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Abstract: Epileptic seizures are a prevalent neurological condition that impacts a considerable portion
of the global population. Timely and precise identification can result in as many as 70% of individuals
achieving freedom from seizures. To achieve this, there is a pressing need for smart, automated
systems to assist medical professionals in identifying neurological disorders correctly. Previous efforts
have utilized raw electroencephalography (EEG) data and machine learning techniques to classify
behaviors in patients with epilepsy. However, these studies required expertise in clinical domains like
radiology and clinical procedures for feature extraction. Traditional machine learning for classification
relied on manual feature engineering, limiting performance. Deep learning excels at automated
feature learning directly from raw data sans human effort. For example, deep neural networks
now show promise in analyzing raw EEG data to detect seizures, eliminating intensive clinical or
engineering needs. Though still emerging, initial studies demonstrate practical applications across
medical domains. In this work, we introduce a novel deep residual model called ResNet-BiGRU-ECA,
analyzing brain activity through EEG data to accurately identify epileptic seizures. To evaluate our
proposed deep learning model’s efficacy, we used a publicly available benchmark dataset on epilepsy.
The results of our experiments demonstrated that our suggested model surpassed both the basic
model and cutting-edge deep learning models, achieving an outstanding accuracy rate of 0.998 and
the top F1-score of 0.998.

Keywords: electroencephalography; epileptic seizure detection; deep learning; deep residual network;
efficient channel attention

1. Introduction

Epilepsy is an enduring neurological disorder that primarily impacts the central ner-
vous system, with its primary expression manifesting in the brain. It is characterized by
the occurrence of sudden and repetitive seizures [1]. This ailment is recognized as the third
most prevalent neurological condition, ranking closely behind stroke and Alzheimer’s
disease [2]. An epileptic seizure is a temporary event characterized by unusual and exag-
gerated activity of brain neurons, leading to the presence of signs or symptoms [3]. Seizures
can be identified by observing and analyzing various physiological indicators, such as
brain and muscle activities, heart rate, oxygen levels, synthetic speech, or visual patterns.
Techniques like electroencephalography (EEG), electrocardiogram (ECG), electromyogra-
phy (EMG), movement tracking, or video capturing on a person’s head and body are used
for this purpose [4].

To detect anomalous behaviors and enable early detection of epileptic seizures before
they escalate into more severe states, human activity recognition (HAR) can be effectively
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applied [5]. Recent scholarly investigations have explored a range of techniques for identi-
fying anomalous behaviors [6], including wearable technologies, sensor-based approaches,
and ambient instrument methodologies. The activated notification system ensures the
verification of action identification. However, the accuracy of detecting these behaviors
depends on the thorough analysis and precise acquisition of feature patterns [7].

EEG signals are preferred for their cost-effectiveness, portability, and ability to exhibit
distinct frequency-dependent patterns [8]. The EEG is a measurement technique that
captures the brain’s bioelectric activities by recording voltage fluctuations resulting from
the ionic flow of neurons [9]. To identify epileptic seizures accurately, capturing signals
over an extended duration is necessary, which can introduce complexity due to multiple
channels used for storage. Studies have also raised concerns over wearable devices’ energy
use and data storage limits posing challenges for creating seizure forecasting tools [10].
These portable gadgets tend to swiftly drain batteries and lack capacity to save the huge
data flows needed to reliably predict seizures over extended periods. Overcoming these
power and memory roadblocks to enable precise ambulatory monitoring and algorithms
will require further innovations going forward. Nonetheless, EEG signals can be influenced
by disturbances arising from different origins, including the main power supply, movement
of electrodes, and muscular vibrations [11]. The presence of noisy EEG signals poses a
significant challenge for healthcare professionals in diagnosing epileptic seizures effectively.
To address these difficulties, extensive research is currently being conducted to detect and
forecast epileptic seizures through the utilization of EEG methods, alongside tools like
magnetic resonance imaging (MRI) and artificial intelligence (AI) methodologies [12]. The
realm of diagnosing epileptic seizures has been incorporating traditional machine learning
(ML) and deep learning (DL) techniques within the framework of AI methods [13].

Numerous ML algorithms have been established for epileptic seizure identifica-
tion, incorporating statistical, temporal, spectral, time–frequency domain, and nonlinear
features [14]. Traditional ML approaches involve a trial-and-error method for selecting fea-
tures and classifiers [15]. A thorough grasp of signal processing and data mining techniques
is essential for constructing accurate models. A recent study [16] utilized three ML models—
support vector machines, linear discriminant analysis, and multilayer perceptrons—to
differentiate resting state EEG data between healthy subjects and those with psychogenic
non-epileptic seizures. Specifically, these algorithms aimed to uncover connections be-
tween measures of functional brain connectivity and the eventual categorical diagnosis.
By modeling these complex relationships, the systems classified individual data points
as belonging to either the healthy control group or the psychogenic seizure group. Initial
findings demonstrated promise in using patterns of functional connectivity derived from
EEGs to accurately predict which subjects were suffering from non-epileptic events via
completely automated ML. However, further validation is still needed, particularly around
generalizability to diverse patient subgroups. While these models perform well with small
data sets, the field has also implemented sophisticated DL techniques for epileptic seizure
identification [17]. DL models, unlike traditional ML methods, require a substantial amount
of data during training due to their complex feature mapping spaces. This phenomenon
leads to overfitting challenges when confronted with insufficient data.

The primary objective of this research is to utilize DL networks to detect epilepsy by
automatically processing EEG signals and recognizing patterns. The aim is to identify the
spatial distribution and temporal characteristics of spikes and seizures. Convolutional
neural networks (CNN), long short-term memory (LSTM), and gated recurrent unit (GRU)
are among the methods employed in this research. We introduce a new deep residual model,
ResNet-BiGRU-ECA, to accurately identify epileptic seizures by analyzing EEG data.

To evaluate the performance of our model, we utilized a publicly available epilepsy
dataset. This benchmark compilation contained EEG readings segmented into five distinct
health categories—one representing active epileptic seizures and the remaining four en-
compassing normal, non-seizure brain activity. Leveraging this diverse test set enabled
robust assessment of the model’s ability to accurately differentiate between the pathological
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seizure state and healthy function. Through this analysis, we aim to demonstrate several
key contributions of the current research, summarized as follows:

• This research presents a framework for epileptic seizure detection (ESD) using EEG
data to assess the performance of various DL structures within this particular domain.

• The suggested method introduces a deep residual model that incorporates residual
blocks, an efficient channel attention (ECA) module, and a bidirectional GRU (Bi-
GRU). This model adeptly captures extended data sequences, extracts spatio-temporal
features, and carries out EEG classification.

The paper’s organization is as follows: Section 2 offers a summary of pertinent litera-
ture and prior studies. Section 3 outlines the proposed DL-based framework for epileptic
seizure recognition. The results are showcased and examined in Section 4, and Section 5
wraps up and deliberates on potential avenues for future research.

2. Related Work

In this section, we review several studies that have used DL to classify epileptic and
non-epileptic activities. One study introduced a DL model called the pyramidal one-
dimensional CNN. This CNN model uses improved parameters that are less amenable to
training than those used in conventional CNNs. The model achieved a remarkable accuracy
of 99.1% when used to distinguish between different behaviors, including typical behaviors
such as eyes closed, eyes open, and pre-ictal, as well as unusual behaviors such as inter-ictal
and ictal [18].

Conventional DL models struggle to process lengthy, variable input data like text,
sensor readings over time, or video [19]. Yet these sequential data types represent abundant
real-world information. Recurrent neural networks (RNNs) have emerged to enable DL on
such ordered series with temporal dynamics. Through internal state units retaining context,
RNNs can analyze signals that change over timescales like EEG—gaining widespread use in
physiology. Standard deep networks fail on such variable, redundant sequential inputs. But
by propagating context, RNNs overcome challenges of long inputs with fluctuations and
redundancy across temporal or spatial dimensions [7]. This unique feedback architecture
provides short-term memory lacking in feedforward networks to better extract patterns
from sequential data like measurements over time.

The primary limitation of a basic RNN lies in its inability to retain information ef-
fectively over short periods of time. This is mainly because RNNs struggle to propagate
information from earlier time steps to later ones, especially when dealing with long sequen-
tial data [20]. Another challenge faced by RNNs is the vanishing gradient problem [21],
which occurs when the gradients diminish significantly during backpropagation. To over-
come the short-term memory issue, researchers devised a solution in the form of LSTM
neural networks [22]. LSTM networks address the problem by allowing the model to
selectively store and access relevant information, making them more adept at handling
long sequences and retaining essential details.

In their study, Golmohammadi et al. [23] evaluated two LSTM designs: one with
three layers and the other with four layers, both combined with the Softmax classifier. The
researchers reported that their findings were considered appropriate. In another study [24],
a three-layer LSTM architecture was used for feature extraction and classification. The final
fully connected layer commonly employed the sigmoid activation function for classification
purposes. Furthermore, in a study conducted by another group [25], two structures, LSTM
and GRU, were investigated. The structure of the LSTM/GRU model included a reshaped
layer, succeeded by four layers of LSTM/GRU with an activation function, and, ultimately,
a fully connected layer featuring a sigmoid activation function. In summary, these studies
explored various LSTM designs and activation functions to improve feature extraction and
classification accuracy.

In the realm of sophisticated DL models, it has been observed that employing more
intricate and deeper architectures leads to enhanced accuracy compared to the feature
learning approach discussed earlier. These prototypes employ CNNs to identify features
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autonomously [26]. In particular, the CNN feature extractor is often denoted as the back-
bone when it comes to object recognition, setting it apart from the complete model archi-
tecture. In this investigation, we adopt a CNN-based feature extractor as the foundational
framework. DL techniques, such as CNNs and RNNs, have demonstrated their ability to
obtain state-of-the-art performance by autonomously learning the underlying characteris-
tics from raw sensor data. The concept of deepening neural networks has evolved with
the emergence of hybrid networks. These hybrid models combine diverse architectural
designs, leading to improved feature representation and enhancing both computing and
network achievements. Moreover, this development opens up opportunities for DL-based
techniques in portable electronics.

3. Methodology

In this section, we delineate the structure applied in our study to assess the importance
of EEG signals concerning epileptic seizures. The suggested ESD framework encompasses
four separate phases: (i) collecting data, (ii) preparing data, (iii) processing data, and
(iv) performing classification. To visually represent the approach used to detect seizures,
refer to Figure 1.
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Figure 1. The epileptic seizure detection (ESD) framework proposed in this study.

3.1. Data Acquisition

Data acquisition refers to the systematic process of collecting and preserving digital or
numerical data to incorporate it into our mathematical framework. This can be done either
in its original, unprocessed state or after undergoing preliminary processing, depending
on data accessibility. Therefore, it is crucial to have a comprehensive understanding of the
dataset before obtaining the data.

To develop and test our model, we employed the epileptic seizures recognition dataset
(ESRD), a publicly accessible benchmark widely utilized for detecting seizures [27]. This
compilation contains EEG readings from multiple patients, acquired through a standardized
128-channel system and averaged reference methodology. The analogue signals were
digitized via 12-bit analog-to-digital conversion and continuously saved onto a computer
at 173.61 Hz sampling frequency. Understanding such data collection and processing
details is crucial for appropriate methodology. The ESRD dataset comprises data from
500 individuals, including 11,500 instances of time-series EEG signals specifically designed
for investigating EEG signal alterations during seizure events. Before being made available
online, the initial dataset undergoes preliminary processing by the university of California
Irvine (UCI). Each dataset sample in our study consists of 4097 data points, further divided
into 23 parts, with each part comprising 178 data points representing one second of data.
These 23 components are shuffled in a random manner, yielding a collective count of
11,500 time-series EEG signal samples sourced from the 500 individuals in the study
group. The UCI dataset for recognizing epileptic seizures encompasses five distinct medical
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conditions, with one being explicitly linked to epileptic seizures, while the remaining four
conditions pertain to individuals displaying no signs of epilepsy. More information about
these five categories and their respective samples can be found in Table 1.

Table 1. Summarized details of the epileptic seizures recognition dataset (ESRD).

Class No. of
Samples

ESR
Classes Details

1 2300 Ictal Recordings made during epileptic episodes
2 2300 Pre-ictal Recording obtained prior to the onset of a single-site

seizure
3 2300 Inter-ictal Recording obtained prior to the onset of the consecu-

tive seizure

4 2300 Healthy
(close eye) An individual in good health with their eyes shut

5 2300 Healthy
(open eye) An individual in good health with their eyes open

Numerous analyses have recommended simplifying the multi-class categorization
challenge embodied in the UCI seizure dataset, which segregates EEG data into five unique
groups as shown in Figure 2. Rather than attempting to draw boundaries between all cate-
gories, they propose concentrating specifically on discriminating class one—representing
active epileptic seizures—from aggregate signals of the other classes signifying ordinary
non-seizure brain states. This binary framework focuses model resources on the most vital
differentiation between pathological and healthy function. Though it sacrifices granularity
within normal activity subtypes, enhanced accuracy and reliability in identifying the central
seizure condition demonstrate the sensibility of this targeted approach.

Figure 2. Electroencephalography (EEG) waveforms of five epileptic seizures recognition (ESR)
classes from the epileptic seizures recognition dataset (ESRD).

3.2. Data Pre-Processing

During this phase, the EEG data undergo filtering and normalization procedures. The
goal is to generate a dataset that is uniform and appropriate for training a detection model.
In this approach, any incomplete or anomalous data values are removed from the dataset
according to the following procedure:

• We used the linear interpolation procedure for imputation to address the issue of
incomplete values in sensor data. This helped eliminate any existing noises. To reduce
noise that could obscure relevant EEG patterns, we implemented sequential low
and median pass filtering. Initially, a third-order Butterworth filter eliminated high
frequency artifacts over 20 Hz. Next, a third-order median filter replaced each point
with the regional median value, calculated from surrounding data. By emphasizing
the median, sporadic outliers and anomalies get rejected in favor of the less skewed
central tendency. This substitutes misleading erratic spikes with smoothed waveforms
reflecting underlying dynamics. The process removes irrelevant deviations so key
shape features needed for model training remain, without distortion from sporadic
spikes that misrepresent normal or pathological brain activity.
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• In addition, we standardized each individual segment of EEG data using a normal-
ization method that involved calculating the mean and standard deviation. This step
was crucial in ensuring consistency and comparability across the data.

The normalization process entails using the min–max method to adjust the unpro-
cessed EEG data linearly. After the data are cleaned and normalized, they become the input
for the subsequent data preparation and classification procedures. To facilitate the training
of the classifier, the data are partitioned based on the chosen methodology. The second
group is subsequently employed as a test set to assess the performance of the classifier that
has been trained.

3.3. The Proposed ResNet-BiGRU-ECA Model

This study introduces the ResNet-BiGRU-ECA model that utilizes EEG signals to iden-
tify epileptic seizures accurately. The model demonstrated in this study can autonomously
extract distinctive features from the input sensor data. Figure 3 provides a depiction of
the ResNet-BiGRU-ECA architecture, comprising a convolutional block (ConvB) and eight
hybrid residual blocks designed for extracting spatial features with unique characteristics.
These features are further processed through a global average pooling (GAP) layer and a
fully connected (FC) layer.
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Figure 3. The structure of the ResNet-BiGRU-ECA model introduced in this study.

3.3.1. Convolutional Block

CNNs are a type of neural network commonly used in supervised learning. CNNs
have a specific architecture in which each neuron in one layer is connected to every neuron
in the next layer. The input to each neuron is transformed into an output via an activation
function [28]. Two key properties of the activation function that impact CNN performance
are sparsity (having many zeros) and ability to propagate gradients to lower layers during
backpropagation. Overall, CNNs leverage their specialized architecture with sparse activa-
tion functions to effectively learn representations of data like images for classification and
other supervised learning tasks [29]. In CNNs, pooling operations are frequently employed
to reduce dimensionality. Two frequently employed pooling functions include max-pooling
and average-pooling, both of which aid in extracting the most significant features from
the data.

In this research, ConvB is employed to extract foundational features from unprocessed
sensor data. The ConvB structure comprises four components: 1D-convolutional (Conv1D),
batch normalization (BN), exponential linear unit (ELU), and max-pooling (MP) layers,
as visualized in Figure 3. The Conv1D layer utilizes multiple trainable convolutional
kernels to detect distinct features, generating a feature map for each kernel. The BN layer
is applied to improve stability and accelerate the training process. Additionally, the ELU
layer is integrated to enhance the model’s expressive capacity. Furthermore, the MP layer
is used to downsize the feature map’s dimensions while retaining the most salient features.
This amalgamation of layers within the ConvB architecture assists in extracting valuable
foundational features from the raw sensor data.
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3.3.2. Bidirectional Gated Recurrent Unit

GRU was introduced to address the issue of gradients either growing too large or
vanishing in RNNs. However, the incorporation of memory cells in the GRU design
elevates the memory resource requirements [30]. Unlike the LSTM model, the GRU is a
more streamlined version, lacking a separate memory cell in its architecture [31]. Instead,
the GRU network integrates update and reset gates, which play a role in determining the
adjustments made to each hidden state. These gates control the information that should
be propagated to the following state and the data deemed unnecessary, as illustrated in
Figure 4a.
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Figure 4. The structure of the ResNet-BiGRU-ECA model introduced in this study: (a) GRU cell and
(b) unroll BiGRU.

The calculation of the hidden state ht at time t in a GRU model involves utilizing the
update gate zt, reset gate rt, current input xt, and the prior hidden state ht−1. These com-
ponents work together to manage the flow of information in the GRU network efficiently.

zt = s(Wzxt ⊕Uzht−1) (1)

rt = s(Wrxt ⊕Urht−1) (2)

gt = tanh(Wgxt ⊕Ug(rt ⊗ ht−1)) (3)

ht = ((1− zt)⊗ ht−1)⊕ (zt ⊗ gt) (4)

where s denotes a sigmoid function, ⊕ denotes an elementary addition operation, and ⊗
denotes an elementary multiplication operation.

In 1997, Schuster and Paliwal [32] introduced the bidirectional RNN (BiRNN) to
address limitations of traditional unidirectional RNNs. The key innovation was to have
the outputs at each time step incorporate contextual information not just from preceding
time steps but also future time steps. This is achieved by training two separate hidden
states, one processing the inputs in a forward direction and the other processing in reverse.
The outputs at each time step are then computed based on the hidden states from both
directions. By leveraging future context as well as past, BiRNNs can better model sequential
data like text or speech compared to unidirectional RNNs. This bidirectional architecture
has become widely adopted for sequence modeling tasks.

Within this BiRNN framework, the neurons in a standard RNN are segregated into
two separate components: one dedicated to processing information in the forward direction
and the other focused on information from the opposite direction. Notably, the output of
positive neurons is independent of negative neurons, and vice versa. This arrangement
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gives rise to a general structure illustrated in Figure 4b. The underlying computational
processes are outlined by the equations provided below.

−→
ht = GRU(xt,

−−→
ht−1) (5)

←−
ht = GRU(xt,

←−−
ht+1) (6)

ht = [
−→
ht ,
←−
ht ] (7)

3.3.3. ECA Mechanism

The ECA strategy holds great promise for boosting the effectiveness of deep CNNs.
However, most current approaches focus on developing intricate attention components to
enhance effectiveness, inadvertently leading to more complex models and increased pro-
cessing demands. A solution known as ECA has been proposed to address the challenges
of overfitting and high computational needs [33]. This ECA module determines weights
for individual channels and captures interrelationships among different channels.

In time series data, the norm involves assigning higher weights to crucial features
while assigning lower weights to less relevant ones. Herein, the ECA method takes on
the responsibility of prioritizing pertinent information, thus bolstering the network’s
capacity to discern and respond to pivotal characteristics. The configuration of the ECA
module is visually represented in Figure 5. The channel weights in ECA are generated by
applying a 1D convolution with a creative choice of kernel size (k) to the aggregated data
obtained through GAP. The choice of the value for k is decided by mapping the channel
dimensions (C).
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Figure 5. The structure of the efficient channel attention (ECA) block.

3.3.4. Training and Hyperparameters

Model performance hinges critically on sufficient volumes of representative, varied
data for training along with properly tuned architectural design parameters called hyper-
parameters, like iteration counts, learning rates, batch size, activation logic, etc. We applied
a standardized approach separating data into training (for hyperparameter optimization)
and holdout validation sets (for independent comparative testing). Guided by trial and
error, the following settings maximized eventual accuracy: 128 batch size, 1× 10−3 learning
rate, 200 epoch count, plus adaptive logic to cut the learning rate by 25% after 10 stagnant
epochs lacking improvement. Beyond tuning, we enabled data shuffling before each epoch
for robustness. For model specification, we utilized an Adam optimizer for weight adjust-
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ments and cross-entropy error quantification. Refer to Table 2 for full architectural details,
including all set hyperparameters for our customized ResNet-BiGRU-ECA framework.

Table 2. The summary of hyperparameters of the ResNet-BiGRU-ECA used in this work.

Stage Hyperparameters Values

Architecture

Convolutional Block

1D-Convolution
Kernel Size 5
Stride 1
Filters 64

Batch Normalization -
Activation ELU
Max Pooling 2

Hybrid Residual Block × 8
Main Path

1D-Convolution
Kernel Size 5
Stride 1
Filters 32

Batch Normalization -
Activation ELU

1D-Convolution
Kernel Size 5
Stride 1
Filters 64

Batch Normalization -
ECA Module -

Parallel Path
BiGRU Unit 128
Global Average Pooling -
Flatten -
Dense 128

Training

Loss Function Cross-entropy
Optimizer Adam
Batch Size 64
Number of Epochs 200

3.4. Cross Validation

The k-fold cross-validation (k-CV) procedure is a technique employed to assess the
performance of a classification model [34]. This method entails partitioning a dataset,
collected from one or more sources, into approximately equal-sized, distinct, and non-
overlapping subsets of k. Each of these subsets is then utilized to evaluate the model,
which is trained on the remaining k− 1 subsets. The overall performance of the model
is determined by computing the mean of various performance metrics, such as accuracy,
precision, recall, and F-measure, all derived from the k-CV process [35].

Nonetheless, it is important to acknowledge that this method can pose significant
computational demands, particularly when working with extensive datasets or when k is
set to a high value. In our study, we have employed the k-CV procedure with a chosen
value of k = 5, as depicted in Figure 6, to assess the effectiveness of our models.
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4. Experimental Results and Discussion

In this section, we will detail the experimental setup and showcase the outcomes ac-
quired through our assessment of DL models for the purpose of identifying epileptic seizures.

4.1. Experiments

The experiments in this study were conducted using Google Colab Pro, which provides
access to Tesla V100 GPUs. The implementation was done in Python 3.6.9, utilizing key
libraries, including TensorFlow 2.2.0 for building the neural network models, Keras 2.3.1 for
the high-level API, Scikit-Learn for machine learning utilities, Numpy 1.18.5 for numerical
processing, and Pandas 1.0.5 for data manipulation. By leveraging Google Colab and these
state-of-the-art libraries, the experiments could be efficiently run on powerful hardware,
enabling the exploration of deep neural network architectures for the research questions
under investigation.

This empirical study compared four main DL architectures for the application of
ESD on the ESRD dataset. The models tested were CNNs, LSTMs, bidirectional LSTMs
(BiLSTMs), GRUs, and BiGRUs. These represented the state-of-the-art approaches. Our
proposed model, called ResNet-BiGRU-ECA, was benchmarked against these models to
assess its performance at identifying seizures relative to conventional architectures. By
evaluating both unidirectional and bidirectional variants of LSTM and GRU models, we
aimed to thoroughly compare our novel approach to existing methods using these epileptic
seizure data.

Additionally, we conducted an in-depth investigation into various CNN backbone
models. Specifically, we examined VGG16 [36], ResNet18 [37], Pyramid-Net18 [38], In-
ception [39], and Xception [40] to perform a comprehensive experimental comparison
analysis. These models were considered as potential solutions for addressing the challenge
of time-series classification. Consequently, we restructured each model to suit the context
of ESR.

In this study, we conducted research on two distinct scenarios involving EEG data for
ESRD. In each of these scenarios, we utilized separate datasets for both training and testing
DL models, as detailed in Table 3.

Table 3. A compilation of experiments applied in this study.

Scenario Description

I Subjects in category 1 exclusively experience epileptic seizures, whereas
those in category 3 are strictly categorized as non-epileptic.

II Subjects in category 1 are the sole ones with epileptic seizures, whereas
subjects in the remaining classes are designated as non-epileptic.
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4.2. Experimental Results

In each of our experiments, we used the ESRD dataset for training DL models. To
assess these models, we employed a 5-CV approach. Our study centered on assessing
the effectiveness of five core DL models (CNN, LSTM, BiLSTM, GRU, and BiGRU), in
addition to cutting-edge DL models, within the framework of the two situations outlined
in Tables 4 and 5.

Table 4. Experimental results of the deep learning (DL) networks trained and tested using electroen-
cephalography (EEG) from scenario I.

Model
Recognition Performance

Accuracy Loss F1-Score

CNN 0.882 (±0.1911) 0.245 (±0.2322) 0.849 (±0.0258)
LSTM 0.982 (±0.0019) 0.142 (±0.0487) 0.982 (±0.0019)
BiLSTM 0.982 (±0.0016) 0.138 (±0.0467) 0.982 (±0.0016)
GRU 0.988 (±0.0041) 0.081 (±0.0465) 0.988 (±0.0041)
BiGRU 0.985 (±0.0016) 0.116 (±0.0240) 0.985 (±0.0016)

ResNet-BiGRU-ECA 0.998 (±0.0007) 0.008 (±0.0021) 0.998 (±0.0008)

The DL models underwent training and testing using EEG data from scenario I, as
detailed in Table 4. Our experiments revealed that the ResNet-BiGRU-ECA model, as
proposed, demonstrated exceptional efficiency, boasting an average accuracy of 0.998 and
an average F1-score of 0.998.

Table 5. Experimental results of the deep learning (DL) networks trained and tested using electroen-
cephalography (EEG) from scenario II.

Model
Recognition Performance

Accuracy Loss F1-Score

CNN 0.973 (±0.0075) 0.140 (±0.0284) 0.957 (±0.0132)
LSTM 0.985 (±0.0023) 0.095 (±0.0280) 0.976 (±0.0039)
BiLSTM 0.983 (±0.0032) 0.132 (±0.0436) 0.973 (±0.0051)
GRU 0.985 (±0.0027) 0.104 (±0.0388) 0.977 (±0.0042)
BiGRU 0.985 (±0.0042) 0.113 (±0.0367) 0.977 (±0.0065)

ResNet-BiGRU-ECA 0.996 (±0.0010) 0.020 (±0.0059) 0.994 (±0.0016)

The DL models underwent training and testing with EEG data sourced from scenario
II, as specified in Table 5. Upon analyzing the experiment results, it became evident
that the ResNet-BiGRU-ECA model, as initially proposed, displayed the highest level of
effectiveness. Its impressive performance supports this conclusion, boasting an average
accuracy rate of 0.996 and an average F1-score of 0.994.

4.3. Comparative Results with ML Models

Guided by prior analyses [5], we selected leading ML classifiers for comparative
benchmarking, including k-nearest neighbors (KNN), naive Bayes (NB), logistic regres-
sion (LR), random forest (RF), decision trees (DT), stochastic gradient boosting (SGDC),
and gradient boosting (GB). Recent studies confirm the utility of these algorithms paired
with neurologists in accurately detecting seizures and characterizing epileptiform EEG
dynamics [41,42]. Our experiments leveraged the standard ESRD dataset under equivalent
scenarios to examine model performance variability when using raw EEG readings versus
extracted feature sets as inputs. Table 6 presents accuracy outcomes with our proposed deep
ResNet-BiGRU-ECA architecture versus these widely adopted shallow ML approaches. By
evaluating on equal inputs, we aimed to isolate the performance gains stemming solely
from algorithmic and architectural optimizations rather than data pre-processing.
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Table 6. Comparative results of the proposed model and machine learning (ML) models using
electroencephalography (EEG) data from the epileptic seizures recognition dataset (ESRD).

Model
Scenario I Scenario II

Accuracy F1-Score Accuracy F1-Score

KNN 0.870 0.836 0.890 0.851
NB 0.950 0.878 0.950 0.878
LR 0.790 0.878 0.790 0.878
RF 0.922 0.892 0.937 0.901
DT 0.910 0.787 0.910 0.787
SGDC 0.810 0.719 0.810 0.726
GB 0.800 0.799 0.834 0.819

ResNet-BiGRU-ECA 0.998 0.998 0.996 0.994

Results showed NB reached 95% accuracy, the sole ML technique with comparable
proficiency. However, our deep ResNet-BiGRU-ECA architecture significantly exceeded
all benchmark methods under both data scenarios. Surpassing 99% accuracy and 99% F1,
the optimized network architecture demonstrated superior feature extraction and pattern
recognition even from raw EEG readings. This substantial performance gap despite shared
inputs suggests deep networks intrinsically outperform shallow ML at derives nuanced
relationships within complex physiological signals. Rather than relying on predefined
assumptions in simplified models, DL constructs intricate representations via hierarchical
data transformations. Though some conventional methods approach sufficiency for classifi-
cation tasks, deep neural networks attain state-of-the-art performance by learning intricate
embeddings uniquely tuned to the intricacies of the data through backpropagation and
gradient descent optimization.

4.4. Comparative Results with DL Models

The ResNet-BiGRU-ECA model under examination is subjected to a comparative
analysis alongside previously developed models using the same dataset, specifically the
ESDR dataset. Prior research studies [36–40] have consistently shown that leveraging CNN-
based DL architectures yields remarkable results in the field of time-series classification.
The existing literature introduced the 5-CV methodology, which we also employed in our
study. The summary of comparative results can be found in Tables 7 and 8. These outcomes
reveal that the ResNet-BiGRU-ECA model, as presented here, exhibits superior accuracy
compared to the earlier models across the majority of actions.

Table 7. A side-by-side comparison of the outcomes achieved by the proposed model and state-of-
the-art deep learning (DL) networks, all trained and tested using electroencephalography (EEG) data
from scenario I.

Model
Recognition Effectiveness

Accuracy Loss F1-Score

Inception 0.995 (±0.0021) 0.03 (±0.01) 0.995 (±0.0021)
Xception 0.984 (±0.0213) 0.10 (±0.14) 0.984 (±0.0021)
VGG11 0.975 (±0.0065) 0.35 (±0.18) 0.975 (±0.0065)
VGG13 0.980 (±0.0059) 0.27 (±0.23) 0.980 (±0.0059)
VGG16 0.985 (±0.0039) 0.15 (±0.07) 0.985 (±0.0039)
VGG19 0.989 (±0.0048) 0.08 (±0.05) 0.989 (±0.0048)
ResNet16 0.995 (±0.0017) 0.02 (±0.01) 0.995 (±0.0017)
ResNet18 0.994 (±0.0018) 0.03 (±0.01) 0.994 (±0.0018)
ResNet34 0.994 (±0.0029) 0.04 (±0.01) 0.994 (±0.0029)

ResNet-BiGRU-ECA 0.998 (±0.0007) 0.01 (±0.01) 0.998 (±0.0008)
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Table 8. A side-by-side comparison of the outcomes achieved by the proposed model and state-of-
the-art deep learning (DL) networks, all trained and tested using electroencephalography (EEG) data
from scenario II.

Model
Recognition Effectiveness

Accuracy Loss F1-Score

Inception 0.994 (±0.0018) 0.03 (±0.01) 0.991 (±0.0028)
Xception 0.962 (±0.0663) 0.22 (±0.39) 0.952 (±0.0808)
VGG11 0.985 (±0.0019) 0.20 (±0.11) 0.975 (±0.0031)
VGG13 0.984 (±0.0023) 0.23 (±0.10) 0.975 (±0.0038)
VGG16 0.989 (±0.0035) 0.12 (±0.05) 0.982 (±0.0056)
VGG19 0.991 (±0.0030) 0.11 (±0.06) 0.986 (±0.0047)
ResNet16 0.995 (±0.0023) 0.03 (±0.01) 0.991 (±0.0037)
ResNet18 0.883 (±0.2065) 1.39 (±2.60) 0.877 (±0.2052)
ResNet34 0.990 (±0.0071) 0.21 (±0.36) 0.984 (±0.0117)

ResNet-BiGRU-ECA 0.996 (±0.0010) 0.02 (±0.01) 0.994 (±0.0016)

4.5. Effect of BiGRU and ECA Modules

Additional investigations were conducted to provide a more comprehensive assess-
ment of the BiGRU and ECA modules within the proposed ResNet-BiGRU-ECA archi-
tecture. As depicted in Table 9, the findings obviously indicate that both the BiGRU
module and the ECA module contribute significantly to enhancing the model’s efficiency
in identifying datasets from two distinct situations.

Table 9. A comparative analysis of ResNet-based models, with and without the bidirectional gated
recurrent unit (BiGRU) and efficient channel attention (ECA) modules.

BiGRU ECA
Accuracy

Scenario I Scenario II

- - 0.9904 (±0.0116) 0.9924 (±0.0011)
X - 0.9965 (±0.0017) 0.9948 (±0.0007)
- X 0.9926 (±0.0080) 0.9935 (±0.0045)
X X 0.9980 (±0.0007) 0.9960 (±0.0010)

A checkmark (X) indicates that the module is included in the given variation of the ResNet model and a dash (-)
indicates that it is not included in that ResNet model variation.

5. Conclusions and Future Work

Epilepsy, a neurological disorder, can be significantly mitigated if detected early.
This study introduces a novel hybrid DL model named ResNet-BiGRU-ECA, designed to
accurately identify epileptic seizures using EEG signals. This model combines residual
blocks, an ECA module, and a BiGRU to recognize epileptic seizures in pre-processed
multichannel EEG recordings. To gauge the efficiency of our suggested model, we carried
out a thorough assessment by contrasting it with five fundamental DL models and leading
time-series classification models, all applied to the same publicly available dataset. The
DL models underwent training and evaluation using a 5-CV approach. We analyzed
model performance using standard evaluation metrics, and the ResNet-BiGRU-ECA model
consistently outperformed other models, achieving an average accuracy of 0.998 and an
F1-score of 0.998. Furthermore, our model surpassed most existing systems in terms of
effectiveness when compared using the same dataset. The objective of this research is to
make a meaningful contribution to the field of neurology by investigating the potential
benefits of employing EEG data in the context of epilepsy detection and related matters.
Our primary goal is to investigate the possibility of reducing examination duration while
simultaneously improving diagnostic efficiency and effectiveness.

In future research, we intend to employ the ResNet-BiGRU-ECA model to address
other detection issues relying on EEG signals. Additionally, we plan to delve into the
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explainability of our model to gain insights into the mechanisms and reasoning behind its
accurate decision-making process.
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