machine learning &

knowledge extraction

Article

Optimal Topology of Vision Transformer for Real-Time Video
Action Recognition in an End-to-End Cloud Solution

Saman Sarraf 1%*

check for
updates

Citation: Sarraf, S.; Kabia, M.
Optimal Topology of Vision
Transformer for Real-Time Video
Action Recognition in an End-to-End
Cloud Solution. Mach. Learn. Knowl.
Extr. 2023, 5,1320-1339. https://
doi.org/10.3390/ make5040067

Academic Editors: Guoqing Chao
and Xianzhi Wang

Received: 1 September 2023
Revised: 25 September 2023
Accepted: 27 September 2023
Published: 29 September 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Milton Kabia 2

Santa Clara Valley Section, Institute of Electrical and Electronics Engineers, Santa Clara, CA 94085, USA
School of Technology and Engineering, National University, San Diego, CA 92123, USA; mkabia@nu.edu
Correspondence: samansarraf@ieee.org or ssarraf@nu.edu

2

*

Abstract: This study introduces an optimal topology of vision transformers for real-time video
action recognition in a cloud-based solution. Although model performance is a key criterion for
real-time video analysis use cases, inference latency plays a more crucial role in adopting such
technology in real-world scenarios. Our objective is to reduce the inference latency of the solution
while admissibly maintaining the vision transformer’s performance. Thus, we employed the optimal
cloud components as the foundation of our machine learning pipeline and optimized the topology
of vision transformers. We utilized UCF101, including more than one million action recognition
video clips. The modeling pipeline consists of a preprocessing module to extract frames from video
clips, training two-dimensional (2D) vision transformer models, and deep learning baselines. The
pipeline also includes a postprocessing step to aggregate the frame-level predictions to generate the
video-level predictions at inference. The results demonstrate that our optimal vision transformer
model with an input dimension of 56 x 56 x 3 with eight attention heads produces an F1 score of
91.497% for the testing set. The optimized vision transformer reduces the inference latency by 40.70%,
measured through a batch-processing approach, with a 55.63% faster training time than the baseline.
Lastly, we developed an enhanced skip-frame approach to improve the inference latency by finding
an optimal ratio of frames for prediction at inference, where we could further reduce the inference
latency by 57.15%. This study reveals that the vision transformer model is highly optimizable for
inference latency while maintaining the model performance.

Keywords: action recognition; vision transformer; cloud solution

1. Introduction

Among computer vision tasks, video analysis, including action recognition and event
detection, has significantly progressed in recent decades. Action recognition refers to a set of
algorithms that identify a specific human action or an event in a series of video frames, such
as playing a musical instrument or scoring a goal in a soccer match [1,2]. This video analysis
technology requires strong salient feature extractors that can easily distinguish between
actions and a fast-responding system that can be deployed for real-time applications [3,4].
Nevertheless, action recognition solutions offer broad applications in annotating historical
archives where the intention of digitizing such archives is to extract statistics or enhance
fan engagement. In both offline and real-time applications, the inference latency plays an
important role in enabling the success of this type of solution in business [5,6].

Advances in deep machine learning have enabled researchers and enterprises to
explore the possibility of deploying such solutions for real-time applications in a cloud
environment [7,8]. However, a cloud-based real-time data processing and predictive
modeling architecture requires robust infrastructure with a fast-responsive inference and
the ability to outperform deep learning models [9]. Therefore, a potential solution for
real-time applications should be built using optimally selected cloud components and
services from a cloud-based architecture design. Deep learning models should also be

Mach. Learn. Knowl. Extr. 2023, 5, 1320-1339. https://doi.org/10.3390/make5040067

https:/ /www.mdpi.com/journal /make

https://doi.org/10.3390/make5040067
https://doi.org/10.3390/make5040067
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0003-3314-4281
https://doi.org/10.3390/make5040067
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make5040067?type=check_update&version=2

Mach. Learn. Knowl. Extr. 2023, 5

1321

optimized based on use cases to maintain or enhance models’ performance while reducing
the inference latency, referring to a prediction for real-time applications [10,11].

Among deep learning-based solutions for real-time applications, computer vision
techniques such as image classification, event detection, object detection, and pose estima-
tion in real-time scenarios have interested many researchers. Moreover, several industries
have considered employing computer vision cloud-based solutions, including agriculture,
transportation, broadcasting and entertainment, education, healthcare, manufacturing,
mining, postal services, and telecommunication [12,13]. In such applications, practitioners
seek computer vision end-to-end algorithms using imaging data, including static images or
video frames, to classify images or localize objects in real-time scenarios [14].

The human brain inspires most deep learning architectures currently employed in
cloud-based solutions, e.g., convolutional neural networks [15-17], recurrent neural net-
works, long short-term memory, known as RNN-LSTM [18,19], and attention-based net-
works [20,21]. For instance, a deep learning convolutional network was implemented
for predicting the different stages of Alzheimer’s disease, including normal aging, mild
cognitive impairment, and Alzheimer’s [15-17]. The researchers aimed to demonstrate that
network topology optimization could produce the highest modeling performance in similar
tasks while reducing the architecture’s complexity [17]. Unlike sophisticated deep learning
architectures that use millions of trainable parameters [17,22], the MCADNNet offered a
three-layer convolution-based model through an optimal input size of imaging data, which
allowed for faster prediction using the trained feedforward network [17]. This work’s
topology optimization concept could be examined in computer vision, medical imaging,
or other machine learning applications, enabling scientists to deploy such outperforming
models in a production environment [17].

A cloud-based solution for real-time machine learning applications should be evalu-
ated based on architectural and modeling aspects. Solution architects should design a sys-
tem by considering five central pillars: (a) operational excellence, (b) security, (c) reliability,
(d) performance efficiency, and (e) cost optimization/frugality [23,24]. On the other hand, a
deep learning or computer vision model’s performance should be evaluated using various
metrics such as accuracy rate, precision, recall, F1 score, and confusion matrix [25,26]. Also,
the impact of lower-dimension images and fewer videos on models’ performance should
be measured in real-time computer vision applications [27,28].

Our work aims to demonstrate the topology optimization capabilities that should
be considered when implementing computer vision solutions in a cloud environment for
real-time applications. Most existing applications focus on improving the computer vision
models’ performance through various architectures; however, the inference latency, which
can be improved through topology optimization, must be discussed more. Therefore, we
use vision transformer vanilla architectures showing similar performance to stable vision
models and explore simplifying this architecture while maintaining acceptable accuracy.
The problem addressed in this study consists of compromised timing and machine learning
(ML) model performance in real-time applications, especially for cloud-based computer
vision solutions. Optimal latency and inference latency in a real-time application are
achieved through a software architecture with a complex and fast-responding infrastructure
or a simplified back-end machine learning model [8].

This study aims to design and implement an end-to-end cloud-based solution for
optimal attention network topology in real-time applications specified for action recogni-
tion. The designed solution offers optimal software architecture to achieve high machine
learning model performance while minimizing the inference latency issues in data stream-
ing, especially for computer vision applications, including video-based action recognition.
The optimization is addressed by varying the machine learning algorithm parameters
after the pipeline is built. The study’s deliverable is a software entity hosted in the Ama-
zon cloud environment and developed in Python, where an optimal topology of vision
transformer for video action recognition is employed. In summary, the novelty of this
study includes (a) employing vision transformer models as state-of-the-art technology in

Mach. Learn. Knowl. Extr. 2023, 5

1322

real-time video action recognition, (b) optimizing the topology of vanilla architectures
by reducing the video frame dimensions as the input to the model and the number of
multi-head self-attention modules, (c) selecting optimal cloud instances, and (d) proposing
a novel enhanced skip-frame mechanism to reduce the inference latency further.

2. Related Work

The central pillar of this section is based on exploring the definition of attention
mechanisms in human brains and artificial intelligence as it forms the core of our vision
transformer models for optimization purposes. The applications of attention mechanisms
have expanded into various domains, including machine learning, natural language pro-
cessing, and computer vision—the main focus of this work—but have yet to be discussed
for action recognition and video event detection. We also review the cloud-based solutions
for real-time machine learning applications and analyze their optimizations. The major
advantage of attention mechanisms and the enhanced versions known as transformers is
to suppress the impact of less contributing features and intensify the most contributing
attributes during the training process while considering positional information.

2.1. Transformers in Computer Vision

The human visual system inspires the core concept of using an attention mechanism in
machine learning, as visual signals play a crucial role in the orienting subsystem of human
attention [29]. The initial concept was developed with an attention model accumulating
information across several fixed points in an image using a Boltzmann machine [30].
Enhanced feature extraction from imaging data is achieved using an attention mechanism
that enables computer vision models to extract salient features associated with the type
of objects’ location, resulting in improved modeling performance [31]. Another brain-
inspired attention mechanism extracted features from multi-scale color contrast. This
attention mechanism produces a low-resolution saliency map in which salient features are
highlighted [32].

Moreover, a winner-takes-all mechanism, known as WTA, was proposed. It is a location-
based attention mechanism that tracks salient locations detected in consecutive frames to
incorporate sequential information in the learning process [21,33,34]. Some researchers
categorized the computer vision architectures with the attention mechanism into (a) CNN-
based networks with recurrent connections, (b) visual transformers with tokenized inputs,
(c) attention-augmented CNNs, and (d) dense layers with image transformers [35-40]. Ad-
vanced vision transformer-based architectures introduce other layers to incorporate further
information extracted from data during the training process through a temporal trans-
former encoder in ViViT [41], a space—time attention module in TimeSformer [42], and
multi-scale vision transformer (MViT) techniques [43].

Considering video as a form of 3D data, the recurrent vision transformer (RViT)
framework for spatial-temporal representation offers a framework to address action recog-
nition [44]. The novel frameworks of M2DAR and MM-ViT offer multi-view, multi-scale
solutions that allow action recognition [45] using a vision transformer architecture [46].
Recently, semi-supervised computer vision models have been of interest to many scien-
tists, and SVFormer, a transformer-based algorithm, provides this ability to recognize
actions [47]. Enhancing the embedding—positioning feature of vision transformation by
replacing the absolute position with a relative position improved the performance of action
recognition in some studies [48]. A deep neural network model was optimized to reduce
latency for edge computing through a fine-grained pipeline [49]. Researchers also showed
an improved latency by optimizing graphical unit communication during computing for
image classification tasks [50]. Scientists proposed a new framework using an acceleration
approach to improve inference latency, known as ABM-SpConv-SIMD [51].

Mach. Learn. Knowl. Extr. 2023, 5

1323

2.2. Cloud-Based Solution for Real-Time Computer Vision Applications

Real-time computer vision applications require a fast-responding prediction module
that refers to inference, in which the deployed module can accurately predict unseen data
while end-to-end inference latency is low. Therefore, such real-time solutions heavily rely on
infrastructure with distributed systems; a scalable, robust, and cost-effective environment
such as a cloud ecosystem is considered an optimal solution [52,53]. Fast-growing machine
learning (ML) applications in various industries have been investigated; such applications
were transformed into cloud services known as ML-as-a-Service (MLAAS) [54]. The major
issue with machine learning models was underperforming inference (high response time
and long delay), which discourages artificial intelligence companies from deeply modeling
products. A novel approach, MArk, was designed to offer optimal latency and inference
latency for a machine learning application [55]. The proposed algorithm, built on the
Amazon Web Services infrastructure, dynamically produces batches in real time based on a
cost-latency-effective approach within available resources [54].

Recent advances in computer vision, such as event detection for real-time applica-
tions, have interested many commercial companies [56]. For example, real-time video
analysis technology has expanded into sports to enhance fan engagement and provide
game statistics or predictions [57]. Amazon Web Services, a major cloud computing service
provider, has developed repeatable customer offerings regarding real-time and offline event
detection for various sports such as American football, soccer, and hockey [58]. The core
technology of such solutions consists of a robust deep learning-based computer vision
model predicting events at a high resolution and improving the performance of models
using a multimodal approach [8,58].

Another set of inference latency optimization approaches enables the incorporation
of data compression such as video compression at source [59] and the use of accelerating
networks in cloud environments [60]. However, the data compression [61] and accelerating
techniques [62] reduce the inference latency and increase the complexity and cost of devel-
opment and the maintenance of networks. Moreover, the video compression techniques
degrade video frame quality before feeding the frames into the pipeline, which requires
model development to be conducted on low-quality data, reducing the models’ perfor-
mance [63]. Therefore, applying such techniques in real-world computer vision solutions is
challenging, and most use is limited to research studies.

3. Materials and Methods
3.1. Dataset

Action recognition in computer vision consists of several steps, such as video pre-
processing, image classification, and a postprocessing step, including temporal modeling
in real-time and offline applications. The UCF101 is a well-known, broadly used, and
highly referenced action recognition dataset collected by the Center for Research in Com-
puter Vision at the University of Central Florida [64]. The dataset includes 101 different
human actions, as shown in Figure A1, collected from YouTube videos that are publicly
available. The dataset can be categorized into five major classes: (a) sports, (b) playing
musical instruments, (c) human-object interaction, (d) human interaction, and (e) body
motion [64] (Soomro et al., 2012). UCF101 is the first action recognition dataset with the
highest number of classes and ranks among the top computer vision datasets that are
publicly available, focusing on action recognition and event detection. The reliability of the
dataset is validated since this dataset is widely used and cited by prestigious manuscripts
at top-tier computer vision conferences and in journals [65,66]. Furthermore, the dataset is
trustworthy, as the raw data are videos collected through YouTube, publicly available and
carefully annotated by the dataset owner, and verified by researchers over the years [67,68].
The UCF101 provides the training and testing splits of videos; this allows researchers to
consistently compare their results, which is considered an additional source of validity and
trustworthiness of the dataset.

Mach. Learn. Knowl. Extr. 2023, 5 1324

3.2. Machine Learning/Computer Vision Pipeline

The pipeline implemented in this study encompassed two major components: (a) the
core machine learning (vision transformer) and (b) cloud components. The machine
learning pipeline included (a) preprocessing video data, (b) training vision transformer
models, (c) evaluating models, (d) postprocessing the results, and (e) optimizing the models
to produce competitive performance with less trainable parameters. The UCF101 (training
set) used in this study included 9537 video clips split into 7721 (80%), 908 (10%), and 908
(10%) videos for training, validation, and testing purposes.

The two-dimensional (2D) frames were extracted from clips using the OpenCV Python
library on a p3.8xlarge Amazon SageMaker instance, and the frames were uploaded to the
Amazon Simple Storage Service (53). SageMaker hosted the machine learning pipeline
in the training and inference phases. The number of frames in each clip varied since the
duration and frame per second (FPS) rate of clips differed. Figure 1 shows the number of
frames extracted from the video clips, and that the dataset was slightly imbalanced.

UCF101 - Frames

70000
60000
50000
40000

30000

20000
0 I
1 4

7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100
Class

Number of Frames

Figure 1. The figure shows that the number of frames varies per class; the distribution is
slightly imbalanced.

Based on the previous step’s videos, the preprocessing module produced 1,448,558,
168,890, and 168,631 frames for training, validation, and testing. The vision transformer
model with a multi-head self-attention (MHSA) mechanism was considered the baseline,
and this model was optimized for various heads and image sizes [37]. First, the vision
transform model generated small patches of frames, transforming the patches with two
axes and three channels into a vector. Next, the linear project of flattened patches was
passed through a position embedding process to be processed by a multi-head transformer
encoder. Finally, the features from the encoder were fed into a multi-layer perceptron,
playing the role of a translator of attention-based features into a format to be processed by
the cross-entropy loss. The PyTorch framework managed the hyperparameter of vision
transformer vanilla mode during training, where we set batch_size to 64, epochs to 30,
learning rate to 3 x 10~>, dropout to 0.1, and gamma to 0.7 as the initial values. The other
hyperparameters for optimization were explored by modifying MHSA and image inputs,
as explained later.

Figure 2 illustrates the architecture of the vision transformer for a given input frame
where the patches were generated for the training process. The implementation of an
end-to-end cloud-based pipeline was performed using a proposed solution by system-
deep learning architects at Amazon, considering the vanilla architecture for optimization.
Amazon S3, Kinesis, Gateway, and SageMaker Endpoint were the AWS services used to
build the end-to-end pipeline. The optimization objective from the solution perspective
was to reduce the inference latency based on the vanilla architecture without onboarding
further services such as AWS outputs and Wavelength.

Mach. Learn. Knowl. Extr. 2023, 5

1325

Cross-Entropy Loss

1)

MLP Head

1)

Transformer Encoder
Multi-Head Self-Attention

1t

91

Liner Projection of Flatten Patches

NEREEEEET NN L
— i — .] 2 BN e =]

Figure 2. The vision transformer model, with a multi-head self-attention mechanism encapsulated

in the transformer encoder, was optimized for the different numbers of heads and image sizes.
However, the vision transformer required a significant amount of memory and computation, and the
optimization focused on exploring the optimal number of layers and input dimensions to improve
the inference latency for real-time applications.

A stable cloud architecture used for offline and real-time applications with a batch-
processing approach was considered, as illustrated in Figure 3. This architecture was
carefully designed by consulting two reference architectures published by AWS Machine
Learning Blog (publicly available), which are (a) Machine Learning Inference at Scale Using
AWS Serverless (https:/ /aws.amazon.com/blogs/machine-learning /machine-learning-inf
erence-at-scale-using-aws-serverless/, accessed on 30 August 2023) and (b) Building a Data
Pipeline for Tracking Sporting Events Using AWS Services (https:/ /aws.amazon.com/blogs
/architecture/building-a-data-pipeline-for-tracking-sporting-events-using-aws-services/,
accessed on 30 August 2023). We used various AWS instances to explore the training dura-
tion and inference latency to discover the most optimal instance for deployment purposes.

AWS Cloud

Batch Inference
Upload Video Frames oo
</]

E’ Amazon Simple Storage AWS Lambda Amazon SageMaker Endpoint Amazon AP| Gateway E]
Service (Amazon S3) c—
—=
Client
Client
—— />
& m
Amazon Kinesis Amazon API Gateway AWS Lambda Amazon SageMaker Endpoint

Real-Time Inference

Figure 3. In this solution architecture, based on AWS’s two architectures, the client triggers the
real-time inference to stream videos from an external device where Amazon Kinesis receives the
videos and calls the Amazon API Gateway. This service triggers an AWS Lambda function, which
invokes Amazon SageMaker Endpoint, offering access to the trained and optimized attention-based
model for computer vision applications. Upon completion of inference and analytics readiness, the
results are provided to the client for broadcasting or other usages.

https://aws.amazon.com/blogs/machine-learning/machine-learning-inference-at-scale-using-aws-serverless/
https://aws.amazon.com/blogs/machine-learning/machine-learning-inference-at-scale-using-aws-serverless/
https://aws.amazon.com/blogs/architecture/building-a-data-pipeline-for-tracking-sporting-events-using-aws-services/
https://aws.amazon.com/blogs/architecture/building-a-data-pipeline-for-tracking-sporting-events-using-aws-services/

Mach. Learn. Knowl. Extr. 2023, 5

1326

4. Results

In the first step, we explored to what extent our cloud-based solution for real-time ap-
plications could be optimized for inference latency by enhancing architecture components,
compared to vanilla architecture, for the same use cases. Table 1 compares the inference
latency for vanilla and optimized vision transformer models against an identical testing set
performed using four popular GPU-based instances for computer vision applications. The
batch size in the prediction module was set to 64 images and was kept consistent across
the study. The instances’ specifications, including memory, bandwidth, and cost per hour,
were also provided for comparison purposes. The latency of each instance was measured
in the inference against comparable testing data; the results were then compared in terms
of the latency, memory, network bandwidth, and cost per hour extracted from the AWS
website in 2022.

Table 1. Comparison of three popular instances used for computer vision with GPU and parallel
computing capabilities.

Model ViT Vanilla ViT Optimized
Multi-Head Self-Attention (Number of Heads) 16 8
Image Size (x, y, Channel) 224 x 224 x 3 56 x 56 x 3
Latency (sec) 1474.0831 856.8517
Test Samples (PNG) 168,631
p3.16xlarge Memory (GB) 488
GPU Memory (GB) 128
Bandwidth 10
Cost USD/Hour UsD24.48
Latency (sec) 1434.5108 853.8936
Test Samples (PNG) 168,631
b3 8xlarge Memory (GB) 244
GPU Memory (GB) 64
Bandwidth Up to 10
Cost USD/Hour UsD12.24
Latency (sec) 1420.8712 851.4978
Test Samples (PNG) 168,631
p3.2xlarge Memory (GB) 61
GPU Memory GB) 16
Bandwidth 10
Cost USD/Hour USD3.06

In the second step, we explored the possibility of reproducing identical, similar, or im-
proved performance using an optimized vision transformer model for real-time application
compared to a deeper model used for offline application. We posed the question of under
what conditions an optimized architecture for real-time computer vision applications can
produce equal and improved performance compared to a similar architecture designed
for offline applications. The optimization strategy centered on modifying the number of
multi-head self-attention layers (8, 16) and reducing the input size for frames (224 x 224,
112 x 112, 56 x 56) fed into the model during implementation. We only refer to (224,
112, 56) for simplification as the input size. The assumption was that an optimized model
would produce a similar or improved performance for real-time application represented
by a lightweight model (ViT_56_8) compared to an offline application represented by a
complex and heavy model (ViT_224_16). The results in Table 2 indicate that the ViT_224_16

Mach. Learn. Knowl. Extr. 2023, 5

1327

offline model outperformed the ViT_56_8 real-time model by 3.75% and 3.23% in terms of
the macro averaged F1 score at the frame level for validation and testing sets, respectively.
Table Al shows the full classification report for the frame-level analysis, and the support
column refers to the number of frames used for testing and validation purposes (the success
criteria are stated in the discussion section).

Table 2. The frame-level performance of vision transformer models optimized for the number of
heads and input size. The optimization of the number of MHSA layers and input showed that these
two parameters affected the performance of models at the frame level.

F1 Score Macro Avg

Model
Validation Test

ViT_56_8 0.868368201 0.871495053
ViT_56_16 0.871914203 0.875206396
ViT_112_8 0.891644812 0.890590870
ViT_112_16 0.895766029 0.891423734
ViT_224_8 0.908368265 0.908376098
ViT_224_16 0.905895462 0.903802112

Since the original data included the video clips, the performance of video-level models
was calculated to address the optimization question properly. First, the predicted labels
from the frames were collected and aggregated based on the video clip identification (ID)
numbers. Next, a postprocessing step was applied to the frames of each clip by calculating
the probability of each class in a given video clip, followed by selecting the top class
based on the concept of voting by the majority. The postprocessing module mapped 2D
predicted labels (frames) into 3D space (videos). We aggregated the performance per
second at inference for visualization and anchoring purposes. The video-level results
shown in Table 3 indicate that the offline heavy ViT_224_ 16 model outperformed the
real-time light ViT_56_8 vision transformer model by 3.22% and 2.62% in terms of the
macro averaged F1 score at the video level for the validation and testing sets, respectively
(confusion matrix shown in Figure A2). Moreover, the F1 scores of video-level evaluations
were improved by 0.53% and 0.59% compared to the frame-level analysis. The video-level
analysis aligned better with the business concept of real-time applications. Table A2 shows
the full classification report for the video-level analysis.

Table 3. The performance of vision transformer models at the video level is shown in this figure as
the video data are given in the original data format. The results show that the the majority considered
the postprocessing step to improve the performance of models from the frame level to video level.

Model F1 Score Macro Avg

Validation Test
ViT_56_8 0.905055103 0.912229318
ViT_b56_16 0.910509808 0.921660936
ViT_112_8 0.930591619 0.924362794
ViT_112_16 0.923940036 0.928365605
ViT_224_8 0.946523733 0.936052540
ViT_224_16 0.937209031 0.938384157

The analysis of the physical properties of the vision transformer, ResNet, Inception,
and VGG models showed that the optimized vision transformer model for real-time applica-
tions (ViT_56_8) offered a significantly lower training time and memory volume occupation
during the training process, as shown in Table 4. Therefore, the optimized model training
time on the same server instance was 2.25 times faster, the equivalent of 3:29:30 hours
per epoch, than the offline ViT_224 16 model. Furthermore, since all of the models were

Mach. Learn. Knowl. Extr. 2023, 5

1328

trained for 30 epochs (Figure A3), the optimized model saved 104:45:00 hours and the corre-
sponding cost of server usage compared to the heavy model. Furthermore, the results show
that the optimized model occupied slightly less space in the disk compared to other vision
transformer models; however, the investigation indicated that the model size comparison
with the benchmark model, such as ResNet families, should be ignored as those models
were specifically optimized to reduce the model size with a different approach. In summary,
the results in Table 4 show that the optimized vision transformer with an input size of
224 and eight heads occupied the least amount of memory. Since two different Python
packages are used to implement vision transformers and ResNet models, the volume of
saved models on the disk is incomparable. The last column includes the training time of
each model, showing that the vision transformers are faster to train. The time in the column
refers to the second epoch of each model, which was consistent across the models.

Table 4. Comparison of vision transformer and deep learning ResNet, Inception, and VGG family

models. This table compares the vision transformer models and ResNet family regarding memory
occupation in the training process, and the volume of saved models on the disk.

ViT 224 16 11,967 196 6:16:37
ViT 224 8 8703 148 6:08:14
ViT 112 16 4027 196 4:48:15
ViT 112 8 3397 148 4:23:27
ViT 56 16 2453 195 2:47:22
ViT 56 8 2125 147 2:47:07
ResNet 224 101 13,983 164 10:53:12
ResNet 224 50 10,521 91 10:12:27
ResNet 224 18 5275 41 7:09:29
Inception 224 48 13,865 529 5:11:05
VGG 224 16 13,863 530 5:12:45

We aimed to further optimize the inference latency of the optimal vision transformer
topology using an enhanced in-house version of the skip-frame approach [69]. We leveraged
the skip-frame approach and developed a two-stage algorithm to find an optimal ratio of
frames within one second concerning the number of frames in the given second (FPS) across
our testing set. In the first step, we randomly shuffled the frames” indices in each second of
videos; then, we started from 10% to 100% of frames with a step of 10%. We repeated this
process five times and measured the average and standard deviation of F1 scores against
the testing test. In the second step, we selected the video frames in each second using an
ordinal approach instead of randomly shuffling samples. For example, 50% of frames in
this approach were selected by skipping one frame at a time. Next, we measured the F1
scores against the testing set. Lastly, we introduced an error metric to measure the distance
of corresponding experiments in the first and second steps. The objective was to find a
ratio with a minimum error using Equation (1). A ratio with a minimum error rate could
represent a stable threshold for maintaining the performance while reducing the number of
frames, resulting in lower inference latency in our real-time batch processing approach.

Errorsiprrame = |Random — Ordinal | (1)

The results depicted in Figures 4 and 5 reveal that the optimal ratio of frames in our study is
40%, where the error rate is 0.0001562, which allows us to batch process 60% fewer frames,
resulting in a significant improvement in the inference latency.

Mach. Learn. Knowl. Extr. 2023, 5

1329

F1-Scores of Testing Set using two SKip-Frame Methods

== Random

g Oy dinal

0.93

0.92

Fl-Scores Testing Set

0.915

0.91
1026 2000 3009 4000 5000 6000 7000 8009 20249 100%0
Ratio of Frames in One Second Video

Figure 4. The F1 scores for 10 ratios across two experiments including 5 repetitions of the random
approach and one-time ordinal. The standard deviation of 5 times the random method is illustrated
as the blue line.

Error Skip-Frame

=s=Error
0.005

0.0045
0.004
0.0035
0.003

0.0025

Error Rate

0.002
0.0015
0.001

0.0005

1020 2000 0o 4000 5020 60% 70%0 80%0 920% 100%6

Ratio of Frames in One Second Video

Figure 5. The error rates defined in Equation (1) across the analysis of ten ratios show that both
skip-frame methods converge at a 40% frame ratio, with the lowest error rate and standard deviation
in the random method. This enhanced approach should be considered a hyperparameter in each
relevant study as it can reduce the number of frames to predict at inference.

5. Discussion

We aimed to address the issues with inference latency in the real-time computer vision
applications where video data must be analyzed at the frame level. High-resolution video
frames with high FPS require time-consuming and costly computation, which increases
the inference latency and cost of development. Most existing solutions aim to improve
the model performance by employing sophisticated algorithms and expensive cloud in-
frastructure. In such solutions, limited techniques such as video data compression are
considered, which usually increase the cost and complexity of the solution. Furthermore,
incorporating data compression techniques and enhanced network bandwidth is rarely

Mach. Learn. Knowl. Extr. 2023, 5

1330

feasible. Therefore, we proposed our end-to-end solution to address the current gaps in the
literature by optimizing the vision transformer’s topology followed by an enhanced and
fast skip-frame mechanism to reduce the inference latency.

In this study, we developed an end-to-end solution that reduces the complexity of the
vision transformer model as a state-of-the-art technique, resulting in lower inference latency
and deployment costs. The first research question in this study outlined the optimization of
cloud-based architecture for real-time computer vision applications from the cloud service
or component perspective. Existing AWS cloud services, including storage, streaming
services, and step functions, were investigated to address this question. The research
indicated that solution architects have already implemented several vanilla solutions by
piping the cloud components, and the architecture shown in Figure 3 is among the most-
used solutions. Further investigation showed that cloud users and practitioners were not
given access to modify the core of cloud services, such as streaming services. Therefore, the
end-to-end optimization centered on implementing an attention model (vision transformer)
to produce consistent performance compared to the vanilla attention architecture and
existing state-of-the-art models while significantly improving the inference latency.

The optimization of vision transformer models was conducted against the number of
heads in the attention layer and input dimension. The optimal model was considered with
an 8-head attention layer and input dimensions of 56 x 56 x 3 (ViT_8_56) against the vanilla
transformer with a 16-head attention layer and dimensions of 224 x 224 x 3 (ViT_16_224).
The prediction module was executed against the testing dataset with 168,631 frames, and
the inference latency was measured for three GPU-based instances. The results shown in
Table 1 demonstrate a consistent pattern of significantly lower latency for ViT_8_56 than the
original model across all instances, which was aligned with the literature [70,71], where the
optimized model predicted the testing set faster than the original model by a factor of 1.67.

The second research question focused on comparing the performance of vanilla vision
transformer models and optimized topology. This question sought a condition where the
optimized vision transformation produced similar or improved performance (3% and
+5% confidence intervals) compared to the original architecture. These success criteria
were inspired by a real-world business use case where the name of our stakeholder is
confidential, as per their request. The vision transformer architecture was modified by
varying the number of heads in the attention layer for two values of 8 and 16 and by
exploring the network’s input dimension for 224, 112, and 56 input sizes. This strategy
built six vision transformer models from scratch using identical training, validation, and
testing sets at the frame level.

A postprocessing step was applied to the predicted frames to obtain the video-clip-
level results. Finally, the full classification reports were generated to validate and test
the (unseen) data, including precision, recall, F1 score, and accuracy. The frame-level
and video-level results depicted in Tables 2 and 3 show that the performance of ViT_56_8
(optimized topology) competed with ViT_224 16 (vanilla transformer) in the validation
and testing experiments, with a 3.2153% and 2.6154% difference in F1 score at the video
level. Therefore, the performance of ViT_56_8 fell into the predefined confidence interval.
The performance of vision transformers against the UCF101 action recognition dataset was
on par with existing state-of-the-art models [72,73].

The third research question addressed benchmarking vision transformer models
against existing state-of-the-art models such as ResNet18, ResNet50, ResNet101 (the ResNet
family), VGG-16, and Inception-V3. Again, a training strategy identical to the vision trans-
former models was employed to implement the baseline models. Finally, the performance
of baselines was evaluated to answer the research question of whether an optimized vision
transformer produced a similar or improved performance, with £3% and +5% confidence
intervals compared to the baselines.

The results depicted in Tables A1l and A2 show that the optimized vision transformer
(ViT_56_8) produced F1 scores of 90.50% and 91.22% for validation and testing sets. Al-
though the optimized model underperformed compared to the best-performing baseline

Mach. Learn. Knowl. Extr. 2023, 5

1331

(ResNet18) by 4.96% and 4.31%, the difference in the model’s performance fell into the
+5% confidence interval, which met the criteria of marginal acceptance of the optimization
objective. Furthermore, as discussed, the inference latency of ViT_56_8 was significantly
better than that of ResNet18 and the rest of the models.

The trade-off between inference latency and performance was the focus of the fourth
question for the optimization task. Varying the number of heads in the attention layer
of the vision transformer and input dimension were considered the two key parameters
of optimization. This research question investigated whether a trade-off between the
models” performance and latency across the attention-based models was achievable. It
explored whether the optimized vision transformer referencing ViT_56_8 met the trade-off
criteria. The success criteria for the optimization task were set for an optimized model
with performance falling into a confidence interval of +3% as acceptable performance
and +5% as marginally acceptable performance. Moreover, the criterion of inference
latency improvement was set to an improvement of at least +5% against the original model.
Therefore, correlation analyses were conducted between the inference latency, the number
of heads, and the input dimension for three different servers.

The results in Table 4 indicate a strong correlation between the inference latency and
input dimension. However, a naive correlation was found between all models” inference
latency and the number of heads. For example, a significant statistical difference was
found between vision transformers with a constant input dimension of 56 but a different
number of heads of 8 and 16. The results show that the number of heads impacted the
inference latency. Table A2 shows that the performance of the optimized vision transformer
(ViT_56_8) for the testing set was an F1 score of 91.22%, which was 2.62% and 4.32% lower
than the original vision transformer (ViT_224_16) and best-performing CNN-based baseline
(ResNet18). The results fell into the predefined confidence intervals; the optimized model
met the accepted optimization criteria and was marginally acceptable from the performance
perspective. Tables 4 and A3 indicate that the optimized model (ViT_56_8) was a factor,
with factors of 2.25 (55.63%) and 1.67 (40.70%) in training step and prediction (inference)
compared to the original model (ViT_224_16); therefore, the optimization criterion was met
from the inference latency perspective.

In the last step of this optimization pipeline, we employed an enhanced in-house skip-
frame technique to explore the optimal ratio of frames at a one-second level to reduce the
inference latency during real-time batch processing. The testing set included 168,631 video
frames, and we initially achieved the best performance of 851.4978 seconds for this set. The
skip-frame approach showed that the optimal ratio of frames for our testing dataset is 40%.
Thus, we modified the prediction module to only process a batch of 40% of frames in each
second of videos regardless of FPS based on the randomly selected frames explained above.
We reduced the batch processing time to 364.8635843 sec, equivalent to a 57.1504% decrease
in the inference latency where our optimal vision transformer’s performance remained
approximately at the same value. The proposed skip-frame method allows practitioners
to reduce the inference latency; however, it should be considered a hyperparameter for
tuning, as the ratio of frames might vary for different video datasets.

We further analyzed the confusion matrix of the testing set to explore the impact of a
slightly imbalanced data situation, as shown in Figure 1. We extracted the diagonal values
of the confusion matrix normalized by true (labels) values. Then, we sorted the normalized
diagonal values and video sample distribution in the testing set per class in ascending
order. We selected the first ten low-performing classes (values < 75%) and low-sample
classes in the distribution. Next, we obtained the intersection between those two lists and
noticed that BlowingCandles (class 13), ParallelBars (class 56), and StillRings (class 85),
with accuracies of 0.25%, 0.6% and 0.67%, are common classes between the two lists. This
analysis shows that a potential data augmentation, including over- and under-sampling,
might help to improve the low-performing classes in future work.

Our objective was to reduce the complexity of end-to-end machine learning algo-
rithms, ultimately reducing the inference latency. The original vision transformer vanilla

Mach. Learn. Knowl. Extr. 2023, 5

1332

model with three channels, an input size of 224 x 224, and 16 attention heads included
53,532,675 trainable parameters, whereas our optimized model with three channels, an
input size of 56 x 56, and eight attention heads had 38,406,147 (the report was generated
using PyTorch). After model training, we implemented the two extra steps of postpro-
cessing and the enhanced skip-frame mechanism, the algorithm complexity of which is
O(n(log(n))) due to being grouped by function to convert frames to video clips and O(n)
because of the single for-loop in the optimization of frame ratio. The algorithm complexity
at inference is only impacted by the optimized vision transformer model, as the steps
mentioned above are excluded during inference.

6. Limitations

We identified two main limitations of our study, which include (a) the dataset and
(b) business-driven success criteria. Although UCF101 is a popular action recognition
dataset broadly used to calculate the baseline performance in machine learning and com-
puter vision studies, we could use other publicly available datasets such as Kinetics (Kinet-
ics Human Action Video Dataset) [74] and HMDB51 [75] to expand this study in the next
iteration. As described in the manuscript, the objective of this study was to explore the opti-
mization of an end-to-end cloud solution and the optimal topology of a vision transformer
for real-time application, inspired by a real-world business use case. Therefore, we defined
our optimization success criteria based on the business’s needs. Other optimization criteria
could be revisited; however, they will be less likely to impact the results. We will also
explore a broader range of AWS instances for inference latency investigation, in addition to
the GPU-based servers.

7. Conclusions

The objective of this study was to explore the optimization of an end-to-end cloud-
based real-time action recognition solution using the optimal topology of a vision trans-
former. Our optimized vision transformer with eight attention heads and an input size
of 56 x 56 x 3 produced an F1 score of 91.497% for a consistent testing set at the video
level across the study, meeting our success criteria in terms of performance. The analysis
of inference latency for the models on three GPU-based server instances revealed that the
prediction by ViT_56_8 was 40.70% faster than with the vanilla vision transformer. Another
analysis of the training time showed that the optimized model offered a shorter training
time by 55.63% compared to the original model. We also introduce a novel enhanced
skip-frame mechanism to discover the optimal ratio of frames; the mechanism further
improved the inference latency by 57.15%. We conclude that vision transformers are highly
optimizable for real-time action recognition applications, producing results that are able
to compete with state-of-the-art algorithms with less trainable parameters. In the future,
we will explore various video datasets, various splits of data, and data augmentation for
imbalanced data situations and aim to explore other vision transformers. We will con-
sider other techniques such as network optimization and data compression to improve the
inference latency.

Author Contributions: S.S. designed, implemented, and executed the end-to-end project including
data processing, modeling, and writing. M.K. reviewed and proofread the project and manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no specific grant from any funding agency in the public, commercial,
or not-for-profit sectors.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Mach. Learn. Knowl. Extr. 2023, 5 1333

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

Appendix A

ApplyEyeMakeup ApplyLipstick Archery BabyCrawling i itch

o onr

BasketballDunk BenchPress Biking Billiards BlowDryHair BlowingCandles BodyWeightSquats Bowling

BoxingP i i BrushingTeeth CleanAndJerk CliffDiving CricketBowling CricketShot

CuttingInKitchen Diving i Fencing Fi 'y y FloorGy i FrisbeeCatch FrontCrawl

GolfSwing Haircut Hammering ~ HammerThrow ushup Walking HighJump

HorseRace HorseRiding HulaHoop IceDancing JavelinThrow JugglingBalls JumpingJack JumpRope

Kayaking Knitting LongJump Lunges MilitaryParade Mixing MoppingFloor Nunchucks

ParallelBars PizzaTossing PlayingCello PlayingDaf PlayingDhol PlayingFlute PlayingGuitar PlayingPiano

PlayingSitar PlayingTabla PlayingViolin PoleVault PommelHorse PullUps Punch PushUps

Rafting RockClimbingIndoor ~ RopeClimbing Rowing SalsaSpin ShavingBeard Shotput SkateBoarding

Skiing Skijet SKkyDiving SoccerJuggling SoccerPenalty StillRings SumoWrestling Surfing

Swing TableTennisShot TaiChi TennisSwing ThrowDiscus TrampolineJumping Typing UnevenBars

VolleyballSpiking WalkingWithDog WallPushups WritingOnBoard YoYo

Figure Al. A total of 101 human actions (classes) available in the UCF101 dataset were used for
model development.

Mach. Learn. Knowl. Extr. 2023, 5

1334

True Label

True Label

Validation
0 1.0
20 0.8
40 4 0.6
60 1 0.4
80 - - 0.2
100 - T T T T 1 — 00
0 20 40 60 80 100
Predicted Label
Testing
0 1.0
20 - 0.8
40 0.6
60 - 0.4
80 - - 0.2
100 = T T T T 1 — 00
0 20 40 60 80 100
Predicted Label

(bottom) sets reveals the correct and mis-prediction of the optimized ViT model.

Figure A2. The confusion matrix of ViT_56_8 (optimized model) for the validation (top) and testing

Mach. Learn. Knowl. Extr. 2023, 5 1335

ViT 56 8

0.8

e
E)

=
=

Performance
(=}
h

0.2

0.1

0 o—
1 2 3 4 5 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Epoch

—eo—Train_Loss =—#=Train_Acc =—®=Val Loss =¢=Val Acc
Figure A3. Evaluation metrics across 30 epochs of training for ViT_56_8 (optimized model).

Table Al. The frame-level classification report for all the ViT, ResNet, Inception, and VGG models.
The macro average (MA) and weighted average (WA) were used to generate the full classification
report for all the models developed in this study.

Precision Precision Recall Recall F1Score F1 Score

Model Accuracy Support
MA. WA. MA. WA. M.A. W.A.
ViT_224_16_test 0.92406 0.91014 0.9303 0.90779 0.92406 0.9038 0.92344 168631
ViT_224_16_val 0.9236 0.91243 0.92668 0.90819 0.9236 0.9059 0.92167 168890
ViT_224_8_test 0.92561 0.91287 0.93024 091162 0.92561 0.90838 0.92503 168631
ViT_224_8_val 0.92574 0.91191 0.93025 091245 092574 090837 0.92527 168890
ViT_112_16_test 0.91277 0.89425 091914 0.89688 0.91277 0.89142 0.91306 168631
ViT_112_16_val 0.91599 0.89986 091962 0.90056 0.91599 0.89577 0.91454 168890
ViT_112_8_test 0.91181 0.896 091706 0.89369 0.91181 0.89059 0.91121 168631
ViT_112_8_val 0.91229 0.89606 091667 0.89547 091229 0.89164 0.91156 168890
ViT_56_16_test 0.89653 0.87922 09011 0.87842 0.89653 0.87521 0.89612 168631
ViT_56_16_val 0.89541 0.87908 0.89915 0.87414 0.89541 0.87191 0.89397 168890
ViT_56_8_test 0.89516 0.87321 0.89695 0.87512 0.89516 0.8715 0.89411 168631
ViT_56_8_val 0.89312 0.87408 0.89781 0.87235 0.89312 0.86837 0.89208 168890
ResNet101_test 0.94119 0.92764 0.94566 0.92693 0.94119 0.92412 0.94091 168631
ResNet101_val 0.9429 0.93211 0.94742 0.93141 0.9429 0.92829 0.94264 168890
ResNet18_test 0.95343 0.9413 0.95546 0.94159 0.95343 0.93891 0.95283 168631
ResNet18_val 0.94915 0.94355 095212 0.93969 0.94915 0.93889 0.94852 168890
ResNet50_test 0.94518 0.93282 0.94718 0.93126 0.94518 0.92892 0.94393 168631
ResNet50_val 0.94115 0.9304 0.94383 0.92689 0.94115 0.92606 0.94057 168890
Inception_v3_test 0.89637 0.8845 0.90527 0.88079 0.89637 0.87737 0.89653 168631
Inception_v3_val 0.89762 0.89083 09113 0.88162 0.89762 0.87914 0.89884 168890
VGG_16_test 0.90065 0.88897 0.90662 0.88417 0.90065 0.88147 0.89972 168631

VGG_16_val 0.90009 0.88997 0.90706 0.88288 0.90009 0.88224 0.90026 168890

Mach. Learn. Knowl. Extr. 2023, 5 1336

Table A2. The video-clip-level classification report for all the ViT, ResNet, Inception, and VGG models.
We translated the frame-level predictions to video-clip predictions using the postprocessing module.

Precision Precision Recall Recall F1 Score F1 Score
Model Accuracy Support

MA. WA. MA. WA. M.A. W.A.
ViT_224_16_test 0.94273 0.94935 0.95087 0.93892 0.94273 0.93838 0.94152 908
ViT_224_16_val 0.94053 0.94920 0.94937 0.93688 0.94053 0.93721 0.93971 908
ViT_224_8 test 0.93943 0.94383 0.94493 0.93647 0.93943 0.93605 0.93818 908
ViT_224_8_val 0.94934 0.95250 0.95389 0.94615 094934 0.94652 0.94899 908
ViT_112_16_test 0.93172 0.93804 0.94039 0.92838 093172 0.92837 0.93144 908
ViT_112_16_val 0.92952 0.93339 0.93572 0.92459 0.92952 0.92394 0.92805 908
ViT_112_8_test 0.92952 0.93530 0.93703 0.92470 0.92952 0.92436 0.92797 908
ViT_112_8_val 0.93502 0.93951 0.94165 0.93124 0.93502 0.93059 0.93400 908
ViT_56_16_test 0.92511 0.93299 0.93386 0.92160 092511 0.92166 0.92419 908
ViT_56_16_val 0.91740 0.92264 0.92434 091182 0.91740 0.91051 0.91490 908
ViT_56_8_test 0.91630 0.92018 0.92173 0.91263 0.91630 0.91223 0.91497 908
ViT_56_8_val 0.90969 0.91827 0.92007 0.90580 0.90969 0.90506 0.90870 908
ResNet101_test 0.94383 0.94689 0.94900 0.94037 094383 0.93972 0.94261 908
ResNet101_val 0.94824 0.94979 0.95327 0.94511 0.94824 0.94430 0.94776 908

ResNet18_test 0.95815 0.96032 0.96200 0.95593 0.95815 0.95539 0.95749 908
ResNet18_val 0.95705 0.95977 0.96071 0.95459 0.95705 0.95472 0.95653 908
ResNet50_test 0.94383 0.94932 0.94923 0.94123 0.94383 0.94039 0.94206 908
ResNet50_val 0.94273 0.94390 0.94744 0.93946 0.94273 0.93849 0.94206 908

Inception_v3_test 0.92731 0.93923 0.94104 0.92461 0.92731 0.92501 0.92762 908
Inception_v3_val 0.92841 0.94126 0.94231 0.92586 0.92841 0.92772 0.92975 908
VGG_16_test 0.93833 0.94885 0.94887 0.93611 0.93833 0.93636 0.93759 908
VGG_16_val 0.93282 0.93872 0.94062 0.93020 093282 0.93018 0.93249 908

Table A3. The inference latency (sec) for testing sets (168631frames) using three SageMaker instances
measured using the identical machine learning and Python libraries.

Model Head Input Size p3.16xlarge p3.8xlarge p3.2xlarge
ViT_224_ 16 16 224 1474.0831 1434.5108 1420.8712
ViT_224_8 8 224 1343.1789 1300.7208 1304.822
ViT_112_16 16 112 1016.7971 1279.6002 1241.0731
ViT_112_8 8 112 995.6327 977.1326 962.3076
ViT_56_16 16 56 861.1608 859.4907 862.2177
ViT_56_8 8 56 856.8517 853.8936 851.4978
References
1. Rahmani, H.; Bennamoun, M.; Ke, Q. Human Action Recognition from Various Data Modalities: A Review. IEEE Trans. Pattern
Anal. Mach. Intell. 2021, 45, 3200-3225. [CrossRef]
2. Pareek, P.; Thakkar, A. A survey on video-based Human Action Recognition: Recent updates, datasets, challenges, and
applications. Artif. Intell. Rev. 2020, 54, 2259-2322. [CrossRef]
3. Ahn, D, Kim, S.; Hong, H.; Ko, B.C. STAR-Transformer: A Spatio-temporal Cross Attention Transformer for Human Action
Recognition. In Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa,
HI, USA, 2-7 January 2023. [CrossRef]
4. Morshed, M.G,; Sultana, T.; Alam, A.; Lee, YK. Human Action Recognition: A Taxonomy-Based Survey, Updates, and
Opportunities. Sensors 2023, 23, 2182. [CrossRef] [PubMed]
5. Zhang, H.B.; Zhang, Y.X.; Zhong, B.; Lei, Q.; Yang, L.; Du, J.X.; Chen, D.S. A Comprehensive Survey of Vision-Based Human
Action Recognition Methods. Sensors 2019, 19, 1005. [CrossRef] [PubMed]
6. Johnson, W.R.; Mian, A.; Donnelly, C.J.; Lloyd, D.; Alderson, J. Predicting athlete ground reaction forces and moments from
motion capture. Med. Biol. Eng. Comput. 2018, 56, 1781-1792. [CrossRef]
7. Lee, E.J.; Kim, YH.; Kim, N.; Kang, D.W. Deep into the Brain: Artificial Intelligence in Stroke Imaging. . Stroke 2017, 19, 277-285.
[CrossRef]
8. Yu, M.; Huang, Q.; Qin, H.; Scheele, C.; Yang, C. Deep learning for real-time social media text classification for situation

awareness—Using Hurricanes Sandy, Harvey, and Irma as case studies. Int. |. Digit. Earth 2019, 12, 1230-1247. [CrossRef]

http://doi.org/10.36227/techrxiv.13708270
http://dx.doi.org/10.1007/s10462-020-09904-8
http://dx.doi.org/10.1109/wacv56688.2023.00333
http://dx.doi.org/10.3390/s23042182
http://www.ncbi.nlm.nih.gov/pubmed/36850778
http://dx.doi.org/10.3390/s19051005
http://www.ncbi.nlm.nih.gov/pubmed/30818796
http://dx.doi.org/10.1007/s11517-018-1802-7
http://dx.doi.org/10.5853/jos.2017.02054
http://dx.doi.org/10.1080/17538947.2019.1574316

Mach. Learn. Knowl. Extr. 2023, 5 1337

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

Jayakodi, N.K.; Chatterjee, A.; Choi, W.; Doppa, J.R.; Pande, PP. Trading-Off Accuracy and Energy of Deep Inference on
Embedded Systems: A Co-Design Approach. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2018, 37, 2881-2893. [CrossRef]
Jiang, Z.; Chen, T.; Li, M. Efficient Deep Learning Inference on Edge Devices. 2018. Available online: https://www.amazon.scien
ce/publications/efficient-deep-learning-inference-on-edge-devices (accessed on 30 August 2023).

Li, Y,; Han, Z;; Zhang, Q.; Li, Z.; Tan, H. Automating Cloud Deployment for Deep Learning Inference of Real-time Online
Services. In Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications, Toronto, ON, Canada,
69 July 2020. [CrossRef]

Cipriani, G.; Bottin, M.; Rosati, G. Applications of Learning Algorithms to Industrial Robotics. In Mechanisms and Machine Science;
Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 260-268. [CrossRef]

Gheisari, M.; Wang, G.; Bhuiyan, M.Z.A. A Survey on Deep Learning in Big Data. In Proceedings of the 2017 IEEE International
Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous
Computing (EUC), Guangzhou, China, 21-24 July 2017. [CrossRef]

Aslam, A.; Curry, E. A Survey on Object Detection for the Internet of Multimedia Things (IoMT) using Deep Learning and
Event-based Middleware: Approaches, Challenges, and Future Directions. Image Vis. Comput. 2021, 106, 104095. [CrossRef]
Sarraf, S.; Tofighi, G. Deep learning-based pipeline to recognize Alzheimer’s disease using fMRI data. In Proceedings of the 2016
Future Technologies Conference (FTC), San Francisco, CA, USA, 6-7 December 2016; pp. 816-820.

Sarraf, S.; DeSouza, D.D.; Anderson, J.; Tofighi, G. DeepAD: Alzheimer’s Disease Classification via Deep Convolutional Neural
Networks using MRI and fMRI. BioRxiv 2016. [CrossRef]

Sarraf, S.; Desouza, D.D.; Anderson,].A.E.; Saverino, C. MCADNNet: Recognizing Stages of Cognitive Impairment Through
Efficient Convolutional fMRI and MRI Neural Network Topology Models. IEEE Access 2019, 7, 155584-155600. [CrossRef]
[PubMed]

Graves, A.; Liwicki, M.; Fernandez, S.; Bertolami, R.; Bunke, H.; Schmidhuber, J. A Novel Connectionist System for Unconstrained
Handwriting Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 855-868. [CrossRef] [PubMed]

Graves, A.; Bellemare, M.G.; Menick, J.; Munos, R.; Kavukcuoglu, K. Automated curriculum learning for neural networks.
In Proceedings of the International Conference on Machine Learning. Pmlr, Sydney, NSW, Australia, 6-11 August 2017;
pp. 1311-1320.

Sun, X.; Lu, W. Understanding Attention for Text Classification. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, Online, 5-10 July 2020; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020.
[CrossRef]

Zanca, D.; Gori, M.; Melacci, S.; Rufa, A. Gravitational models explain shifts on human visual attention. Sci. Rep. 2020, 10, 16335.
[CrossRef]

Szegedy, C.; Liu, W,; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7-12 June 2015. [CrossRef]

Bahsoon, R.; Ali, N.; Heisel, M.; Maxim, B.; Mistrik, I. Introduction. Software Architecture for Cloud and Big Data: An Open
Quest for the Architecturally Significant Requirements. In Software Architecture for Big Data and the Cloud; Elsevier: Amsterdam,
The Netherlands, 2017; pp. 1-10. [CrossRef]

Seda, P; Masek, P; Sedova, J.; Seda, M.; Krejci, J.; Hosek,]J. Efficient Architecture Design for Software as a Service in Cloud
Environments. In Proceedings of the 2018 10th International Congress on Ultra Modern Telecommunications and Control Systems
and Workshops (ICUMT), Moscow, Russia, 5-9 November 2018. [CrossRef]

Vikash.; Mishra, L.; Varma, S. Performance evaluation of real-time stream processing systems for Internet of Things applications.
Future Gener. Comput. Syst. 2020, 113, 207-217. [CrossRef]

Needham, C.J.; Boyle, R.D. Performance Evaluation Metrics and Statistics for Positional Tracker Evaluation. In Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2003; pp. 278-289. [CrossRef]

Bhardwaj, S.; Srinivasan, M.; Khapra, M.M. Efficient Video Classification Using Fewer Frames. In Proceedings of the 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15-20 June 2019. [CrossRef]
Hu, D.; Krishnamachari, B. Fast and Accurate Streaming CNN Inference via Communication Compression on the Edge. In
Proceedings of the 2020 IEEE/ ACM Fifth International Conference on Internet-of-Things Design and Implementation (IoTDI),
Sydney, Australia, 21-24 April 2020. [CrossRef]

Geva, R;; Zivan, M.; Warsha, A.; Olchik, D. Alerting, orienting or executive attention networks: Differential patters of pupil
dilations. Front. Behav. Neurosci. 2013, 7, 145. [CrossRef] [PubMed]

Larochelle, H.; Hinton, G.E. Learning to combine foveal glimpses with a third-order Boltzmann machine. Adv. Neural Inf. Process.
Syst. 2010, 23, 1-9.

Borji, A.; Cheng, M.M.; Hou, Q.; Jiang, H.; Li, J. Salient object detection: A survey. Comput. Vis. Media 2019, 5, 117-150. [CrossRef]
Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach.
Intell. 1998, 20, 1254-1259. [CrossRef]

Gosmann, J.; Voelker, A.; Eliasmith, C. A Spiking Independent Accumulator Model for Winner-Take-All Computation. In
Proceedings of the CogSci, London, UK, 26-29 July 2017.

http://dx.doi.org/10.1109/TCAD.2018.2857338
https://www.amazon.science/publications/efficient-deep-learning-inference-on-edge-devices
https://www.amazon.science/publications/efficient-deep-learning-inference-on-edge-devices
http://dx.doi.org/10.1109/infocom41043.2020.9155267
http://dx.doi.org/10.1007/978-3-030-55807-9_30
http://dx.doi.org/10.1109/cse-euc.2017.215
http://dx.doi.org/10.1016/j.imavis.2020.104095
http://dx.doi.org/10.1101/070441.
http://dx.doi.org/10.1109/ACCESS.2019.2949577
http://www.ncbi.nlm.nih.gov/pubmed/32021737
http://dx.doi.org/10.1109/TPAMI.2008.137
http://www.ncbi.nlm.nih.gov/pubmed/19299860
http://dx.doi.org/10.18653/v1/2020.acl-main.312
http://dx.doi.org/10.1038/s41598-020-73494-2
http://dx.doi.org/10.1109/cvpr.2015.7298594
http://dx.doi.org/10.1016/b978-0-12-805467-3.00001-6
http://dx.doi.org/10.1109/icumt.2018.8631237
http://dx.doi.org/10.1016/j.future.2020.07.012
http://dx.doi.org/10.1007/3-540-36592-3_27
http://dx.doi.org/10.1109/cvpr.2019.00044
http://dx.doi.org/10.1109/iotdi49375.2020.00023
http://dx.doi.org/10.3389/fnbeh.2013.00145
http://www.ncbi.nlm.nih.gov/pubmed/24133422
http://dx.doi.org/10.1007/s41095-019-0149-9
http://dx.doi.org/10.1109/34.730558

Mach. Learn. Knowl. Extr. 2023, 5 1338

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.
57.

58.

59.

60.

Li, S.; Zhou, M.,; Luo, X.; You, Z.H. Distributed Winner-Take-All in Dynamic Networks. IEEE Trans. Autom. Control 2017,
62,577-589. [CrossRef]

Bello, I.; Zoph, B.; Le, Q.; Vaswani, A.; Shlens, J. Attention Augmented Convolutional Networks. In Proceedings of the 2019
IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October—2 November 2019.
[CrossRef]

Wu, B,; Xu, C; Dai, X.; Wan, A.; Zhang, P; Yan, Z.; Tomizuka, M.; Gonzalez, J.; Keutzer, K.; Vajda, P. Visual transformers:
Token-based image representation and processing for computer vision. arXiv 2020, arXiv:2006.03677.

Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. Animage is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

Fu, J.; Liu, J.; Tian, H.; Li, Y; Bao, Y.; Fang, Z.; Lu, H. Dual Attention Network for Scene Segmentation. In Proceedings of the 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15-20 June 2019. [CrossRef]
Tay, C.P; Roy, S.; Yap, KH. AANet: Attribute Attention Network for Person Re-Identifications. In Proceedings of the 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15-20 June 2019. [CrossRef]
Zhao, T.; Wu, X. Pyramid Feature Attention Network for Saliency Detection. In Proceedings of the 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15-20 June 2019. [CrossRef]

Arnab, A.; Dehghani, M.; Heigold, G.; Sun, C.; Lu¢i¢, M.; Schmid, C. Vivit: A video vision transformer. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Virtual, 11-17 October 2021; pp. 6836—6846.

Bertasius, G.; Wang, H.; Torresani, L. Is space-time attention all you need for video understanding? In Proceedings of the ICML,
Virtual Event, 18-24 July 2021; Volume 2, p. 4.

Fan, H.; Xiong, B.; Mangalam, K,; Li, Y.; Yan, Z.; Malik, J.; Feichtenhofer, C. Multiscale vision transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Virtual, 11-17 October 2021; pp. 6824-6835.

Yang, J.; Dong, X.; Liu, L.; Zhang, C.; Shen, J.; Yu, D. Recurring the Transformer for Video Action Recognition. In Proceedings of
the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18-24 June 2022.
[CrossRef]

Chen, J.; Ho, CM. MM-ViT: Multi-Modal Video Transformer for Compressed Video Action Recognition. In Proceedings of
the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3-8 January 2022.
[CrossRef]

Ma, Y; Yuan, L.; Abdelraouf, A.; Han, K.; Gupta, R; Li, Z.; Wang, Z. M2DAR: Multi-View Multi-Scale Driver Action Recognition
with Vision Transformer. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), Vancouver, BC, Canada, 17-24 June 2023. [CrossRef]

Xing, Z.; Dai, Q.; Hu, H.; Chen, J.; Wu, Z; Jiang, Y.G. SVFormer: Semi-supervised Video Transformer for Action Recognition. In
Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada,
18-22 June 2023. [CrossRef]

Ma, Y.; Wang, R. Relative-position embedding based spatially and temporally decoupled Transformer for action recognition.
Pattern Recognit. 2023, 109905. [CrossRef]

Mu, L,; Li, Z; Xiao, W.; Zhang, R.; Wang, P;; Liu, T.; Min, G.; Li, K. A Fine-Grained End-to-End Latency Optimization Framework
for Wireless Collaborative Inference. IEEE Internet Things J. 2023. [CrossRef]

Zhang, Y.; Jiang, H.; Zhu, Y.; Zhang, R.; Cao, Y.; Zhu, C.; Wang, W.; Dong, D.; Li, X. LOCP: Latency-optimized channel pruning
for CNN inference acceleration on GPUs. . Supercomput. 2023, 79, 14313-14341. [CrossRef]

Li, X.; Gong, X.; Wang, D.; Zhang,].; Baker, T.; Zhou, J.; Lu, T. ABM-SpConv-SIMD: Accelerating Convolutional Neural Network
Inference for Industrial IoT Applications on Edge Devices. IEEE Trans. Netw. Sci. Eng. 2023, 10, 3071-3085. [CrossRef]

Gannon, D.; Barga, R.; Sundaresan, N. Cloud-Native Applications. IEEE Cloud Comput. 2017, 4, 16-21. [CrossRef]

Sether, A. Cloud Computing Benefits. SSRN Electron. J. 2016. [CrossRef]

Zhang, C.; Yu, M.; Wang, W.; Yan, F. {MArk}: Exploiting Cloud Services for { Cost-Effective },{SLO-Aware} Machine Learning
Inference Serving. In Proceedings of the 2019 USENIX Annual Technical Conference (USENIX ATC 19), Renton, WA, USA,
10-12 July 2019; pp. 1049-1062.

Zhang, R. Making convolutional networks shift-invariant again. In Proceedings of the International Conference on Machine
Learning (PMLR), Beach, CA, USA, 9-15 June 2019; pp. 7324-7334.

Tsagkatakis, G.; Jaber, M.; Tsakalides, P. Goal!! Event detection in sports video. Electron. Imaging 2017, 29, 15-20. [CrossRef]
Khan, A ; Lazzerini, B.; Calabrese, G.; Serafini, L. Soccer Event Detection. In Proceedings of the Computer Science & Information
Technology (CS & IT), Dubai, UAE, 1-2 July 2018; Academy & Industry Research Collaboration Center (AIRCC); 2018. [CrossRef]
Sarraf, S.; Noori, M. Multimodal deep learning approach for event detection in sports using Amazon SageMaker. AWS Mach.
Learn. Blog 2021, 1, 1-12.

Pandit, S.; Shukla, P.K,; Tiwari, A.; Shukla, PK.; Maheshwari, M.; Dubey, R. Review of video compression techniques based on
fractal transform function and swarm intelligence. Int. |. Mod. Phys. B 2020, 34, 2050061. [CrossRef]

Mohammed, T.; Joe-Wong, C.; Babbar, R.; Francesco, M.D. Distributed Inference Acceleration with Adaptive DNN Partitioning
and Offloading. In Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications, Toronto, ON,
Canada, 6-9 July 2020. [CrossRef]

http://dx.doi.org/10.1109/TAC.2016.2578645
http://dx.doi.org/10.1109/iccv.2019.00338
http://dx.doi.org/10.1109/cvpr.2019.00326
http://dx.doi.org/10.1109/cvpr.2019.00730
http://dx.doi.org/10.1109/cvpr.2019.00320
http://dx.doi.org/10.1109/cvpr52688.2022.01367
http://dx.doi.org/10.1109/wacv51458.2022.00086
http://dx.doi.org/10.1109/cvprw59228.2023.00557
http://dx.doi.org/10.1109/cvpr52729.2023.01804
http://dx.doi.org/10.1016/j.patcog.2023.109905
http://dx.doi.org/10.1109/JIOT.2023.3307820
http://dx.doi.org/10.1007/s11227-023-05212-4
http://dx.doi.org/10.1109/TNSE.2022.3154412
http://dx.doi.org/10.1109/MCC.2017.4250939
http://dx.doi.org/10.2139/ssrn.2781593
http://dx.doi.org/10.2352/ISSN.2470-1173.2017.16.CVAS-344
http://dx.doi.org/10.5121/csit.2018.80509
http://dx.doi.org/10.1142/S0217979220500617
http://dx.doi.org/10.1109/infocom41043.2020.9155237

Mach. Learn. Knowl. Extr. 2023, 5 1339

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

Sengar, S.S.; Mukhopadhyay, S. Motion segmentation-based surveillance video compression using adaptive particle swarm
optimization. Neural Comput. Appl. 2019, 32, 11443-11457. [CrossRef]

Dong, F.; Wang, H.; Shen, D.; Huang, Z.; He, Q.; Zhang, J.; Wen, L.; Zhang, T. Multi-exit DNN Inference Acceleration based on
Multi-Dimensional Optimization for Edge Intelligence. IEEE Trans. Mob. Comput. 2022. [CrossRef]

Uy, W.LT,; Hartmann, D.; Peherstorfer, B. Operator inference with roll outs for learning reduced models from scarce and
low-quality data. Comput. Math. Appl. 2023, 145, 224-239. [CrossRef]

Soomro, K.; Zamir, A.R.; Shah, M. UCF101: A dataset of 101 human actions classes from videos in the wild. arXiv 2012,
arXiv:1212.0402.

Ma, S.; Bargal, S.A.; Zhang, J.; Sigal, L.; Sclaroff, S. Do less and achieve more: Training CNNs for action recognition utilizing
action images from the Web. Pattern Recognit. 2017, 68, 334-345. [CrossRef]

Zhu, W.; Hu, J.; Sun, G.; Cao, X.; Qiao, Y. A Key Volume Mining Deep Framework for Action Recognition. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30 June 2016. [CrossRef]
Janghel, R.; Rathore, Y. Deep convolution neural network based system for early diagnosis of Alzheimer’s disease. Irbm 2021,
42,258-267. [CrossRef]

Wang, L.; Qiao, Y.; Tang, X. Action recognition with trajectory-pooled deep-convolutional descriptors. In Proceedings of the 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7-12 June 2015. [CrossRef]

Potdar, A.; Barbhaya, P.; Nagpure, S. Face Recognition for Attendance System using CNN based Liveliness Detection. In
Proceedings of the 2022 International Conference on Advances in Computing, Communication and Materials (ICACCM),
Dehradun, India, 10-11 November 2022. [CrossRef]

Jin, Y;; Qian, Z.; Sun, G. A real-time multimedia streaming transmission control mechanism based on edge cloud computing and
opportunistic approximation optimization. Multimed. Tools Appl. 2018, 78, 8911-8926. [CrossRef]

Zhang, J.; Wang, D.; Yu, D. TLSAN: Time-aware long- and short-term attention network for next-item recommendation.
Neurocomputing 2021, 441, 179-191. [CrossRef]

Duan, H.; Zhao, Y.; Xiong, Y.; Liu, W.; Lin, D. Omni-Sourced Webly Supervised Learning for Video Recognition. In Computer
Vision—ECCYV 2020; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 670-688. [CrossRef]

Qiu, Z.; Yao, T.; Ngo, C.W.,; Tian, X.; Mei, T. Learning Spatio-Temporal Representation With Local and Global Diffusion. In
Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seoul, Republic of Korea,
27 October—2 November 2019. [CrossRef]

Kay, W,; Carreira, J.; Simonyan, K.; Zhang, B.; Hillier, C.; Vijayanarasimhan, S.; Viola, F.; Green, T.; Back, T.; Natsev, P; et al. The
kinetics human action video dataset. arXiv 2017, arXiv:1705.06950.

Kuehne, H.; Jhuang, H.; Garrote, E.; Poggio, T.; Serre, T. HMDB: A large video database for human motion recognition. In
Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6-13 November 2011; pp. 2556-2563.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s00521-019-04635-6
http://dx.doi.org/10.1109/TMC.2022.3172402
http://dx.doi.org/10.1016/j.camwa.2023.06.012
http://dx.doi.org/10.1016/j.patcog.2017.01.027
http://dx.doi.org/10.1109/cvpr.2016.219
http://dx.doi.org/10.1016/j.irbm.2020.06.006
http://dx.doi.org/10.1109/cvpr.2015.7299059
http://dx.doi.org/10.1109/icaccm56405.2022.10009024
http://dx.doi.org/10.1007/s11042-018-6680-3
http://dx.doi.org/10.1016/j.neucom.2021.02.015
http://dx.doi.org/10.1007/978-3-030-58555-6_40
http://dx.doi.org/10.1109/cvpr.2019.01233
http://dx.doi.org/10.1109/ICCV.2011.6126543

	Introduction
	Related Work
	Transformers in Computer Vision
	Cloud-Based Solution for Real-Time Computer Vision Applications

	Materials and Methods
	Dataset
	Machine Learning/Computer Vision Pipeline

	Results
	Discussion
	Limitations
	Conclusions
	Appendix A
	References

