

- 1 Supplementary Materials
- 2 Direct Cryo Writing of Aerogels Via 3D Printing of
- 3 Aligned Cellulose Nanocrystals Inspired by the Plant
- 4 Cell Wall

9

10

15 16

- 5 Doron Kam¹², Michael Chasnitsky³, Chen Nowogrodski¹, Ido Braslavsky³, Tiffany Abitbol⁴,
- 6 Shlomo Magdassi^{2*} and Oded Shoseyov^{1*}
- Department of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
 - ² Casali Center of Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
- 11 3 Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
- 13 ⁴ RISE, Stockholm 114 28, Sweden.
- * Correspondence: magdassi@mail.huji.ac.il, shoseyov@agri.huji.ac.il

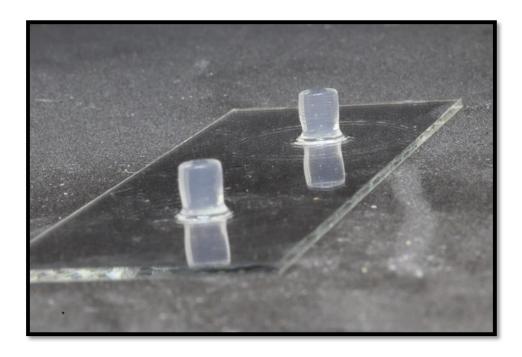


Figure S1. Photograph of 3D printed pure CNC cylinders pre-freezing (diameter = 5 mm; height = 5 mm).

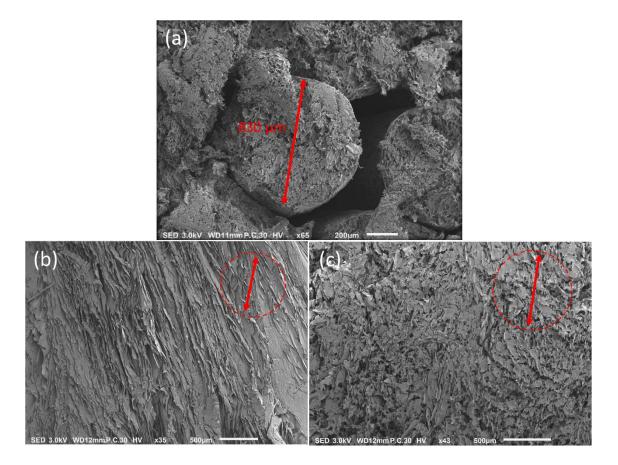
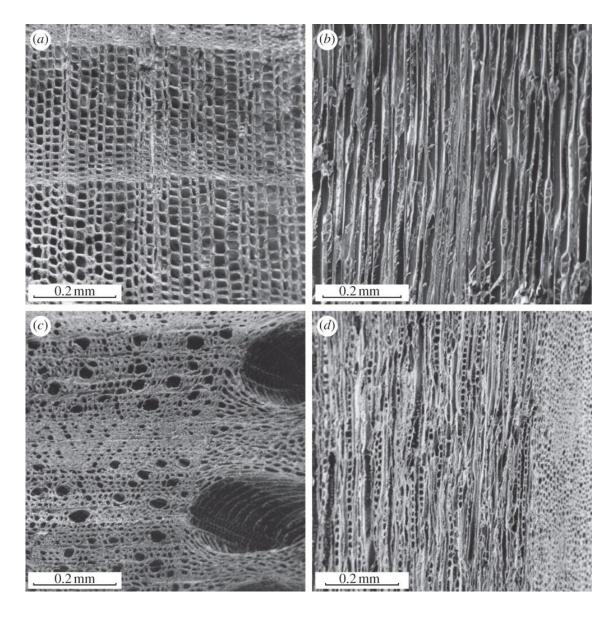



Figure S2. SEM cross-section of: (a) 1:10 CNC:XG ink 3D printed with large spaces as a control sample to demonstrate poor adhesion in the vertical and horizontal planes. Printed "filaments" with circular (830 μ m diameter) cross-sections can be seen in the (b) 0:1 sample and (c) 1:50 sample. Red-dashed circular outlines are placed for reference to indicate a size relative to a filament with a 830 μ m diameter.

Figure S3. Scanning electron micrographs of wood: (a) cedar, cross-section; (b) cedar, longitudinal section; (c) oak, cross-section; (d) oak, longitudinal section.

Reproduced with permission [1]. © 2012 The Royal Society.

31 References

27 28

29

30

32

33

34

1. Gibson, L.J. The hierarchical structure and mechanics of plant materials. *J. R. Soc. Interface* **2012**, *9*, pp 2749-2766.