colloids
and interfaces

Direct Cryo Writing of Aerogels Via 3D Printing of Aligned Cellulose Nanocrystals Inspired by the Plant Cell Wall

Doron Kam ${ }^{12}$, Michael Chasnitsky ${ }^{3}$, Chen Nowogrodski ${ }^{1}$, Ido Braslavsky ${ }^{3}$, Tiffany Abitbol ${ }^{4}$, Shlomo Magdassi ${ }^{2 *}$ and Oded Shoseyov ${ }^{1 *}$
${ }^{1}$ Department of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
2 Casali Center of Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
3 Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
4 RISE, Stockholm 114 28, Sweden.
* Correspondence: magdassi@mail.huji.ac.il, shoseyov@agri.huji.ac.il

Figure S1. Photograph of 3D printed pure CNC cylinders pre-freezing (diameter $=5 \mathrm{~mm}$; height $=5$ mm).

Figure S2. SEM cross-section of: (a) 1:10 CNC:XG ink 3D printed with large spaces as a control sample to demonstrate poor adhesion in the vertical and horizontal planes. Printed "filaments" with circular ($830 \mu \mathrm{~m}$ diameter) cross-sections can be seen in the (b) 0:1 sample and (c) 1:50 sample. Red-dashed circular outlines are placed for reference to indicate a size relative to a filament with a $830 \mu \mathrm{~m}$ diameter.

Figure S3. Scanning electron micrographs of wood: (a) cedar, cross-section; (b) cedar, longitudinal section; (c) oak, cross-section; (d) oak, longitudinal section.

Reproduced with permission [1]. © 2012 The Royal Society.

References

1. Gibson, L.J. The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 2012, 9, pp 27492766.
