evaporation of a
droplet of water left on the mica surface after breaking the capillary neck formed around the atomic
force microscopy (AFM) tip during contact. (c) SPFM images (3.4 µm × 3.4 µm) showing the size of the
water islands at different RH. Reprinted from Ref. [63,65], Copyright 1998, with permission from ACS
publications & APS publications.

Similar to observations on the mica surface, the water layer grows gradually with increasing RH on
other hydrophilic surfaces [66,67]. However, the evolution of water structures on highly-hydroxylated
Si oxide surfaces with a water contact angle less than 5◦ is fairly diverse. Figure 8a presents the
thickness of the adsorbed water layer, as well as the ordered and disordered components with varying
RH, on the Si oxide surface. The values recorded are estimated based on the ATR–IR spectra of O–H
stretching measured on the substrate surface. At low RH (<30%), the ordered O–H peaks are dominant,
so the adsorbed water mainly has a solid-like structure on the Si oxide surface that propagates for up
to ~3 layers from the surface. The solid-like structure, also denoted as the ice or ordered structure,
competes with the liquid water structure in the RH range of 30–60%, above which the liquid structure
dominates the adsorbed water (Figure 8b). Similar results on the RH dependence of adsorbed water
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structures have been obtained by MD simulations [41]. Rahaman et al. [67] studied the dynamics of
water adsorption on calcite surfaces as a function of RH and found that water molecules appeared to
be much more tightly bound to the surface at low RHs than at high RHs, indicating the domination of
an ordered water layer under these conditions.
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Figure 8. (a) Adsorption isotherm of adsorbed water layer on silicon oxide surface estimated based
on the ATR-IR spectra of O-H stretching region measured at room temperature. Regions A, B, and C
are marked to demonstrate the growth of ice-like water at low RH (< ~30%), transitional growth from
ice-like structure to liquid-like structure at middle RH (~30% < RH < ~60%), and the growth of liquid
water at high RH (> ~60%). (b) Schematic illustrating the structural evolution of adsorbed water layer
on hydrophilic silicon oxide surface. Reprinted from Ref. [10], Copyright 2005, with permission from
ACS publications.

RH-dependent water adsorption behaviors have been studied on hydrophobic graphene surfaces.
No adsorbed water exists on the surface of graphene/mica at RHs below 2%, and a polygonal island
structure can be observed at RHs above 90% [68]. Furthermore, water molecules are capable of
adsorbing inside single-walled carbon nanotubes (SWNTs). As RH increases, the amount of water
adsorbed in the SWNTs increases at temperatures between 8.0 and 22.1 ◦C (Figure 9a) [69,70]. Here,
the environmental temperatures have a significant impact on the water adsorption in SWNTs. More
water molecules are adsorbed in SWNTs at lower temperatures, especially at RHs below 90%, than at
higher ones, thereby indicating that a hydrophobic-hydrophilic transition in SWNTs can be realized
by cooling treatment [19,71]. Ketteler et al. [72] demonstrated that the water film coverage on a
TiO2 (110) surface increases with increasing RH but decreases with increasing temperature. Using
grand canonical Monte Carlo simulations, Puibasset et al. [73] compared the adsorption of water in
disordered mesoporous silica glass (Vycor-like) at temperatures of 300 and 650 K. The results showed
a hysteresis loop in the adsorption/desorption data at low temperatures and a reversible curve at
high temperatures. The results described above demonstrate that the structure of interfacial water is
sensitive to temperature.
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Figure 9. (a) Water adsorption isotherms inside single-walled carbon nanotubes (SWNTs) as a function
of RH measured at different temperatures, including 8.0 ◦C (squares), 18.4 ◦C (triangles), and 22.1 ◦C
(circles). (b) Schematic illustration showing a monolayer water adsorbed inside SWNTs at 8.0 ◦C.
Reprinted from Ref. [19,71], Copyright 2008, with permission from Science.

3. Effect of Water Adsorption on Adhesion at Nanoasperity Contact

3.1. Brief Introduction of Water Adsorption-Dependent Adhesion Forces

Fa is the force required to separate two contacting or near-contacting surfaces. In general, the
components that can contribute to Fa between surfaces are capillary force (Fc), van der Waals force
(FvdW), electrostatic force (FE), and chemical bonding force (FB) [14,73–75]. In dry or vacuum conditions,
Fa is mainly determined by the attractive force of two contacting surfaces, such as FvdW, FE, and FB,
due to the lack of adsorbed water. If the tip and sample sit in air for a sufficiently long time, surface
charges are expected to fully dissipate [76]. Thus, FE = 0. FB can also be neglected when the contacting
surfaces are fully saturated with non-reactive functional groups. Therefore, Fa is dominated by FvdW

under dry or vacuum conditions. At ambient conditions, water molecules can condense around the
contact interface and form a meniscus (bridge) around the annulus of the contact area [77]. This
meniscus attracts the two surfaces to come in close contact and causes greater adhesion. In this case,
the adhesion between surfaces is mainly dominated by Fc and FvdW.

A typical technique to quantify interfacial adhesion involves measurement of the pull-off force
using AFM. Extensive experiments carried out in humid air show that Fa is dominated by the capillary
interaction, which varies with RH as well as the surface wettability or surface chemistry [14,15].
The RH-dependent Fc plays an important role in adhesion behaviors. For example, as RH increases, Fc

has been reported to monotonically increase [78], monotonically decrease [79], exhibit a maximum [80,
81], increase in a step-wise manner [82], or remain constant [83] (Figure 10). The discrepancies
among these reports may be due to the differences in the humidity measurement ranges, sample
preparation processes, and measurement methods. Thus, experimental details must be considered
before conclusions on the influence of RH on Fa are drawn. Researchers believe that RH and surface
wettability are among the factors determining Fa at single-asperity contact [77,80,81]. In general, trend c
in Figure 10 is most frequently observed for hydrophilic contact surfaces (i.e., silanol group terminated
Si3N4 [65], mica [84] or SiO2 surface [80,81]), which is usually attributed to the formation of water
meniscus around the contact. When either or both of the contact surfaces are hydrophobic, the Fc has a
limited contribution to Fa due to weak capillary condensation. In this case, adhesion is dominated by
other RH-independent factors, such as FvdW and surface topography (Figure 10e) [15,85–87].
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Figure 10. Possible trends of adhesion force versus RH curves in AFM measurements. (a) Monotonic
increase (two different types); (b) Monotonic decrease; (c) Increasing to maximum and then decreasing;
(d) Step-wise increase; and (e) RH independence. Reprinted from Ref. [15], Copyright 2015, with
permission from Taylor & Francis.

The variations in adhesion caused by capillary effects are strongly related to the configuration of
the condensed water bridge around the annulus of the contact area. For instance, Asay and Kim [81]
calculated the Fa at single-asperity contact between silicon oxide surfaces based on Xiao and Qian’s
model [80] and found that the theoretical values, including Fc and FvdW, are much smaller than the
experimental results at all RH conditions tested. The capillary effect alone cannot explain the high
Fa observed on the hydrophilic silicon oxide surface; this was explained to be due to the ignorance
of the solid-like water structure. In this case, the contribution of the rupture of H-bond bridges
between strongly H-bonded networks at the center of the contact region must be considered in the
adhesion. In the following subsections, the effect of water condensation on adhesion is reviewed from
its contribution to FvdW, Fc, and the force of solid-like water bridge breaking.

3.2. Effect of Water Adsorption on van der Waals Force

FvdW, which is named after the Dutch scientist Johannes Diderik van der Waals, refers to the
distance-dependent interaction between atoms or molecules [74]. Unlike ionic or covalent bonds,
these attractions do not result from a chemical bond. They are comparatively weak and, therefore,
more susceptible to disturbance. FvdW vanishes quickly with increasing distance between interacting
molecules [88]. Normally, the value of FvdW is approximate to the pull-off force at the contact interface
measured in vacuum. The pull-off force is determined from the force–distance curve based on the
maximum deflection in the attractive region just before the AFM probe snaps off to the freestanding
position [76]. In ambient conditions, the presence of water at the contact interface can vary the FvdW;
in this case, estimating FvdW from the experimentally-measured Fa becomes difficult [76]. Thus, FvdW

is usually estimated from a theoretical calculation.
The FvdW in a typical sphere/plane geometry (Figure 11) contact can be calculated by [89]:

FvdW = AHamakerR/6a2. (1)

This force is a function of the sphere radius (R) and Hamaker constant (AHamaker) of the medium
in which the two objects are placed. According to Israelachvili [76], the separation a for most solid
contacts can be taken as ~2 Å to make use of the continuum theory at the atomic scale. Then, the
values of FvdW in air (Fair

vdw) and water (Fwater
vdw ) can be estimated. FvdW can be expected to take a value
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between these two limiting cases as RH increases from zero to saturation. At intermediate RHs, FvdW

can be expressed by the following crude approximation to account for the filling angle (φ) [77,80,90],

FvdW(φ) = Fwater
vdW {1−

1

[1 + R(1− cosφ)/a]2
}+ Fair

vdW{
1

[1 + R(1− cosφ)/a]2
} (2)
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Figure 11. A geometric model of a liquid meniscus formed between a sphere and a flat substrate. 
Here, ϕ is the filling angle, R the sphere radius, hDMT the DMT indentation depth, hm the height of 
meniscus, rK the Kelvin radius (or meridional radius) of meniscus, rm the meniscus-only portion of 
the total radius from the contact center, and rDMT the DMT contact radius. Reprinted from Ref. [91], 
Copyright 2017, with permission from ACS publications. 

Figure 11. A geometric model of a liquid meniscus formed between a sphere and a flat substrate. Here,
φ is the filling angle, R the sphere radius, hDMT the DMT indentation depth, hm the height of meniscus,
rK the Kelvin radius (or meridional radius) of meniscus, rm the meniscus-only portion of the total
radius from the contact center, and rDMT the DMT contact radius. Reprinted from Ref. [91], Copyright
2017, with permission from ACS publications.

In general, condensation of the water meniscus between the sphere–plate contact interface
decreases A. For example, in the case of Si3N4/SiO2 contact, AHamaker is 1.04 × 10−19 and 1.9 × 10−20 J
when the medium is air and water, respectively [92]. Then, Equation (2) demonstrates that the growth
of the water layer causes a decrease in FvdW with increasing RH. Thus, the contribution of FvdW to
Fa decreases with increasing RH (Figure 10b). Chen et al. [4] measured the Fa on a hydrophobic
H-terminated Si surface (water contact angle ~83◦) and found that the force decreases substantially as
the test environment transits from humid air to liquid water. During this process, AHamaker is reduced
by 80% [80,85,93]. On a hydrophobic Si surface, water adsorption is very weak (Figure 5d), so Fc is
negligible and FvdW decreases, leading to a considerable decrease of Fa. Furthermore, the decrease in
Fa at high RHs (as shown in Figure 10c) may be partly attributed to the decreasing FvdW. However, the
situation is complicated for hydrophilic surfaces (Figure 10a,c,d). Water condensation caused by the
capillary effect becomes significant in RH-dependent adhesion behaviors.

3.3. Effect of Water Condensation on Capillary Force

The meniscus condensed between two neighboring surfaces can induce attractive interactions
(such as Fc), which are the physical basis for many adhesion phenomena [14,15]. In earlier research,
the Fc for a sphere-on-plane geometry was simply defined based on the contact angles of a sphere (θ1)
and plane (θ2) [80],

Fc = 4πγR(cosθ1 + cosθ2) (3)

where γ is the surface tension of the liquid and R is the radius of sphere. Equation (3) is valid for
macroscale contact, where R is much larger than the height of the sphere immersed in the meniscus,
or in the case when one or both of the contact surfaces is/are hydrophobic. In this model, the effect
of the environment (such as RH) on the capillary-related Fa is very limited. Adhesion behaviors on
hydrophobic surfaces (such as self-assembled monolayers [80,94], CaF2 [83], Au-coated Si3N4 [95], and
HOPG [85]) may be independent of RH due to the negligible growth of the adsorbed water layer [41].
For instance, the water adsorbed on a hydrophobic Si surface with complete H termination (θ2 = ~83◦)
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reveals a cluster-like structure, and its average thickness is less than one layer even when RH reaches
the near-saturation level (Figure 5d) [4,59]. In this case, the capillary interaction is much weaker
compared with other attractive forces (i.e., the van der Waals component), and its contribution to
adhesion can be neglected [80,83,85,94].

On some hydrophilic surfaces, the dependence of adhesion on surface wettability may be predicted
by using Equation (3), although an exact value cannot be obtained. For example, Seo et al. [94] obtained
different hydrophilic graphene surfaces by UV/O3 treatment and found that the adhesion energy
(estimated from Fa) increases gradually with surface hydrophilization. The variations in adhesion as a
function of surface wettability obey the model in Equation (3). Many research groups have shown the
possibility of controlling interfacial adhesion by adjusting the wettability of a surface [91–93]. As shown
in Figure 12, upon either n- or p-type doping with subsurface polyelectrolytes, graphene surfaces
become more hydrophilic [59], water adsorption is enhanced, and Fa (i.e., the pull-off force) increases
significantly. This behavior is consistent with the wettability-dependent adhesion modulation [96].Colloids Interfaces 2019, 3, x FOR PEER REVIEW 12 of 30 
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Figure 12. (a) Schematic illustrations showing graphene wettability modulation by doping-induced
Fermi level shifts. (b) Water contact angle (left axis) measured by environmental scanning electron
microscopy and the work function (right axis) measured by scanning Kelvin probe microscopy of
n-doped (by high molecular weight (HMW) poly(allylamine hydrochloride) (PAH) and poly-L-lysine
(PLL)), the p-doped graphene (by HMW poly(sodium 4-styrenesulfonate) and poly(acrylic acid) (PAA)),
and undoped graphene on SiO2. (c) Adhesion force measurements on doped and undoped graphene
samples using an octadecyltrichlorosilane-coated silicon AFM probe. Hydrophilic SiO2/Si was used as
a control substrate and showed the lowest adhesion force. Reprinted from Ref. [96], Copyright 2016,
with permission from ACS publications.

The schematic shown in Figure 10 reveals that the adhesion behavior strongly depends on RH.
However, the contribution of this factor to adhesion is not considered in Equation (3). Taking graphene
as an example, Fa remains low at low humidity due to the lack of a capillary meniscus. In this case,
FvdW should play a dominant role. However, when RH > 23%, an adsorbed water layer begins to form
and expands from the initial liquid island to the entire graphene surface, thereby increasing the Fc

and Fa as RH rises to ~45% [88]. Several other studies demonstrated that the increase of RH above
50% may result in a decrease of Fa, especially on hydrophilic surfaces (Figure 10c) [80,81,93]. Xiao and
Qian [80] built a new formulation to fit this complex RH-dependent adhesion behavior and explain the
observed decrease in Fa at high RH. The authors indicated that the decrease in capillary pressure force
governed this behavior when the dimension of the meniscus became comparable with the tip size.

Fc describes the force exerted on neighboring surfaces due to the surface tension of the condensed
liquid and the curvature of the meniscus. According to the thermodynamic equilibrium between solid
and liquid (Young’s equation) and between liquid and vapor (Young-Laplace equation) [14], the Fc

exerted on the asperity by the meniscus comes from both the capillary pressure (pressure difference ∆p
outside and inside the meniscus due to the curvature) and the surface tension: Fc = Fp + Fs [97]. Xiao
and Qian [80] proposed a relationship between Fc and the filling angle (φ) between the tip and the
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water meniscus for a typical sphere-plate contact geometry (Figure 11). Fp and Fs can be estimated
based on the contact angles of a sphere (θ1) and a plane (θ2) [89] as follows:

Fp(φ) = πγR(− sinφ+
cos(θ1 + φ) + cosθ2

a
R + 1− cosφ

sin2 φ) (4)

Fs(φ) = 2πγr1 sin(θ1 + φ) = 2πγR sinφ sin(θ1 + φ) (5)

where a is the minimum distance between the sphere and the plane [80]. At thermal equilibrium, the
filling angle (φ) is determined by the Kelvin equation [98,99],

kT
γv0

ln
P
Ps

= ∆P/γ =
1

RSinφ
+

cos(θ1 + φ) + cos(θ2)

a + R(1− cosφ)
(6)

where v0 is the molecular volume of water and P/Ps is RH.
The height of the water bridge at the contact interface and the related Fc can be calculated from

Equations (4)–(6). A significant decrease in Fc at high RHs is a consequence of a marked decrease in
the Laplace pressure relative to the size of the water bridge, which is considered to play a dominant
role in the drop in Fa with RH in many studies [15]. Bartošík et al. [93] investigated the Fa between
a hydrophilic silicon oxide surface and a Si AFM tip and found that the Fa increases at low RH and
then decreases at high RH and this trend is reversible. Similar behaviors were predicted for different
radii of the contacted asperity tip (Figure 13a) based on the formulation given by Xiao and Qian [80]
considering the variation in FvdW. When RH is fixed, the Fa dominated by capillary interaction has
been observed to increase linearly with the increase of tip radius. All calculated constituents, including
Fc, tension force, and FvdW, show a linear dependence on the tip radius (Figure 13b). The transition of
Fa with RH can be explained by changes in relative contributions of these individual components. As
shown in Figure 13c, the decrease in Fc caused by the Laplace pressure mainly contributes to the drop
in Fa at high RHs. However, the variations in FvdW also play a significant role in the adhesion behavior.
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Figure 13. (a) The calculated total adhesive force between Si3N4 AFM tip and hydrophilic silicon
substrate as a function of the tip radius and RH for water−surface and water−tip contact angles θ1 and
θ2 = 40◦. (b) The profiles of the total adhesive force and its constituents for 50%RH and (c) a tip radius
of 10 nm. Reprinted from Ref. [93], Copyright 2017, with permission from ACS publications.

In summary, the formation of a liquid meniscus at the contact interface is insignificant at very low
RHs, so Fc is relatively weak and FvdW may dominate the adhesion behaviors on both hydrophilic and
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hydrophobic surfaces [81,93,95]. For hydrophilic surfaces, when the adsorbed water layer begins to
form with increasing RH, the increase in Fc becomes more significant compared to the decrease in FvdW,
resulting in an increase in total Fa (Figure 13c). As RH further increases to higher ranges (>~60%), Fa

decreases with decreasing Fc and FvdW. Although a quantitative description involving continuum
theory has been proposed in previous years [14], the experimental results remain inconsistent with
theoretical calculations because of the complexities of real interfacial conditions and the limits of the
model parameters. For example, Asay and Kim [81] investigated the RH dependence of the Fa between
silicon oxide surfaces at single-asperity contact and found that the variations in FvdW and Fc cannot
fully explain the observed magnitude of RH dependence. The presence of solid-like structural water
adsorbed on the silicon oxide surface (Figure 5c) can play a significant role in the adhesion behaviors
on this hydrophilic surface.

3.4. Effect of Adsorbed Water Structure on Adhesion

The results shown in Figures 5–8 indicate that solid surfaces exposed to air can adsorb water
molecules and the thickness of the adsorbed water layer and molecular configuration of the water
layer change depending on RH and surface chemistry [10,41,62,63,65]. On hydrophilic surfaces, such
as a highly-hydroxylated Si oxide surface with a contact angle less than 0◦, a strongly H-bonded
solid-like arrangement of water molecules is found in the adsorbed layer formed at low RHs and a
weakly H-bonded liquid-like structure grows and forms multilayers as RH exceeds 30–40% [41]. This
difference in structures at various RHs significantly influences interfacial properties in nanoasperity
contact systems.

Figure 14a schematically shows the typical states of solid-adsorbate-solid contacts immediately
before the separation of hydrophilic surfaces in different RH regions [81]. At low RH, the sphere is
separated from the substrate surface by the solid-like water. Between RHs of 30% and 60%, both ice-like
and liquid water structures can coexist in and around the contact area. At RHs above 45%, the contact
just before snap-off is composed of two parts: solid-solid water contact at the center; and liquid-liquid
water annular contact at the outer edges. A further increase in RH decreases the contact area of the
central solid-solid water bridge region at the snap-off moment such that it eventually becomes zero
near the saturation RH. Physically, the surface energy of the adsorbed water layer varies with the
evolution of its molecular configuration as a function of RH. The surface energy of pure liquid water at
room temperature is 72.8 ergs/cm2 [100], while solid-like adsorbed water is estimated to close to the
cohesion energy of ice (103.3 ergs/cm2) due to the involvement of more H bonds per molecule in the
latter case [36,101]. As a result, the use of bulk water surface tension is expected to underestimate the
interfacial tension at low RH.

Figure 14b demonstrates the RH-dependence of Fa of a silicon oxide nanoasperity contact. When
the surface energy of pure liquid water is used, the calculated values consisting of FvdW (Equation (2))
and Fc (Equations (4) and (5)) are significantly lower than the experimental data in the RH range of
10–80% [81]. This underestimation stems from the negligence of the RH-dependence of the adsorbed
water structure, i.e., the solid-like water bridge formed at the center of nanoasperity contact (Figure 14a).
Solid–solid water rupture contributes significantly to Fa at nanoasperity contact. The force required
to achieve spontaneous rupture of the solid-like meniscus, denoted as Fh, can be approximated from
the relation Fh = dW/dz, where dW = 2γhdAice [81]. Here, the surface energy (γh) of the strongly
H-bonded solid-like water (~103.3 ergs/cm) is used [36,102]. The area of the solid-like meniscus (Aice,
Figure 14a) at a critical distance (dz) over which the AFM tip snaps off can be calculated by the relation
Aice = π(h + 2R)(2hsolid − h), where h is the total thickness of the adsorbed water, hsolid is the thickness
of the solid-like water layer, and R is the radius of the AFM tip. The theoretical simulations of AFM tip
separation propose that dz is the equilibrium distance between water molecules [36], i.e., dz = 21/6σ
(Lennard-Jones parameter σ = ~3.15 Å) [103]. Thus, Fh as a function of h is written as:

Fh(h) =
2πγh(h + 2R)(2hsolid − h)

21/6σ
(7)
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After considering the contributions of solid-solid water rupture, as well as capillary interactions
and FvdW, the theoretical prediction (thin solid line in Figure 14b) can reproduce the shape and
magnitude of the experimental adhesion behavior.

As shown in Figure 14b, the growth of a solid-like water meniscus can markedly increase Fa at
RH < 30%. By contrast, high adhesion can be prevented if the formation of the solid-like meniscus is
suppressed. For example, a simple method employing the equilibrium adsorption of gas-phase alcohol
molecules on OH-terminated surfaces can effectively reduce interfacial adhesion [104–106]. When a
mixture of n-propanol and water molecules is readily adsorbed on the OH-terminated silicon oxide
surface, a binary adsorbate layer is formed on the substrate surface (Figure 15a). Here, n-propanol
is assumed to locate at the adsorbate/vapor interface while water locates inside the adsorbate layer;
unlike the liquid/vapor interface, the propanol molecules do not form a paired dimer-like structure
at the adsorbate/vapor interface (Figure 15b). Then, n-propanol adsorption from the gas phase can
effectively decrease the Fa between the silicon oxide surfaces (Figure 15c), mainly due to the weak
H-bonding interactions between two n-propanol layers adsorbed on the two contacting surfaces, which
provides very low attractive interactions when the two surfaces separate.
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Figure 14. (a) Schematics of the silicon tip (covered with a native oxide layer) position on silicon oxide
surface and solid-adsorbate-solid contact area as a function of RH. (b) Simulation of the contributions
from capillary force term Fc, van der Waals term FvdW, and the solid-like water bridge term Fh.
The bottom dotted line represents the maximum Fc. The middle-dashed line represents Fc + FvdW.
The solid lines represent the sum of three components, Fh + Fc + FvdW. Reprinted from Ref. [81],
Copyright 2006, with permission from AIP publications.
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Figure 15. (a) ATR-IR spectra of the binary adsorbate layers of n-propanol and water on silicon oxide
with the water contact angle of ~0◦. (b) Schematic illustration of the structure for the binary adsorbate
layer of n-propanol and water on silicon oxide. Reprinted from Ref. [104], Copyright 2012, with
permission from ACS publications. (c) Adhesion force between the silicon tip (covered with a native
oxide layer) and silicon oxide substrate measured with AFM as a function of n-propanol partial pressure.
Reprinted from Ref. [105], Copyright 2005, with permission from Elsevier.
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4. Effect of Water Adsorption on Friction Force at Nanoscale

According to analytical theories developed thus far [16,107], the nanoscale Ft between two contact
surfaces can be divided into three main parts: adhesive friction force for two contacting surfaces (Fadh),
deformation-related friction force (Fdef) resulting from energy dissipation due to deformation of the
contacting asperities; and stick-slip friction force (Fstick-slip),

Ft = Fadh + Fdef + Fstick-slip. (8)

The contributions of Fdef and Fstick-slip to the total Ft depend on the intrinsic properties of the
contacting surfaces, such as their surface roughness, hardness, elastic modulus, and bond energy
of substrate materials, [108–110] as demonstrated in Ref. [16]. In the following subsections, the role
of adhesive interactions in friction behaviors is reviewed with consideration of the effect of water
condensation. In the geometry shown in Figure 11, the water meniscus exerts some Fc that must be
added with the applied load to obtain the effective total force pressing on the contact area and leading
to high friction during relative sliding motion.

4.1. Nucleation of the Water Meniscus During Sliding Process

Physically, the water meniscus between contacting or near-contacting interfaces requires time
to grow until thermodynamic equilibrium is established [102]. If the contact time is too short, the
water meniscus would not have enough time to form. For example, at high sliding speeds, there is
insufficient time for the capillary to fully form [102]. At lower velocities, longer contact times allow
water bridges to grow, which induces higher capillary-related Ft. In this section, the critical factors
influencing water meniscus nucleation during the sliding process and the related time-dependence of
friction are reviewed.

In contrast to the increase in friction with velocity under dry conditions due to thermally activated
stick and slip [102,111], the Ft dominated by capillary effects decreases logarithmically to an asymptotic
value with increasing velocity at various temperatures (Figure 16a) [102]. The critical velocity (vc) at
the intersection of these two regimes can be used to determine the mean capillary nucleation time
(τ) corresponding to the onset of capillary bridge formation. The critical transversal distance for one
asperity travelling with respect to the contacting substrate before capillary nucleation stops is the
contact diameter (d), which can be estimated by using a formula valid in the case of a stiff contact [102]:
d = 2[(R/Y) × (FN + Fa)]1/3. Here, R is the radius of asperity, Y is the reduced tip–sample Young’s
modulus [102], and FN is the normal load. Then,

τ =
2[(R/Y) × (FN + Fa)]

1/3

vc
(9)

The τ calculated by Equation (9) is temperature dependent, as supported by other studies [112,113].
As shown in Figure 16b, the values of τ range from 4.2 ms to 0.7 ms as the experimental temperature
increases from 299 K to 332 K at 37 ± 2% RH; thus, the condensation of the water meniscus can
be viewed as a thermally-activated process with an energy barrier [112–119]. According to thermal
activation theory, the τ of a meniscus bridge can be predicted by the Arrhenius law [112,114,117]:

τ = τ0exp[∆E/(kBT)], (10)

where 1/τ0 is the attempt frequency, ∆E is the nucleation energy barrier, kB is the Boltzmann constant,
and T is the absolute temperature. The data in Figure 16b show an exponential dependence of τ on
1/T, consistent with the thermal activation model (Equation (10)). By fitting friction data at different
temperatures, Szoszkiewicz et al. [102] demonstrated that 1/τ0 ranges from 4 GHz to 250 GHz and
∆E = 7.8 × 10−20 J, which is significantly larger than thermal energy (kBT). Similar values of ∆E were



Colloids Interfaces 2019, 3, 55 17 of 31

also obtained in real-time heating experiments [116]. Thus, an increase in experimental temperature
can facilitate water condensation at the sliding interface, which induces higher Ft [102,114,116].
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Figure 16. (a) The variation of friction with velocity at different temperatures. The load was 15 nN, the
tip radius was 25 nm, the RH was at 37% ± 2%. (b) By fitting the data to calculate the attempt frequency
and energy barrier. Reprinted from Ref. [102], Copyright 2005, with permission from APS publications.

4.2. Effect of Surface Wettability on Water Condensation at Nanoasperity Contact

As described in Section 2.2, the thickness and configuration of the adsorbed water layer are a
function of the surface wettability of a solid substrate, which in turn influences the condensation of
water meniscus at the sliding interface. The water meniscus formed between two hydrophilic contacting
surfaces may be absent when one or both of the contacting surfaces is/are hydrophobic. This is the
reason why the Ft on hydrophobic surfaces is relatively insensitive to RH [120–122]. Borruto et al. [123]
summarized four possible models to demonstrate the possibility of a water layer existing between
four different types of coupling. When both contacting surfaces are hydrophilic (Figure 17a), a water
meniscus can form, and a thin water film may be restricted to the contact region. In this case, the
condensed water does not produce a layer that is capable of hydrostatic lift. When the two contacting
surfaces are hydrophobic (Figure 17b), direct solid contact occurs, and no water layer is formed
between the surfaces. When the asperity surface is hydrophilic but the substrate surface is hydrophobic
(Figure 17c), the latter tends to stay dry while the former tends to become wet. A thick water layer
may form in the contact region since this region has hydrostatic lift. When the asperity surface is
hydrophobic and the substrate surface is hydrophilic (Figure 17d), repulsion of the small surface of
asperity can have a slight influence on the large surface of the substrate. Thus, a lifting layer of water
may form at the contact interface.
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Hydrophilic asperity contacting with hydrophilic substrate. (b) Hydrophobic asperity contacting
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Hydrophilic asperity contacting with hydrophobic substrate. Reprinted from Ref. [102], Copyright
1998, with permission from Elsevier.

Kaibara et al. [124] investigated adhesion behaviors for the four cases shown in Figure 17, and
their results support the belief that the water meniscus makes significant contributions to adhesion
only when both contacting surfaces are hydrophilic. However, although water meniscus may form
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readily when one or both contact surfaces is/are hydrophobic (Figure 17b–d), the differences in the
restricted water layers at the contact interface may still result in different friction behaviors. For
example, the interfacial Ft measured in ambient air increases gradually with hydrophilization of the
contact surface [120]. Opitz et al. [121] compared friction behaviors on hydrophilic and hydrophobic
Si surfaces slid against a Si AFM tip in ambient air and in an ultra-high vacuum (UHV, 10−11 mbar).
The thickness of the adsorbed water film on the hydrophobic Si surface measured by dynamic scanning
force microscopy and scanning tunneling microscopy is one order of magnitude lower than the
hydrophilic Si. As shown in Figure 18, compared with the hydrophobic Si surface, a much larger
Ft can be obtained on the hydrophilic Si surface in ambient air due to the capillary effect. On the
hydrophobic Si surface, the Ft is nearly identical in air and UHV at the same load, thus supporting
the absence of a water meniscus (Figure 18a). Water condensation can cause massive differences
in Ft on the hydrophilic Si surface between UHV and ambient air conditions. In particular, as the
water vapor partial pressure increases, Fc becomes the governing factor of friction from low RH to
high RH (Figure 18b). Similar results are provided in another report by Opitz et al. [125]. Different
mechanisms can be used to explain running-in behaviors of the nanoasperity friction on hydrophilic
and hydrophobic surfaces. For example, on OH-terminated Si surfaces, the Ft decreases remarkably
when the outermost hydrophilic termination groups are removed [126–128].

Colloids Interfaces 2019, 3, x FOR PEER REVIEW 17 of 30 

 

become wet. A thick water layer may form in the contact region since this region has hydrostatic 
lift. When the asperity surface is hydrophobic and the substrate surface is hydrophilic (Figure 17d), 
repulsion of the small surface of asperity can have a slight influence on the large surface of the 
substrate. Thus, a lifting layer of water may form at the contact interface. 

 

Figure 17. (a) Four possible models of existence of water layer between contacting interface. (a) 
Hydrophilic asperity contacting with hydrophilic substrate. (b) Hydrophobic asperity contacting 
with hydrophobic substrate. (c) Hydrophobic asperity contacting with hydrophilic substrate. (d) 
Hydrophilic asperity contacting with hydrophobic substrate. Reprinted from Ref. [102], Copyright 
1998, with permission from Elsevier. 

Kaibara et al. [124] investigated adhesion behaviors for the four cases shown in Figure 17, and 
their results support the belief that the water meniscus makes significant contributions to adhesion 
only when both contacting surfaces are hydrophilic. However, although water meniscus may form 
readily when one or both contact surfaces is/are hydrophobic (Figure 17b–d), the differences in the 
restricted water layers at the contact interface may still result in different friction behaviors. For 
example, the interfacial Ft measured in ambient air increases gradually with hydrophilization of the 
contact surface [120]. Opitz et al. [121] compared friction behaviors on hydrophilic and 
hydrophobic Si surfaces slid against a Si AFM tip in ambient air and in an ultra-high vacuum 
(UHV, 10−11 mbar). The thickness of the adsorbed water film on the hydrophobic Si surface 
measured by dynamic scanning force microscopy and scanning tunneling microscopy is one order 
of magnitude lower than the hydrophilic Si. As shown in Figure 18, compared with the 
hydrophobic Si surface, a much larger Ft can be obtained on the hydrophilic Si surface in ambient 
air due to the capillary effect. On the hydrophobic Si surface, the Ft is nearly identical in air and 
UHV at the same load, thus supporting the absence of a water meniscus (Figure 18b). Water 
condensation can cause massive differences in Ft on the hydrophilic Si surface between UHV and 
ambient air conditions. In particular, as the water vapor partial pressure increases, Fc becomes the 
governing factor of friction from low RH to high RH (Figure 18c). Similar results are provided in 
another report by Opitz et al. [125]. Different mechanisms can be used to explain running-in 
behaviors of the nanoasperity friction on hydrophilic and hydrophobic surfaces. For example, on 
OH-terminated Si surfaces, the Ft decreases remarkably when the outermost hydrophilic 
termination groups are removed [126–128]. 

 
Figure 18. (a) A comparison of friction coefficients between hydrophobic and hydrophilic surfaces
in air and ultra-high vacuum (UHV). The friction force of hydrophilic silicon is greater in air than in
UHV while the friction force of hydrophobic silicon is almost the same under these two conditions.
(b) The friction force of hydrophilic silicon versus residual pressure and a schematic model of water
coverage in various coverage regimes determined by the friction behaviors. Reprinted from Ref. [121],
Copyright 2002, with permission from Elsevier.

Water adsorption can also significantly alter the friction behaviors on 2D material surfaces.
Graphene surfaces are well known to provide extreme low friction due to their low surface
energy [129–131]. However, Ft increases substantially when the graphene surface is oxidized
(Figure 19) [126]. This result indicates that the growth of OH groups on graphene oxide (GO)
surfaces may enhance water adsorption and facilitate the growth of water bridges between the AFM
tip and GO surface, thereby augmenting the effect of Fc and increasing Ft. Moreover, the comparison of
friction between GO and rGO (thermally reducing oxygen-containing functional groups) surfaces by
Kwon et al. [132] also supports this hypothesis. Due to the decrease of oxygen-containing functional
groups after thermal treatments, the friction force on rGO surface is drastically reduced compared
with the more hydrophilic GO surface at the same RH.
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Figure 19. The friction measurements on graphene surface (a) and the friction forces as a function of
load on pristine graphene (PG), graphene oxide (GO), and fluorinated graphene surfaces (b). Reprinted
from Ref. [126], Copyright 2018, with permission from ACS publications.

4.3. Effect of Water Condensation on Friction Force

Once water condensation occurs, it exerts a strong impact on friction, especially at nanoasperity
contact, depending on the temperature, sliding speed, RH, and surface wettability (Figures 16, 18
and 19) [102,121,126]. In the multi-roughness peak model developed by Bocquet et al. [117], the Fa

caused by capillary action between contact surfaces is related to the number of capillary menisci formed.
The environmental humidity affects the size of the capillary meniscus (Kelvin radius) formed [133], the
sliding speed provides the growth time of the capillary meniscus, and the thermal activation process of
capillary condensation is determined by these two factors. Riedo et al. [134] proposed that similar
effects can be observed in the dynamic case of sliding friction and at the nanoscopic scale.

When limited to the curvature radius of the meniscus, only the asperity gap less than the order
of the Kelvin radius (rm) (Figure 11) can condense water to form the meniscus bridge. Based on the
thermal activation process [102,117,134], a meniscus bridge with a volume of vm form only when an
energy barrier ∆E(e) is overcome:

∆E(e) =
γvm

rm
= ρkBT ln(Ps/P)vm (11)

where ρ is the density of the liquid in unit molecules/m3. Assuming the activated process, the time
needed to form a bridge of volume vm can be estimated by Equation (10). Here, t0 is the condensation
time of the liquid monolayer. In the case presented in Figure 20, Riedo et al. [134] assumed that a gap
of height h defines the volume of a potential liquid bridge Vm = hA, where A is the bridge cross-section
and considered as a constant for simplicity. Then, the maximum height hmax(t) of the water bridge
formed after time t can be defined as:

hmax(t) =
ln(t/tA)

Aρ ln(Ps/P)
(12)

Meniscus bridges will not form at the multi-asperity contact shown in Figure 20 if the spacing
of the near-contacting asperities is greater than hmax at a given residence time. Due to the surface
roughness, nucleating sites exhibit a broad height distribution. To a first approximation, the total
number of near-contacting and contacting with height h < hmax is equal to N(t) = hmax(t)/λ, where λ is
the full width of the interstitial height distribution [117,135]. Then,

N(t) =
1
λAρ

1
ln(Ps/P)

ln(
t
ta
) =

1
λAρ

1
ln(Ps/P)

ln(
va

v
) (13)
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where v is the sliding speed and va is the critical speed corresponding to the condensation of the
water monolayer. When the sliding speed, RH, or temperature changes, a continuous variation in the
number of capillary bridges forms in the area of contact. Then, considering the contributions of Fdef

and Fstick-slip, Ft can be predicted with following equation [134],

Ft = µ(FN + Fss) + µ[FcN(t)] + m ln( v
vB
)

= µ(FN + Fss) − µ[2πRγ(cosθ1 + cosθ2)] × [
1

λAρ ln(Ps/P) ] ln( v
va
) + m ln( v

vB
)

(14)

Here, Fss is the Fa of the two solid surfaces without considering the capillary effects. The term mln(v/vB)
corresponds to the Fstick-slip when m > 0, and vB is a characteristic sliding speed [111,136].

Riedo et al. [134] studied the velocity and humidity dependence of nanoscopic sliding friction on
CrN and diamond-like carbon (DLC) surfaces with a Si AFM tip. A logarithmic decrease in friction on
partially hydrophilic CrN surfaces was observed as the sliding speed increased, and the slope varied
drastically with RH. In contrast, a logarithmic increase in friction occurs on partially hydrophobic
DLC surfaces (Figure 21). Similar results have been reported in previous literature [16,137,138].
In these works, the model of Equation (14) is employed to explain the characteristics of both time- and
RH-dependent capillary-dominated friction on hydrophobic and hydrophilic surfaces.
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Figure 20. Schematic diagram showing multi-asperities contact in ambient air where water meniscus
forms at contacting and near-contacting asperities. When the height h between two asperities is larger
than hmax, water meniscus cannot be formed at near-contacting asperities. The radii of tip and Kelvin
radii are R and rm, respectively. The cross section of a single water meniscus is A. Reprinted from
Ref. [126], Copyright 2018, with permission from IOP publications.
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Figure 21. (a) Friction force as a function of sliding velocity on partially hydrophobic diamond-like
carbon (DLC) surfaces at P/PS = 0.34 and 0.65 (P is the vapor pressure and PS is the saturated vapor
pressure). Inset: LT-CrN films at P/PS = 0.65. (b) Friction force as a function of sliding velocity on
hydrophilic surface (HT-CrN) at P/PS = 0.01 and 0.34. Reprinted from Ref. [134], Copyright 2002, with
permission from APS publications.
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4.4. Effect of Adsorbed Water Structure on Friction Force at Single-Asperity Contact

The multi-asperity contact model in Equation (14) can successfully predict the friction behaviors
on rough surfaces, but may not be applicable to solid interfaces with subnanometer- or nanometer-scale
surface roughness. In this case, the sliding interface can be modeled by a single-asperity contact if the
elastic deformation of the solid is larger than the topographic features of the initial surface [139,140].
As discussed in Sections 2 and 3, strongly H-bonded solid-like water can grow on hydrophilic surfaces,
not only affecting Fa [41] but also playing an important role in the resulting friction behavior [91].

Chen et al. [91] recently investigated the friction behaviors between a silica microsphere and a Si
substrate at single-asperity contact and found that Ft strongly depends on the structure and amount
of the adsorbed water layer. As shown in Figure 22a, Ft generally decreases logarithmically with
increasing sliding speed to a cutoff value. Above this cutoff value, the logarithmic speed dependence
of Ft can be divided into two regimes. When RH is lower than 50%, Ft is a function of both speed and
RH; at RH > 50%, Ft is a function of speed only. These complicated speed and RH dependencies can be
explained by the structure of the water layer adsorbed on the surface and the water meniscus around
the annulus of the contact area. The Ft at the single-asperity contact varies linearly with the volume
Vm of the condensed water meniscus (Figure 22b) when the solid-like water layer structure formed on
the silica surface plays a critical role in friction at RH < 50% (Figure 8).

Ft = intercept + β × Vm (15)

Here, the slope (β) of the fitting line physically represents the force needed to drag a unit volume of
the meniscus. The water meniscus volume is estimated by Vm ∝ ln(va/v)[ln(1/R)]−1, which is derived
by combining Equations (10) and (11). When the solid-like water structure ceases to grow and the
liquid-like structure dominates the newly condensed water layer at RH > 50%, the water volume
dependence of Ft becomes weak (Figure 22c), thus indicating that the contribution of liquid water to Ft

is very limited.
Adsorbed water with liquid-like and solid-like structures present different H-bonding interactions.

The average H-bond number of liquid water is approximately 2.5 per molecule while ice is 4 per
molecule [141]. Therefore, variations in friction behaviors caused by the condensation of liquid-like
and solid-like water may be related to the structure or dynamics of H bonds among water molecules
being sheared at contact or dragged in the meniscus. The supporting evidence can be found in the
work by Chen and Salmeron et al. [137] who compared the sliding speed dependence of Ft on surfaces
terminated with hydrophilic groups of –OH, –COOH, and –NH2 and the hydrophobic group of -CH3

under liquid conditions. The surfaces terminated by hydrophilic groups containing the H acceptor
and donor moieties are capable of forming H-bonding networks exhibiting decreases in friction with
sliding speed (Figure 23a,b). This behavior is in contrast to surfaces with hydrophobic groups which
cannot form such networks (Figure 23c). Under some applied stress, the domains of glassy H-bond
networks are disrupted, leading to slippage. At low sliding speeds, the network is reconstituted after
stress is released and grows more substantially with more time. Larger domains can then be formed to
arrest the motion of the surfaces.
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small value. (b) Friction force Ft versus meniscus volume Vm for the contact between the hydrophilic
silicon surface and the silica microsphere (Fn = 2 µN) moving at various v in RH < 50%. The inset
picture showing the condensation of solid-like water at a single asperity contact. (d) Ft versus Vm for
the high RH regime (>50%). The thick red line in (c) is the same trend line found for RH < 50% in (b).
Reprinted from Ref. [91], Copyright 2017, with permission from ACS publications.Colloids Interfaces 2019, 3, x FOR PEER REVIEW 22 of 30 

 

 

Figure 23. Semilog plot of the friction force vs. sliding velocity between a Si3N4 tip and samples of: (a) 
APS monolayer on mica; (b) Polyethylenimine monolayer on mica to produce a saturated layer of 
hydroxyl groups, and (c) APS coated mica sample after treatment with hydrochloric acid. RH = 35%. 
Reprinted from Ref. [91], Copyright 2006, with permission from the APS publications. 

5. Perspectives 

Water adsorption cannot be avoided in most solid surfaces exposed to ambient air, and the 
amount and structure of the adsorbed water layer strongly depends on not only the atomic structure 
and chemistry of the absorbing surface, but also the surrounding environment. The strongly 
H-bonded solid-like arrangement of water molecules is found in the adsorbed layer formed on 
hydrophilic surfaces at low RH and the weakly H-bonded liquid-like structure could grow to form 
multilayers above the solid-like layer at high RH [41,142,143]. In contrast, on hydrophobic surfaces, 
only liquid-like water layer exists, and its average thickness is normally less than a monolayer even 
at high RH [41]. The molecular configuration of adsorbed water has a strong influence on interfacial 
forces (involving Fa and Ft) especially on two hydrophilic contacting surfaces. The condensation of 
the water meniscus in the contacting interface causes capillary interaction and increases Fa, which is 
added to the effective total normal load and, naturally, leads to a high Ft during the sliding process. 
The effect of the adsorbed water structure on the adhesion and friction behaviors of hydrophilic 
contacting interfaces must also be taken account. The strong H-bonded networks formed in the 
water meniscus connecting the two surfaces not only increases adhesive attraction during the 
snap-off process of the contacting surfaces, but also increases the sliding resistance during relative 
shear motion. 

Further experimental studies and computational calculations with appropriate potential fields 
are still required to detect the role of water condensation in nanotribological behaviors. Because 
experimental characterization of interfacial water structures within and around the nanoasperity 
contact is extremely difficult (if not impossible), the contribution of the solid-like component of the 
adsorbed water layer to adhesion or friction can be further elucidated from computational 
simulations. The dynamic structure and molecular details of the interfacial water meniscus could be 
revealed further through computational simulations. 

Water condensation can cause Fc, which is normally considered an additional applied load 
contributing to the effective total force during the sliding process. A widely accepted model for 
friction describes the relationship between Ft and normal forces (Fn + Fa), i.e., Ft = μ(Fn + Fa), where μ 
is the friction coefficient [108,144]. Although both Fa and Ft at the nanoasperity contact increase with 
the growth of the water meniscus, the increase in amplitude of these two components may not be 
consistent. For example, Yu et al. [145] compared the RH dependence of Fa and Ft between 
hydrophilic Si oxide contact interfaces at the nanoscale levels and found that the increase in Fa is 
slow when RH < 30% but fast as RH rises from 30% to 50%. However, Ft increases rapidly at low RH 

c 

Figure 23. Semilog plot of the friction force vs. sliding velocity between a Si3N4 tip and samples of:
(a) APS monolayer on mica; (b) Polyethylenimine monolayer on mica to produce a saturated layer of
hydroxyl groups, and (c) APS coated mica sample after treatment with hydrochloric acid. RH = 35%.
Reprinted from Ref. [91], Copyright 2006, with permission from the APS publications.

5. Perspectives

Water adsorption cannot be avoided in most solid surfaces exposed to ambient air, and the amount
and structure of the adsorbed water layer strongly depends on not only the atomic structure and
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chemistry of the absorbing surface, but also the surrounding environment. The strongly H-bonded
solid-like arrangement of water molecules is found in the adsorbed layer formed on hydrophilic
surfaces at low RH and the weakly H-bonded liquid-like structure could grow to form multilayers
above the solid-like layer at high RH [41,142,143]. In contrast, on hydrophobic surfaces, only liquid-like
water layer exists, and its average thickness is normally less than a monolayer even at high RH [41].
The molecular configuration of adsorbed water has a strong influence on interfacial forces (involving
Fa and Ft) especially on two hydrophilic contacting surfaces. The condensation of the water meniscus
in the contacting interface causes capillary interaction and increases Fa, which is added to the effective
total normal load and, naturally, leads to a high Ft during the sliding process. The effect of the adsorbed
water structure on the adhesion and friction behaviors of hydrophilic contacting interfaces must also
be taken account. The strong H-bonded networks formed in the water meniscus connecting the two
surfaces not only increases adhesive attraction during the snap-off process of the contacting surfaces,
but also increases the sliding resistance during relative shear motion.

Further experimental studies and computational calculations with appropriate potential fields
are still required to detect the role of water condensation in nanotribological behaviors. Because
experimental characterization of interfacial water structures within and around the nanoasperity
contact is extremely difficult (if not impossible), the contribution of the solid-like component of the
adsorbed water layer to adhesion or friction can be further elucidated from computational simulations.
The dynamic structure and molecular details of the interfacial water meniscus could be revealed further
through computational simulations.

Water condensation can cause Fc, which is normally considered an additional applied load
contributing to the effective total force during the sliding process. A widely accepted model for friction
describes the relationship between Ft and normal forces (Fn + Fa), i.e., Ft = µ(Fn + Fa), where µ is
the friction coefficient [108,144]. Although both Fa and Ft at the nanoasperity contact increase with
the growth of the water meniscus, the increase in amplitude of these two components may not be
consistent. For example, Yu et al. [145] compared the RH dependence of Fa and Ft between hydrophilic
Si oxide contact interfaces at the nanoscale levels and found that the increase in Fa is slow when
RH < 30% but fast as RH rises from 30% to 50%. However, Ft increases rapidly at low RH but slowly
at high RH. These results indicate that simply adding Fa to the total normal load may be inappropriate.
This inconsistency may relate to the difference in configurations of the condensed water layer evolving
with RH in two different experimental conditions—Fa is measured while applying tensile stress normal
to the surface, while Ft is measured while applying compressive normal to the surface and shear stress
tangential to the surface. Thus, the real contribution of capillary-related adhesion to friction should be
further detected, especially on account of the evolution of the adsorbed water structure.

This review mainly focuses on the adsorbed water at the outermost surface of solids involved in
tribological contacts. Interestingly, water molecules intercalated between 2D materials and substrates
can also affect the interfacial friction force on the 2D material surfaces. For example, water molecules
can intercalate under the graphene or MoS2 layers covering hydrophilic substrates. This confined
water layer was found to significantly enlarge friction at graphene or MoS2 surfaces [146–150].
The enhancement of friction by intercalated water can be primarily attributed to the activation of
graphene flexural modes and the high frequency modes involving O-H vibrations which effectively
promote energy transfer to the substrate. However, the thickness and structure of the confined water
layer are difficult to determine, which may be another factor to affect the interfacial forces.

Not only the condensation of pure water, but other types of liquid may also form the annulus
of a capillary-condensed ring around the contact zone and play an important role in the interfacial
forces [151]. The liquids studied so far include aqueous electrolyte solutions [152,153], polymer
melts [154], liquid alkanes [155], various lubricant liquids [156], ionic liquid [157], alcohols [105], or
their mixture. The chemical and physical properties of adsorbed liquids, such as chemical activity,
surface energy, viscosity, molecular configuration, molecular polarity, cationic species, are likely to
become important determinants. They may induce interfacial tribochemical reactions, hydrodynamic



Colloids Interfaces 2019, 3, 55 24 of 31

effects, ion exchanges, liquid-solid phase transitions, thereby affecting the interfacial adhesion and
friction forces [15,155–158].

Finally, besides interfacial forces, surface wear caused by frictional shear stress is likely to
complicate the dynamics [4,159]. Tribochemical reactions may occur between water molecules and
the solid surface when the activation energy of these reactions is reduced by an external mechanical
action [5,160–167]. The structure and surface energy of the adsorbed water layer on dynamically
changing tribological interfaces may also play vital roles in the mechanochemistry involved in the
material removal phenomenon. In most cases, adsorbed water layers with different molecular
configurations influence interfacial reactions via a coupling manner. Thus, distinguishing their
individual contributions is difficult. Furthermore, well-designed model experiments coupled with
computational simulations of the evolution of adsorbed water configurations could provide further
insights into the removal mechanism of various solid-adsorbate-solid interfaces.
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