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Abstract: In an era characterised by rapid technological advancement, the application of algorithmic
approaches to address complex problems has become crucial across various disciplines. Within the
realm of education, there is growing recognition of the pivotal role played by computational thinking
(CT). This skill set has emerged as indispensable in our ever-evolving digital landscape, accompanied
by an equal need for effective methods to assess and measure these skills. This research places its
focus on the Cross Array Task (CAT), an educational activity designed within the Swiss educational
system to assess students’ algorithmic skills. Its primary objective is to evaluate pupils’ ability
to deconstruct complex problems into manageable steps and systematically formulate sequential
strategies. The CAT has proven its effectiveness as an educational tool in tracking and monitoring
the development of CT skills throughout compulsory education. Additionally, this task presents
an enthralling avenue for algorithmic research, owing to its inherent complexity and the necessity
to scrutinise the intricate interplay between different strategies and the structural aspects of this
activity. This task, deeply rooted in logical reasoning and intricate problem solving, often poses a
substantial challenge for human solvers striving for optimal solutions. Consequently, the exploration
of computational power to unearth optimal solutions or uncover less intuitive strategies presents a
captivating and promising endeavour. This paper explores two distinct algorithmic approaches to
the CAT problem. The first approach combines clustering, random search, and move selection to find
optimal solutions. The second approach employs reinforcement learning techniques focusing on the
Proximal Policy Optimization (PPO) model. The findings of this research hold the potential to deepen
our understanding of how machines can effectively tackle complex challenges like the CAT problem
but also have broad implications, particularly in educational contexts, where these approaches can
be seamlessly integrated into existing tools as a tutoring mechanism, offering assistance to students
encountering difficulties. This can ultimately enhance students’ CT and problem-solving abilities,
leading to an enriched educational experience.

Keywords: computational thinking; problem-solving techniques; clustering; random search;
reinforcement learning; proximal policy optimization

1. Introduction

In today’s rapidly evolving digital landscape, computational thinking (CT) has emerged
as a crucial skill set, essential not only in computer science but across a diverse range of
fields. It plays a pivotal role in problem solving, enabling individuals to approach complex
problems using algorithmic and systematic methods. This work centres on the Cross Array
Task (CAT) [1], an activity designed within the Swiss compulsory educational system
to evaluate CT skills, particularly students’ proficiency in conceiving and representing
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algorithms, a set of rules or instructions that should be adopted or followed by an executor,
whether human or artificial, to accomplish a given task [2–6].

The CAT challenges pupils to deconstruct complex problems, devise sequential strate-
gies, and articulate their solutions. In particular, in this task, participants are required
to describe the colouring of a reference cross array board, which resembles a grid with
differently coloured dots (see Figure 1). This can be achieved using verbal instructions,
eventually supplemented with gestures, in the unplugged version [1] or, for example, using
a visual block-based programming interface in the virtual version [7,8].

(a) (b)
Figure 1. Illustration of the cross array schemas. The task involves translating the colouring patterns
of the reference schema into step-by-step instructions. While the empty schema provides a platform
for illustrating solutions using hand gestures, the reference schema challenges pupils to articulate
complex sequential strategies to replicate its design. (a) Empty cross array schema. An uncoloured
grid that serves as a blank canvas, allowing pupils to demonstrate their solutions using gestures.
(b) Reference cross array schema. A coloured grid which pupils are tasked to describe using sequential
instructions, capturing the complexity of the pattern presented (Adapted from [1]).

During the activity, participants can use different moves, including simple pattern
colouring and more advanced actions like the replication of previously executed patterns,
to transform the board and achieve the desired outcome. This task is inherently complex
due to the multitude of available moves and potential combinations, as well as the freedom
given to participants to devise tailored solutions. The challenge is further amplified by the
vast array of potential strategies that can be employed. Deciphering the intricate interplay
between the different moves and the game board’s configuration is at the heart of this
challenge. A nuanced analysis is essential to identifying emerging patterns and determine
the most effective moves based on the board’s unique characteristics. This analysis not
only influences the choice of moves but also shapes the foundational approach to problem
solving, necessitating versatile strategy and execution. As a result, each strategy may
demand a completely different construction approach, whether it be employing a pattern
copy or a mirror strategy or focusing on identifying the most advantageous patterns.
Consequently, every time, the strategy and the approach to tackling the problem change.

The CAT makes significant cognitive demands on participants, requiring consistent
identification and strategic application of the most effective moves. Given the task’s
classification as an NP problem, known for its logical complexity and intricate problem-
solving requirements, it poses a substantial algorithmic challenge, particularly for humans.
To address these challenges, there is a burgeoning need to adapt the CAT for machine-based
solutions, enabling more efficient resolution through automated processes. This adaptation
is well suited to the capabilities of artificial intelligence (AI) and machine learning (ML)
methodologies, which can be leveraged to uncover optimal strategies and provide new
insights into this complex task.

This research adopts a dual-faceted approach, integrating hybrid meta-heuristic algo-
rithms and reinforcement learning (RL) techniques, which are particularly well suited to
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tackle the CAT’s challenges. Hybrid meta-heuristic algorithms, with their ability to navigate
vast search spaces and escape local minima, provide a robust mechanism for exploring
potential solutions and uncovering optimal strategies. Concurrently, RL techniques offer a
dynamic and adaptive framework, enabling the model to learn and iteratively improve its
performance over time.

Together, these techniques offer a comprehensive solution and novel insights into the
CAT, contributing to the broader field of algorithmic problem solving and educational tool
development. The broader implications of this research are substantial, particularly in the
context of CT, a crucial skill in today’s digital landscape. By elucidating the contributions of
AI and ML to CT development and application, this research not only advances our under-
standing of algorithmic problem solving but also has potential applications in education,
serving as a tutoring mechanism to enhance students’ CT and problem-solving capabilities.

2. Literature Review

In recent years, the literature on computational thinking (CT) and algorithmic problem
solving has experienced substantial growth, reflecting the escalating significance of these
skills in various domains [2,9]. Artificial intelligence (AI) and machine learning (ML)
have significantly advanced. The emergence of these fields has significantly transformed
problem-solving approaches, introducing versatile and advanced methods like genetic algo-
rithms and neural networks for addressing complex issues across various domains [10–16].
Employing ML models, encompassing supervised and unsupervised learning, alongside
reinforcement learning (RL), has become pivotal in decision making and optimisation
processes [10,17]. Prominent models such as support vector machine (SVM), decision trees,
K-means clustering, principal component analysis (PCA), Q-learning, and Policy Gradient
Methods are integral to these sophisticated problem-solving strategies.

Recent studies have explored the synergy between AI and optimisation algorithms,
leading to innovative hybrid models that blend various algorithms and techniques, includ-
ing ensemble methods like random forests and gradient boosting, to effectively address
complex and multifaceted problems while enhancing accuracy and robustness [18–21].

AI and ML have found applications in diverse fields, solving problems that were once
deemed intractable. The domain of education presents a fertile ground for the application of
hybrid meta-heuristic algorithms, RL, and AI/ML technologies, particularly in enhancing
critical thinking and problem-solving skills. Several literature sources have explored
various aspects and applications of these technologies in educational settings [22,23].

The RLTLBO [24] algorithm is an enhanced version of the teaching–learning-based
optimisation (TLBO) algorithm [25] that integrates RL to switch among different learning
modes. Although not designed for educational purposes, it simulates how teachers can
influence learners and has potential applications in related educational contexts.

Some works explored meta-RL that quickly adapts to new tasks, especially when pre-
sented with related tasks [26–28]. Although not mentioned, these works could be relevant
in education, developing adaptive learning systems and intelligent tutoring systems (ITSs)
that adjust to the evolving needs of learners.

Also, the use of hybrid algorithms that combine RL with meta-heuristic methods to
solve global optimisation problems has been proposed [29]. These algorithms could be
adapted to address educational challenges, like designing ITSs or optimising educational
resources for enhanced learning outcomes.

The current body of research underscores the growing need to leverage AI and ML
to enhance educational outcomes, particularly in the context of CT and problem solving.
This corpus of work lays robust theoretical groundwork, underscoring the pertinence
and timeliness of our inquiry. Nevertheless, a discernible void persists in the literature,
especially in the application of AI and ML strategies to intricate problem-solving tasks,
such as the CAT [30].

Our research seeks to address this gap, elucidating how AI and ML can be meticulously
tailored to enrich CT and problem-solving aptitudes within educational frameworks. We
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aim to proffer a holistic analysis delving into the application of hybrid meta-heuristic
algorithms and RL techniques to navigate the complex challenges intrinsic to the CAT.

The significance of this study is twofold: it strives to deepen our comprehension of
algorithmic problem solving and to forge innovative tutoring methodologies that bolster
CT capabilities. In navigating the potentials of AI and ML in this realm, our research aspires
to generate practical insights and strategies, with the ultimate objective of cultivating CT
and problem-solving proficiency in the digital era, thereby contributing to the enrichment
of educational practices.

3. Materials and Methods

This section comprehensively overviews the methodologies and algorithms employed
to address the CAT problem. This research was conducted exclusively using computational
methodologies. It is important to emphasise that no human participants were involved in
this study, and no data were utilised nor collected. Although this study did not involve
human participants or use any data, we maintained a rigorous commitment to ethical
considerations throughout our research process, ensuring transparency, reproducibility,
and the highest standards of computational research integrity. For those interested in
exploring our methods further, including the source code, detailed documentation, and all
relevant resources necessary for replicating our experiments, please refer to the provided
reference [31].

The CAT’s objective is to develop different algorithms to describe the colouring pattern
of a set of 12 cross arrays (each labelled as Graph 1 to Graph 12), characterised by different
levels of complexity and based on different types of regularities (see Figure 2). The schema
progression starts with a monochrome design and gradually adds complexity, introducing
colours, patterns, repeating modules, and broader symmetric patterns.

The CAT, originally designed for human solving, can be adapted to be efficiently
solved by machines through automated processes. The cross-board resembles a grid, where
coloured dots are manipulated and referenced using a coordinate system. The primary
objective is to colour a board fully white to replicate the reference board precisely. To
achieve this, specific moves are employed, categorised into pattern-colouring commands
and special action commands. Pattern-colouring commands require defining several
parameters: a starting point, a pattern to emulate, a shape to colour (which can be a line,
a square, etc.), and, if applicable, a specified length. There are also three special action
commands. The fill action allows for colouring all remaining empty dots on the board with
a single colour; the copy action permits the replication of previously executed instructions
in various areas of the board; the mirror action enables the symmetric colouring of the
board along a chosen axis, effectively mirroring parts of the design. These moves and
actions constitute the toolkit for solving the CAT, and the challenge lies in using them
strategically to achieve the desired board transformation.

The complexity and multifaceted nature of the CAT prompt an exploration into
advanced algorithmic solutions. In particular, the realms of artificial intelligence (AI) and
machine learning (ML) offer a plethora of methodologies that can be harnessed to tackle
the CAT.

The scientific community has developed a wide range of clustering algorithms that are
useful in categorising similar moves and optimising problem-solving processes. Among
these, K-means [32–34] and spectral clustering [35–38] are notable examples. Generally,
clustering algorithms are oriented towards grouping data based on their similarity. This
happens in the absence of predefined labels, unlike what happens in classification processes.
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Figure 2. Sequence of schemas of the CAT from [1]. The figure showcases the 12 schemas proposed
in the task, named from Graph 1 to Graph 12. Each is characterised by unique visual regularities
and complexities, varying in elements such as colours, symmetries, alternations and other distinctive
features (Adapted from [1]).

On the other hand, heuristic algorithms, with a particular emphasis on those employ-
ing random search strategies, such as Simulated Annealing (SA) [39–41], are subject of
deep study due to their ability to find globally optimal solutions in scenarios characterised
by broad and particularly complex search spaces. The main advantage offered by these
methods lies in their ability to avoid the pitfalls of local minima [42–44]. At the same time,
if properly implemented, they can facilitate the exploration of the search space without the
need to analyse it exhaustively.

In parallel, reinforcement learning (RL), a sub-field of ML, focuses on training software
to make decisions based on rewards and penalties in specific situations [45–48]. This
approach has been successfully applied to complex challenges like games and autonomous
driving. This work uses three RL models, Advantage Actor–Critic (A2C), Deep Q-Network
(DQN), and Proximal Policy Optimization (PPO), each with unique advantages. A2C is an
asynchronous RL algorithm that combines the advantages of both policy-based methods
(actor) and value-based methods (critic). It uses multiple agents that interact with an
environment in parallel, allowing for more efficient exploration and learning. The actor
network suggests actions, while the critic network estimates the value of these actions.
A2C aims to optimise the balance between exploring new actions and exploiting known
effective ones [49–51].

DQN is a deep RL algorithm that combines Q-learning with deep neural networks. It
is designed to learn a value function (Q-function) that estimates the expected cumulative
future rewards for taking various actions in an environment. DQN has been successful in
solving complex tasks and games [48,52,53].

Finally, PPO is a RL algorithm that directly optimises the policy function. It belongs to
the family of Policy Gradient Methods and is known for its stability and reliability. PPO
uses a trust region optimisation approach to update the policy to ensure gradual changes,
avoiding large policy updates, which can lead to instability. This makes PPO suitable for a
wide range of tasks and provides excellent general performance [54,55].
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In this paper, we approach the CAT problem by employing two distinct algorithmic
methodologies. The first approach uses a hybrid meta-heuristic algorithm, incorporating
clustering techniques for move segmentation, random search to assign scores to the moves,
and a selection mechanism based on these scores to determine the optimal mode.

In contrast, the second approach utilises RL techniques, specifically focusing on
implementing the PPO model. Our adoption of a hybrid approach stems from the CAT
problem’s complexity. The clustering component of this approach ensures efficiency by
avoiding the coupling of identical or similar moves, enabling more effective exploration and
evaluation of solutions. Additionally, the integrated random search is crucial to optimising
move evaluations and converging to the best solution.

Within RL, the CAT problem demands a model with high flexibility and robust
stability. After exploring various models, including PPO, DQN, and A2C, only PPO
demonstrated the versatility and adaptability needed to address the challenges of the CAT
problem successfully.

3.1. Hybrid Approach

Our hybrid approach revolves around the strategy of decomposing the problem
into two distinct phases, each designed to tackle unique and complex aspects of the
CAT problem.

3.1.1. Clustering

The first phase of our approach involves clustering, which is an effective method for
organising large numbers of unlabelled data. We use the K-means++ algorithm, which
is known for its ability to identify natural clusters within a dataset, for this stage [56].
Our objective is to group all possible moves within a specific gaming environment into
homogeneous clusters based on their similarity. In order to optimise the colour-filling
process, we utilise the copy action command to execute each move. Our goal is to colour
the board in the most efficient manner possible, which entails maximising the number
of dots that can be filled up with a single instruction. After this, our board, represented
by a matrix M ∈ Rn×n, is flattened into a vector v ∈ Rn2

, which represents the moves
in a multidimensional space. The K-means++ algorithm uses the Euclidean distance to
measure the similarity between these vector representations. The output of this phase is a
set of move clusters, where each cluster represents a set of moves that are similar from the
algorithm’s perspective. The number of clusters is chosen based on the maximum expected
moves in the worst-case scenario following heuristics, which may vary based on the rules.

3.1.2. Random Search

The second phase of our hybrid approach employs a random search algorithm. Nu-
merous stochastic search methods have been developed to tackle complex and uncertain
optimisation problems, and among these, we draw inspiration from Monte Carlo Tree
Search (MCTS) [57]. MCTS is a stochastic search technique that uses random simulations to
guide the exploration of the solution space. Our approach involves simulating the game
randomly to assign a score to each move, indicating its functionality concerning both the
board and the clustering obtained from the previous step. Here is how we evaluate a
game move:

1. Random move selection: We uniformly select moves at random from permutations of
other clusters and then sample a move from each cluster.

2. Weighted move selection: Each cluster, denoted by A, consists of moves A = {a1, a2, . . . , an}
where ai represents a move within the cluster for all i ∈ [1, n]. These moves have
associated weights wi. The probability of selecting ai is calculated as wi

∑n
j=1 wj

.

3. Game simulation: After selecting the moves, a game is simulated using a pseudo-
optimal method. Each move is executed using the most frequently used copy action
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command to ensure replication in the highest number of advantageous cells, following
a sequence that maximises coloured cells.

4. Scoring: At the end of the simulation, we assign a score based on the number of
coloured cells. This score is determined in two ways: (i) if the board is incomplete,
the score reflects the number of uncoloured cells plus a fixed penalty; (ii) if the board
is complete, the score is based on the number of moves used for colouring.

5. Final score: The final score is calculated as the inverse of the score obtained in the
previous step.

This phase serves as the critical step in evaluating the effectiveness of various moves
within the game and clustering context, ultimately contributing to the selection of the
optimal moves for solving the CAT problem.

3.1.3. Compilation and Selection of Optimal Moves

Once these initial phases are concluded, we compile a set of the best moves for each
cluster, as determined by the scores generated through our random search algorithm. These
best moves can then be aggregated and harnessed to construct comprehensive solutions for
the CAT problem.

In the concluding phase, following this initial assessment, the top-rated moves from
each cluster are selected based on their weighted distribution. These chosen moves sub-
sequently undergo a more in-depth examination facilitated by a Depth-First Search (DFS)
algorithm. DFS, a thorough exploration algorithm, navigates the entire solution space in a
meticulous manner, facilitating the identification of the most promising solutions initially
highlighted during the random search phase.

3.2. Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) is a member of the Policy Gradient Methods
family [58], developed by OpenAI in 2017 [54]. We chose PPO for its ability to stabilise
policy updates in RL problems through its Clipped Surrogate Objective method. This
technique restricts the policy’s possible changes, discouraging large deviations between
the new and old policies, which can cause instability in learning.

Our research employed the PPO algorithm available in the Stable Baselines 3 li-
brary [59], which provides a practical and efficient tool set for implementing models such
as PPO. For both the actor and critic, we used a simple Multilayer Perceptron (MLP).

3.2.1. Environment State

The environment, a critical part of our research setup, was developed using the Gym
library [60]. It was designed to represent states as the various configurations of the game
board at any given moment, effectively capturing the distribution of both coloured and
uncoloured cells. The actions available to the agent are defined by our set of instructions,
which it can execute to alter the state of the board. The reward system is structured to
reflect the efficacy of the agent’s moves, taking into account both the completeness of the
area coloured with a single move and the overall efficiency, as determined by the speed at
which the model completes the task. Thus, the agent is encouraged to perform moves that
not only cover more area but also solve the puzzle as quickly as possible.

To gauge performance, the environment was equipped with a set of metrics that
tracked the agent’s progress and effectiveness:

• self.total_reward: This accumulates the total rewards garnered by the agent, reflecting
the cumulative success of its actions in terms of area coloured and game completion
speed across all played games.

• self.total_episodes: This metric keeps a tally of the number of episodes or game
instances the agent has completed, providing a count of experiences the agent has
learned from.

• self.steps: This is a counter for the number of steps taken within a single episode,
resetting after each game restart.



Mach. Learn. Knowl. Extr. 2023, 5 1667

In order to achieve more robust training, we added an element of randomness when
initialising the starting state, namely, instead of starting with the empty board, we randomly
coloured some cells. This modification aimed to encourage the agent to explore the action
space more effectively and understand its impact on the game.

3.2.2. Reward Metric

In the environment, the reward metric is derived from the ability of a specific move
to colour certain cells within a single step. The reward increases proportionally with the
number of cells coloured. However, the reward correspondingly diminishes as the number
of steps taken increases. Should the outcome of the colouring be zero or negative, a penalty
is applied, suggesting that the move might have been ineffective or potentially detrimental
to the board.

To elucidate, if the colouring outcome is positive, the reward is computed as the
number of coloured cells divided by the total steps taken plus one; if the colouring
outcome is zero or negative, a penalty of −0.5 or −1 is imposed, contingent upon the
specific circumstances.

Lastly, upon game completion, an additional reward is allocated based on the comple-
tion speed: starting from a value of 9, this bonus decrementally reduces by one for each
step undertaken, with a floor value of 1.

3.2.3. Training Process

We trained our model using PPO. To generate training data, we ran 14 separate games
in parallel, resulting in batches of size 128. We then trained the model for 30 epochs using
the Adam optimiser. This process was repeated for a total of 5M steps. The details about
hyperparameters can be found in the Table 1.

Table 1. PPO hyper-parameters. This table outlines the configurations established for the various
hyperparameters. n_steps represents the number of steps to be executed for each environment for the
update. batch_size represents the mini-batch size. n_epochs indicates the number of training cycles
used to minimise the surrogate loss. learning_rate is the parameter that governs the size of the steps
with which the model’s weights are updated during training. clip_range is a hyperparameter used to
limit the changes in the policy during the update process. ent_coef is used to balance the entropy of
the policy, encouraging exploration during training.

Parameter Value

n_steps 2048
batch_size 128
n_epochs 30
learning_rate 0.0003
clip_range 0.15
ent_coef 0.02 or 0.03 or 0.05

The configuration of hyperparameters in PPO was critical to improving the model’s
performance in our study. While PPO is naturally resilient with the Stable Baselines 3 li-
brary’s default settings [59], tailored adjustments helped us to hone its efficacy. By experi-
menting manually and using a profound comprehension of the underlying mechanisms,
we tested several hyperparameter variations and different configurations.

A notable modification was the rise in the entropy coefficient (ent_coef), which was
initially 0 and later adjusted to 0.02, 0.03, and finally, 0.05. This alteration aimed to expand
the scope of exploration undertaken by the model concerning the CAT problem, which is
important, since there is a wide range of potential moves. Insufficient exploration could
cause the model to be unable to learn optimal strategies.

Concurrently, we decreased clip_range from 0.2 to 0.15. This parameter aims to limit
policy variations in updates, minimising sudden large fluctuations that may occur during
the training phase, particularly in a problem such as CAT, where the value of a move
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can undergo significant changes. Decreasing the clip range was essential to balancing the
increased entropy coefficient and ensuring stable policy updates.

Additionally, we chose to increase batch_size from 64 to 128. By increasing the agent’s
prior experience before each policy update, we improve the accuracy of the gradient
estimate, resulting in decreased update variance and a more stable learning process.

Regarding the number of epochs (n_epochs), we increased this from 10 to 30. A greater
number of epochs provides the agent with more opportunities to explore and learn com-
plex game strategies, thus increasing the chance of performance improvement. In the
CAT problem context, with its myriad actions and potential strategies, more epochs trans-
late into deeper exploration and the possibility of discovering novel and more effective
move combinations.

In summary, given the complexity of the CAT problem, with its vast space of actions
and potential states, we chose to increase exploration, gather more experiences, and enhance
the agent’s opportunities to explore new move combinations while being cautious not to
destabilise the learning process. The final parameters selected, which are both theoretically
sound and empirically effective according to our tests, are documented in Table 1. These
values contributed to consistent and superior results compared with all other configurations
tested in our experiments.

To quantify the efficacy with which our models manage to interpret the dynamics of
the game, we relied on the “explained variance” metric, already integrated into the Stable
Baselines 3 library [59].

4. Results and Discussion

This section presents and discusses the results derived from our research, with the aim
of offering a clear interpretation of the data, underscoring both the strengths and limitations
of our findings.

Multiple iterations were performed on the inherently non-deterministic meta-heuristic
model to comprehend its regular performance and determine the maximum achievable
outcome. This methodology recognises the variability of the model’s results and assures
that the assessment encompasses its capabilities.

Conversely, the reinforcement learning model was operated systematically on com-
pletion of training. The model consistently selects the action with the highest probability.
The evaluation of this model centres on the number of instructions required to colour the
board entirely and how efficiently it maximises the rewards according to the reward metric.

4.1. Hybrid Approach

The findings of our investigation, outlined in Table 2, illuminate significant aspects
of the resolution strategies employed for the twelve distinct game boards illustrated in
Figure 2. From the derived results, we discerned a considerable disparity in resolution
times contingent on the complexity of the board: those necessitating three–four moves
for resolution demanded between 5 and 10 min, whereas more straightforward boards
requiring at least one–two moves were resolved from a brisk few seconds to a minute.

Two crucial factors influence the algorithm’s choice. As board complexity increases,
the number of acceptable combinations decreases. Furthermore, moves that might be
effective are challenging for the algorithm to identify, as they may only be optimal when
paired with other moves. From a programming perspective, the algorithm sets a limit on
DFS, corresponding to the maximum number of moves explored. For instance, if there’s
a solution based on three moves, the algorithm first attempts to find a combination of
two moves. If we look at the values marked with an asterisk (*) in Table 2, we can see
an example of how in complex boards where there are few solutions of optimal length,
the algorithm does not guarantee to find the solution. This may be because the clustering
has not split the moves optimally or because the moves struggle to obtain a high score.
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Table 2. Results of hybrid approach. This table shows the performance of the hybrid algorithm
for each board, illustrating the time it took, the expected result (i.e., the average number of moves
required for a solution calculated over 10 tests), and the optimal solution identified (i.e., the number
of moves needed to complete the game).

Graph Time Expected Result Solution

1 0 min 01 s 1 1
2 0 min 15 s 1 1
3 0 min 15 s 1 1
4 0 min 50 s 2 2
5 0 min 50 s 2.7 * 2 *
6 0 min 40 s 1 1
7 0 min 15 s 1 1
8 0 min 15 s 1 1
9 0 min 25 s 1 1

10 1 min 00 s 2 2
11 10 min 00 s 3.9 * 3 *
12 5 min 00 s 4 4

* Instances where the algorithm did not meet the anticipated outcome, emphasising scenarios where the intricacy
of the board impinges on the algorithm’s efficacy.

Figures 3 and 4 depict two intriguing solutions identified by the algorithm. Figure 3
displays a solution consisting of a single instruction, which is notable due to its inherent
complexity. Through an accurate overlay of the move, the algorithm can completely colour
the entire board. Conversely, Figure 4 illustrates a two-move solution, highlighting the
effective functioning of cluster division; the two moves only share the central part of
the board.

Figure 3. Solution found with the hybrid approach for Graph 6. The solution is a single move,
the copy of a pattern, consisting of four colours (yellow, red, green, and blue) distributed in a square,
that is applied across the entire graph. Although the solution is achieved with a single move, it is
depicted here in three steps to illustrate its effect clearly.

The figures demonstrate the versatility of the hybrid method in resolving problems
of different levels of intricacy. It is noteworthy that the technique is capable of producing
both complicated and less intuitive solutions for challenging tasks, as well as simple and
comprehensible ones for less intricate boards. This adaptability is further demonstrated
in other scenarios analysed. When confronted with game configurations that include all
four colours or more intricate patterns, the algorithm has a tendency to choose a series
of smaller moves, which are then combined in ways that may appear less intuitive. Con-
versely, in scenarios with fewer elements and more straightforward patterns, the algorithm
showcases its ability to generate solutions that are not only efficient but also more easily
understandable. This dual capacity demonstrates the hybrid approach’s adaptability in
adjusting its solution strategy in response to the complexity of the problem presented.

In conclusion, our findings underscore the profound influence of the board’s complex-
ity and the randomised colour layout on the algorithm’s performance metrics. Despite
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inherent challenges, our algorithm demonstrates robust efficacy, navigating through all
categories of 6× 6 boards associated with the CAT problem within a reasonable time frame.

Figure 4. Solution found with the hybrid approach for Graph 4. The solution comprises two moves:
the copy of a pattern, consisting of three colours (yellow, red, and blue) distributed in a line, that is
applied four times across the central rows of the board and the copy of a square pattern, consisting
of two colours (with blue on the left and yellow on the right), that is applied both in the upper and
lower quadrants of the board.

4.2. Proximal Policy Optimization (PPO)

An initial attempt involved training a basic Proximal Policy Optimization (PPO) model
to tackle the 12 distinct game boards. Unfortunately, the model consistently executed
erroneous moves. This issue stems from the immense number of potential moves and the
drastic variability in board colouring and resolution strategy, which make it incredibly
challenging for the model to grasp the game’s underlying logic. Each board introduces
new information and invalidates previously learned information.

To mitigate this, a second experiment was conducted. Here, the basic PPO model was
trained on a single board, enabling the model to focus on a more stable environment and
learn the specific strategies for each one.

This approach yielded the results depicted in Figure 5, which scrutinises the learn-
ing trajectories across different game board schemes. The intricate interplay between the
model’s ability to grasp the rules of the game and the game board’s inherent complex-
ities is evident in the ebbs and flows of the explained variance across time steps. The
fluctuating learning trajectories for different game board schemes suggest that certain
board configurations might inherently be more challenging for the model to navigate than
others. For instance, while PPO for Graph 7 exhibits considerable variation in the initial
stages, its trajectory gradually stabilises. Conversely, PPO for Graph 11 shows sustained
variability throughout, indicating persistent challenges. The model’s learning is non-linear,
with periods of rapid understanding followed by plateaus or even regression. This could
be attributed to the complexities introduced by individual game boards, as each one adds
new information while simultaneously invalidating some previously acquired knowledge.
The early stages of training, as reflected in the left half of Figure 5, indicate a steep learning
curve for the model. This could be a phase of initial exploration where the model tries
to figure out the game’s mechanics. The latter half of the graph, with more pronounced
oscillations, might represent a fine-tuning phase where the model optimises its strategy.
There are evident troughs in the explained variance, suggesting moments when the model
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might be stuck in local minima. Yet, the subsequent increases highlight the model’s
ability to navigate out of these challenges, albeit not consistently. While the models were
capable of completing the game board optimally or sub-optimally, a significant issue arose,
as evidenced by the low explained variance depicted in Figure 5. This outcome suggests that
the model, despite achieving victory, failed to understand the game thoroughly. It managed
to improve only certain strategies, lacking the versatility required. It becomes evident that
while the model might excel or at least show promise in certain configurations, it struggles
in others, emphasising the need for a more generalised strategy. These insights bolster
the argument for a more nuanced training approach. Techniques like curriculum learning,
where the model is gradually introduced to more complex tasks, could be beneficial.
Similarly, ensemble methods that utilise multiple models’ predictions might offer a more
robust solution, capitalising on the strengths of individual models across various game
board schemes.

Figure 5. Explained variance. This figure illustrates the learning trajectory of PPO models (without
random start) over various schemes with the progression of time. The x-axis represents the total time
steps, while the y-axis delineates the explained variance.

Table 3 presents the results achieved with PPO. In this analysis, we focus on presenting
the results from more complex graph instances, excluding the simplest cases that can be
resolved with just a single move. This is because the model identifies the optimal strategy
easily in these cases and tends to apply the copy move consistently across similar situations.
This behaviour is expected, because this move is effective and also yields the highest
possible score in these elementary scenarios. Consequently, including these trivial instances
would not add significant value to our understanding of the model’s capabilities, as its
ability to solve them does not challenge its problem-solving mechanisms. The model yields
slightly more extended solutions than those previously displayed for the hybrid approach
in Table 2. However, it consistently performs flawlessly on simpler boards. These findings
illustrate the versatility and robustness of the PPO model in adapting and solving varying
levels of problem complexity. Even PPO struggles on complex boards where the optimal
solution is difficult to find, as observed from the values marked with an asterisk (*) in
Table 3. This could be due to the complex challenge of properly exploring all feasible moves,
identifying the best correlations, and subsequently finding the solution, compared with
other setups with simpler and more efficient solutions.
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Table 3. Results of PPO model. This table displays the solution that PPO with random start utilises
to complete the most complex boards. For each of the selected boards, their evaluation is illustrated
using the reward metric, the expected results (i.e., the number of moves required by PPO to fully
colour a board), and the optimal solutions (i.e., the number of moves needed to complete the game).

Graph Total Reward Expected Result Solution

4 24 2 2
5 22.3 3 * 2 *
6 29 1 1
9 29 1 1

10 24 2 2
11 19.3 4 * 3 *
12 14.7 5 * 4 *

* Instances where the algorithm did not meet the anticipated outcome, emphasising scenarios where the intricacy
of the board impinges on the algorithm’s efficacy.

Subsequently, various PPO models were tested on Graph 10, incorporating random
start, a clip range value of 0.15, and entropy coefficients of 0.02–0.05. This experimentation
yielded the results shown in Figure 6, while Figure 7 illustrates the difference with respect
to the previous model.

Figure 6. Explained variance for three PPO models with random start. This figure illustrates the
learning trajectory of PPO models employing random start, with a delineation based on differing
entropy coefficients. The x-axis represents the total time steps, while the y-axis showcases the
explained variance.

The integration of random start into the PPO model was aimed at facilitating better
exploration of the environment. Figure 6 sheds light on how different entropy coefficients,
when used alongside random start, can influence the model’s learning journey. There’s
a clear disparity in the explained variance trajectories when comparing models with
different entropy coefficients. Higher entropy, as seen in the model with entropy of 0.05,
leads to more pronounced fluctuations. This might be indicative of the model taking
more diverse actions, resulting in varying levels of success and failure. The model with
entropy of 0.01 appears to offer a slightly smoother learning curve, perhaps finding a
better balance between exploration (trying new moves) and exploitation (leveraging known
successful strategies). The increased volatility seen in the 0.05 entropy model underscores
the challenge of navigating with excessive randomness. While exploration is essential,
overdoing it can cause the model to deviate significantly from optimal strategies.
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Figure 7. Explained variance for three random vs. non-random models. This figure depicts the
learning disparity between models initiated with random start and those that were not.

The juxtaposition of learning trajectories in Figure 7 provides a comprehensive under-
standing of the effect of initialisation on model training. It is evident from the trajectories
that models employing random start generally demonstrate better explained variance, espe-
cially in the latter stages. This underscores the potential benefits of avoiding biases in initial
conditions and allowing the model to explore the environment more comprehensively.
The model that does not employ random start appears to hit a plateau, suggesting that
it might get trapped in specific sub-optimal strategies, unable to find its way out. While
random start can be advantageous, the initial stages of learning seem more chaotic. It is
likely that the model, due to the lack of any predetermined strategy, takes a longer time to
identify promising strategies. Despite the clear advantages of random start, the oscillations
in explained variance indicate that fine tuning, perhaps with adaptive entropy coefficients,
could be beneficial.

Figure 8 demonstrates how the average reward of the models rises during training,
indicating that our agent acquires the ability to navigate the environment to achieve maxi-
mum reward accumulation. If we combine this observation with those made previously,
it is evident that our PPO model can predict future performance with high explained
variance. Additionally, it yields high rewards, indicating a strong grasp of the operating
environment.

An example of a solution generated by the PPO model for Graph 10 is illustrated in
Figure 9. The identified solution strategy is composed of two vertical instructions featuring
alternating yellow and blue patterns. When combined, these instructions successfully
colour the entire board, underscoring the efficacy and accuracy of the PPO model in
formulating coherent and comprehensive solutions.

In conclusion, PPO models are highly adept at solving the CAT problem, albeit
requiring substantial time and resources for training. The primary advantage is that when
developed with random start and augmented entropy, it can resolve the game board and
assist in resolving various game boards from a non-empty start. This feature renders it
useful for third-party applications in progress games.
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Figure 8. Average reward for three PPO models with random start. This figure illustrates the average
reward of PPO models employing random start, with a delineation based on differing entropy
coefficients. The x-axis represents the total time steps, while the y-axis showcases the average reward.

Figure 9. Solution found by PPO for problem S10. The solution comprises two moves: the copy of a
pattern, consisting of a column alternating two colours (yellow above and blue below), applied in
the central rows of the board to the outermost columns and the two central ones, and the copy of a
pattern with the colours reversed, applied to fill the remaining empty spaces on the board.

4.3. Comparative Analysis and Discussion

This subsection provides a comparative analysis of the results obtained from the
hybrid approach and the PPO model in addressing the CAT problem. The analysis aims to
elucidate the differences in performance and the underlying reasons for these differences,
thereby offering a clearer understanding of the relative strengths and weaknesses of these
algorithms in this context. To facilitate the comparison between the two models, alongside
depicting the solution found with visual means, we aimed to extend the PPO metric,
introduced in Section 3.2.2, to the hybrid approach.

Table 4 encapsulates the key performance metrics for both methods across various
problem instances. We would like to note that boards with a single-move solution are
not considered, as both methods always yield the same result for both. Significant obser-
vations arise from the data presented regarding the quality of solutions and differences
between the two approaches. Firstly, the nature of the instructions selected by the respec-
tive models highlights discrepancies in their resolution behaviour. The hybrid approach
appears to prioritise simpler moves, resulting in less intuitive but complex combinations;
conversely, the PPO model adopts more elaborate moves, resulting in generally more
intuitive solutions.
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The table shows the strategies chosen by the two approaches (i.e., the different moves
chosen to complete the game) for different boards. We, therefore, have an illustration not
only of the number of moves chosen but also of the types of moves chosen. To compare the
two approaches, the reward metric is also added.

Table 4. Performance metrics for the hybrid approach and PPO. The table shows the strategies chosen
by the two approaches (i.e., the illustration of the number and type of moves chosen to complete
the game) for different boards. Additionally, a reward metric is included to facilitate comparison
between the two approaches.

Graph
Hybrid Approach PPO

Selected Moves Total
Reward Selected Moves Total

Reward

4 24 24

5 22.3 22.3

10 23 24

11 19 19.3

12 16.4 14.7

On the one hand, this distinction appears to be influenced by the hybrid approach’s
strategy of assessing moves for their combinational effectiveness. In this context, less
complex moves are often more versatile and adaptable, enabling them to fit a variety of
combinations and scenarios. As a result, these moves tend to achieve higher scores because
they are more likely to work with other moves.

The PPO model, on the other hand, leverages its exploratory capabilities to learn and
harness the complex interplay among moves. It does not solely prioritise adaptability,
but instead, it seeks to explore a diverse range of moves, including those that are more
intricate. It assesses the effectiveness of these complex moves over a broad spectrum of
situations, progressively refining its choice to favour moves that, although possibly less
versatile, can navigate toward solutions in a more direct and often more optimised manner.

Regarding the length of solutions, meaning the number of selected instructions, the hy-
brid approach demonstrates superiority in more complex problems, finding more concise
solutions compared with PPO.

Regarding the reward, the two models exhibit comparable performance. A higher
score is assigned to solutions with a greater number of instructions if they are characterised
by higher speed and quality, as evidenced in the case of Graph 11. This demonstrates how
a numerically less optimal solution can still achieve higher scores, thus showing room for
improvement in the metrics.

In general, PPO tends to come up with solutions that have more instructions compared
with the hybrid approach. Therefore, if both methods discover solutions of equal length,
the solution produced by PPO has the highest reward. This is because the model is designed
to optimise the reward, so it chooses moves that can initially colour more. However, this
approach can lead to mitigating losses in shorter solutions, as in the case of Graph 11,
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but not in solutions that require many moves, as in Graph 12, since the metric tends
to penalise the model more and more as the model employs more moves to complete
the solution.

In summary, it can be said that both models demonstrate effectiveness in addressing
the CAT problem, but they differ significantly in the type of solution generated. While the
hybrid approach often generates fewer instructions that result in more complex combina-
tions, the PPO model favours slightly more extensive but simpler-to-interpret solutions,
characterised by more moves.

5. Conclusions

In the face of swift technological transformations, the significance of computational
thinking (CT) skills cannot be overstated, especially in the educational domain. This study,
anchored in the Swiss educational system’s needs, scrutinises the Cross Array Task (CAT)
as both an evaluative instrument for assessing students’ algorithmic proficiency and a
complex problem ripe for computational analysis. The goal of this study is to expand
the boundaries of algorithmic research by exploring computational strategies that can
optimally solve this task.

Our rigorous analysis unearthed the nuanced challenges posed by the CAT, a task
that, on the surface, appears deceptively simple yet demands a profound level of strategic
reasoning. By adopting a hybrid approach, leveraging clustering techniques with score-
based evaluations, and harnessing the Proximal Policy Optimization (PPO) reinforcement
learning (RL) model, we have carved out new paths for solving and understanding the
intricacies of this educational tool.

Comparing our findings with existing research, it is evident that the hybrid method
represents a significant stride in the CAT problem’s algorithmic landscape. Traditional
methods have often struggled with the balance between optimisation and variability,
a concern that the hybrid approach addresses with finesse. Furthermore, the intricacies
and potential of RL, as highlighted in this study, underscore the need for a more refined
exploration of its applications in future research.

While both the hybrid and PPO models demonstrate commendable performance,
they are each constrained by specific limitations, particularly in complex scenarios with
numerous colours and intricate board configurations. For the hybrid approach, the main
bottleneck arises from the clustering mechanism and the metric used to measure move
similarity. This can result in different moves being erroneously grouped together, which
may obscure the efficacy of potentially optimal moves. Consequently, the algorithm might
fail to evaluate and select the best strategies accurately. The PPO model, by virtue of consid-
ering all possible moves, ostensibly benefits from a broader learning scope, capturing the
nuances of move interactions and board dynamics. However, this same breadth also intro-
duces a significant challenge; the diversity of game boards and the expansive search space
can overwhelm the learning process, potentially leading to subpar strategies. Moreover,
the PPO model’s inability to effectively manage multiple types of board configurations
further compounds this complexity, complicating the discernment of move-to-board inter-
dependencies. These results represent further confirmation of how not only meta-heuristic
methods but also RL models are able to address an NP-hard problem adequately.

Looking ahead, we see potential in using advanced methods like meta-reinforcement
learning (meta-RL) and general-purpose in-context learning as alternative methodologies.
Meta-RL, for example, could help us create smarter educational tools that not only tailor
learning experiences to individual student profiles but also excel in generalising to new
problem-solving scenarios that are significantly distinct from those encountered during
training [27]. Also, using general-purpose learning technologies could help us design
systems capable of addressing a wider array of problems with minimal manual tuning, thus
surpassing the capabilities of current manually-designed approaches [28]. Employing these
cutting-edge technologies could result in more efficient and effective learning interventions,
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potentially leading to superior problem-solving strategies that are both innovative and
broadly applicable across the diverse landscape of educational challenges.

This study carries profound practical implications for CT education. By incorporating
our algorithms into educational technologies, such as the virtual CAT application, we
can enhance the learning experience, making the activities more interactive and tailored
to individual needs. One promising avenue for such integration is the development of
intelligent tutoring systems (ITSs) that adapt to individual learning styles and student’s
proficiency [61–63].

While the promise is significant, integrating these complex algorithms into user-
friendly systems is not without its challenges. They must be designed to maintain educa-
tional focus without complexity overwhelming the learner. Moreover, the interfaces should
be clear and provide constructive feedback to support learning. Additionally, the deploy-
ment of such systems must navigate issues of accessibility; the risk of dependency on
algorithms; and the need for a flexible, current curriculum.

Even with these challenges, incorporating our algorithms into ITSs has the potential
to revolutionise how students learn CT, enhancing their problem-solving abilities and their
understanding of CT concepts.

In conclusion, this research not only offers a comprehensive understanding of the CAT
problem but also charts a path for future studies and practical applications. Through a
judicious blend of hybrid methodologies and RL, the study has expanded the horizons of
algorithmic solutions in the realm of CT and education.
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