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Abstract: A critical unmet medical need in prostate cancer (PCa) clinical management centers around
distinguishing indolent from aggressive tumors. Traditionally, Gleason grading has been utilized
for this purpose. However, tumor classification using Gleason Grade 7 is often ambiguous, as the
clinical behavior of these tumors follows a variable clinical course. This study aimed to investigate
the application of machine learning techniques (ML) to classify patients into indolent and aggressive
PCas. We used gene expression data from The Cancer Genome Atlas and compared gene expression
levels between indolent and aggressive tumors to identify features for developing and validating
a range of ML and stacking algorithms. ML algorithms accurately distinguished indolent from
aggressive PCas. With the accuracy of 96%, the stacking model was superior to individual ML
algorithms when all samples with primary Gleason Grades 6 to 10 were used. Excluding samples
with Gleason Grade 7 improved accuracy to 97%. This study shows that ML algorithms and stacking
models are powerful approaches for the accurate classification of indolent versus aggressive PCas.
Future implementation of this methodology may significantly impact clinical decision making and
patient outcomes in the clinical management of prostate cancer.

Keywords: machine learning; classification; prostate cancer; indolent; aggressive tumors; Gleason
Grade; gene expression

1. Introduction

Prostate cancer (PCa) is the most common solid tumor and the second most common
cause of cancer death in men in the United States [1]. Treatment decisions for PCa patients
are guided by various risk stratification algorithms [2]. These stratification algorithms
identify and predict patients at high risk of developing aggressive diseases [2]. Among
the parameters used, the most potent predictor of PCa mortality is Gleason Grade (GG)
scoring, which ranges from 6 to 10 [3,4]. The majority of PCas are indolent, presenting
GG 6 [3,4]. These cancers are associated with very low cancer-specific mortality rates,
even without therapy [3]. Localized high-grade PCas with lethal potential present GGs 8
to 10 [3,4]. These tumors are aggressive, progress rapidly to metastatic disease, and are
often lethal [3,4]. Intermediate-grade PCas present GG 7. These cancers present a much
more variable clinical course, with some behaving like GG 6 and others behaving like GGs
8–10 [3,4]. Although current stratification protocols such as GG scoring are moderately
effective, significant challenges remain in classifying PCas into indolent versus aggressive
tumors. Thus, a critical unmet medical need in the clinical management of PCa is the
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lack of algorithms to accurately distinguish indolent from aggressive tumors. There is an
urgent need to develop algorithms that can accurately distinguish indolent tumors from
aggressive tumors, which could be prioritized for treatment.

PCa screening using prostate-specific antigen (PSA) has led to earlier detection of PCa,
with fewer men today being diagnosed with metastatic disease [5]. However, although
PSA has reduced the mortality rate, it has also resulted in unintended consequences. The
unintended consequences include over-diagnosis, which leads to the over-treatment of
patients with indolent PCa, and the under-treatment of patients with aggressive disease
with lethal potential. Concerns about PSA-based screening led to the US Preventive Services
Task Force issuing a D-grade recommendation for its use in 2012 [6]. Importantly, a US
Preventive Services Task Force review concluded that PSA-based screening results in either
a small or no reduction in prostate cancer-specific mortality [7]. PSA screening is also
associated with harms related to subsequent treatments and evaluation—some of which
may be unnecessary. These concerns have heightened the need to develop novel risk
stratification algorithms to identify patients at high risk of developing aggressive tumors,
who could be prioritized for treatment, and the discovery of molecular markers separating
indolent tumors from tumors with lethal potential.

Recently, there has been growing interest in the use of machine learning algorithms
for risk stratification in PCa and other cancer patients [8–10]. Lei Yang et al. [8] used
random walk with restart algorithm (RWRA) and graph-regularized non-negative matrix
factorization (GNMF) methods for the molecular classification of PCa. They integrated
somatic mutation profiles and molecular networks using data from The Cancer Genome
Atlas (TCGA), achieving the accuracy of 82.54% [8]. Using RNA-Seq data from TCGA on
breast cancer, Danaee et al. [9] applied deep learning stacking algorithms for the discovery
of potential clinically actionable biomarkers in breast cancer. These investigators also
explored the potential use of different ML methods, including artificial neural network
(ANN), Support Vector Machine (SVM), SVM with linear kernel (SVM-LK), and SVM
with radial basis function kernel (SVM-RBF) [9]. Takeuchi et al. [10] implemented deep
learning with a multilayer artificial neural network (ANN) to predict PCa. They found that
improvements needed to be made before the algorithms could be considered suitable for
clinical applications [10]. Wulczyn et al. [11] designed an AI-based system to forecast mor-
tality specific to prostate cancer using Gleason grading. They later assessed this system’s
efficacy in categorizing risk using a separate retrospective study of 2807 prostatectomy
cases. However, algorithms for the accurate classification of PCa patients with indolent
versus aggressive PCas to guide clinical decision making are lacking. The development
and application of accurate risk classification of PCa patients into those with truly indo-
lent tumors and those with truly aggressive tumors have the promise of improving the
clinical management of PCa by eliminating the dilemma faced by clinical oncologists of
over-treating individuals with indolent tumors and undertreating individuals diagnosed
with aggressive tumors.

To address this critical unmet medical need, we propose using machine learning (ML)
models to classify PCa patients into two groups: those with genuinely indolent tumors,
which could be safely monitored, versus those with aggressive tumors, which could be
prioritized for treatment. The rationale and scientific premise are that implementing ML
promises to stratify patients more accurately and thus could guide therapeutic decision
making and eliminate the unintended consequences resulting from current protocols. Our
working hypothesis posits that genomic alterations in patients diagnosed with indolent and
aggressive tumors may result in measurable changes capable of accurately distinguishing
indolent tumors from aggressive ones. We addressed this hypothesis using gene expression
data linked with clinical information on patients diagnosed with indolent and aggressive
PCas from The Cancer Genome Atlas (TCGA). Differential Expression Analysis and Genetic
Algorithm techniques were used to identify the number of features/genes associated with
the two diseases and to distinguish the two types of PCa used in model development
and validation. We then utilized various ML classifiers and 10-fold cross-validation to



Mach. Learn. Knowl. Extr. 2023, 5 1304

minimize misclassification rates and enhance accuracy compared with previous research
efforts. Additionally, the use of a stacking-based ML approach was investigated, combining
different ML classifiers with 10-fold cross-validation to improve model performance. For
this study’s purposes, the terms features and genes are used interchangeably throughout
the investigation.

2. Experimental Materials and Methods
2.1. Source of Transcriptome and Clinical Datasets

We used publicly available gene expression data linked with clinical information on
indolent and aggressive PCas from TCGA generated using RNA sequencing [12]. The
dataset was downloaded from the Genomics Data Commons portal using the data trans-
fer tool [13]. Because the same TCGA barcode structure was used for both clinical data
and transcriptome data, we used the barcode structure to integrate patient-based clinical
data with sample-based genomic data [13]. The original gene expression dataset included
N = 547 samples distributed as follows: N = 45 samples as indolent (GG = 6), 246 samples
as intermediate (GG = 7), 204 as aggressive with lethal potential (GGs 8–10), and 52 control
samples. After annotating gene expression data with clinical information, the American
Urological Association classification protocol [14] was used to verify and validate tumor
classification according to GG. We used the protocol to assign the tumors to either the
indolent or aggressive category, consistently with the guidelines [14]. Because GG7 follows
a variable clinical course, the tumor samples from GG7 were either classified as 3 + 4
(primary + secondary) and assigned to GG = 6 as indolent, or as 4 + 3 (primary + secondary)
and assigned to GGs = 8–10 as aggressive, consistently with current classification guide-
lines [14]. The overall project design and execution workflow are shown in Figure 1. This
visual representation provides an overview of the key steps and processes involved in the
project’s methodology and execution.
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Figure 1. Flowchart depicting study design and execution workflow. Only the genes significantly dif-
ferentially expressed between tumors and controls discovered in the level 1 analysis were considered
in the level 2 analysis.

2.2. Data Processing and Analysis for Gene Selection

We performed data quality control and processing steps for gene expression data
containing 60,483 probes across 547 samples. The counts per million (CPM) filter (>0)
was implemented in R (version 3.5.1) using the edgeR library to remove the rows with
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missing data (i.e., zero or very low gene expression values), such that each row had at
least ≥30% of data [15,16]. After applying the filter, the resulting dataset had 34,956 probes
across 547 samples. As shown in Supplementary Figure S1, all the library sizes of samples
in TCGA data were expressed using a bar plot to determine if there were any major
discrepancies among samples. This analysis aimed to identify any significant disparities
among the samples. Subsequently, it became evident that the data quality was suboptimal
and deviated from a normal distribution. To mitigate this issue, we performed an initial
normalization step by applying a logarithmic scale transformation to the count matrix. This
scaling technique is commonly used to address gene expression data’s inherent variability
and dynamic range in RNA-Seq experiments [15,16]. By applying the log transformation,
we aimed to achieve a more balanced and comparable distribution of gene expression
values across samples. Box plots were used to check the read count distribution on the log2
scale. To address variations in library sizes among the samples containing gene expression
data, we employed the CPM function to correct the data. This function calculates the log2
counts per million (log2 CPM) values, considering each sample’s total library size [15,16].
Additionally, a small offset was added to the log2 CPM values to mitigate the issue of
excessive zeros in the dataset [15,16]. Supplementary Figure S2 represents the boxplots of
logCPM (log counts per million) before normalization.

Composition biases were eliminated among libraries and generated a set of normal-
ization factors (the product of the library sizes and factors defining the effective library
size) using the Trimmed Mean of M-values (TMM) [15,16]. We then performed a Voom
transformation and generated a mean–variance trend plot, as shown in Supplementary
Figure S3, using R. For data analysis, we used the Limma package implemented in R,
which offers the Voom function that transforms the read counts into logCPM and has been
successfully used by our group and others [17,18]. Then, the multi-level data analysis was
performed as described below.

2.2.1. Level 1 Analysis

Using normalized data, we performed level 1 analysis comparing gene expression
levels between tumor samples and controls for indolent and aggressive PCas separately
using the Limma package in R [17,18]. This baseline was used for analysis to discover the
signature of genes/features significantly (p < 0.05) associated with each type of disease. A
volcano plot was used to visualize the results. We used the false discovery rate (FDR) pro-
cedure to correct for multiple-hypothesis testing [16]. The probes were ranked on p-values
and −log fold change (−log FC). Significantly differentially expressed genes/features
between tumors and controls were associated with each type of PCa.

2.2.2. Level 2 Analysis

Following the discovery of genes associated with each subtype of PCa from level 1
analysis, we created a new gene expression dataset containing genes significantly associated
with indolent and aggressive PCas. Then, several analysis strategies were performed on
the combined dataset to identify significantly differentially expressed genes to distinguish
indolent from aggressive PCas. First, we compared gene expression levels between patients
with GG 6 and GGs 8–10. Second, because GG 7 follows a variable clinical course, we
compared gene expression levels between patients with GGs 6 and 7 (3 + 4), and patients
with GGs 8–10 and 7 (4 + 3). (Note that individuals with GG 7 assigned a pathological score
of 3 + 4 were considered GG6; similarly, individuals with GG 7 assigned a pathological
score of 4 + 3 were considered GGs 8–10 [14]). Thirdly, we compared gene expression
levels between patients presenting with GG 7 assigned a pathological score of 3 + 4 and
patients with GG 7 assigned a pathological score of 4 + 3. We computed the p-values and
the –log fold change (−logFC) for each analysis. The FDR procedure was used to correct
multiple-hypothesis testing [16]. The genes/features were ranked on p-values and –logFC.
Sets of significantly differentially expressed genes between indolent and aggressive PCas
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from each analysis were used as the features in the development and implementation of
classification algorithms.

2.2.3. Feature Selection and Implementation of ML and Genetic Algorithms

Developing, applying, and evaluating ML classifiers involved selecting genes or
features from gene expression data analysis using different cutoffs. The cutoffs were
determined according to the p-values and logFC values of significant genes identified in the
analyses. We selected features at different threshold levels based on−logFC > 0.5, 0.7, 1, 1.5,
and 2 to test and validate the classification algorithms. Because ML algorithms can perform
differently, we selected five different classifiers implemented with different fundamental
approaches: Logistic Model Tree (LMT), MultiClassClassifier, Stochastic Gradient Decent
(SGD), Sequential Minimal Optimization (SMO), SimpleLogistic [19]. We used Weka 3.8.2
software to implement the algorithms [19]. A 10-fold cross-validation technique was used
on all mentioned subsets to prevent overfitting, with metrics averaging over all 10 folds
and being tested on each classifier. Apart from traditional feature selection using logFC
and p-value, we also implemented a Genetic Algorithm (see Supplementary Figure S4)
to extract important features from a subset (abs(logFC) > 0.5). Using the set of identified
features, we tested the seven classifiers listed and described below [19,20]:

(1) Support Vector Machine (SVM).
(2) Logistic Regression (LR).
(3) Random Decision Forest (RF).
(4) Extra Tree Classifier (ETC).
(5) Gradient Boosting Classifier (GBC).
(6) K-Nearest Neighbors (KNNs).
(7) eXtreme Gradient Boosting (XGB).

(i) Support Vector Machine (SVM): SVM [21] is a machine learning classifier, which is
defined by a separating hyperplane in an N-dimensional space that classifies each data
point (where N is the number of features). Hyperplanes help in classifying data points and
depend upon the number of features. If the number of features in a dataset is 2, then the
hyperplane is just a line. If the number of features in a dataset is 3, then the hyperplane is
a plane. If the number of features is greater than 3, then it would be difficult to imagine
a hyperplane.

(ii) Logistic Regression (LR): Logistic Regression [22] is a technique for analyzing data
that determines the dependent output (outcome) when there are one or more independent
variables. In several cases, the outcome variable (dependent) is a dichotomous variable
in which there are only two possible outcomes. The goal is to find the best-fitting model
to describe the relationship between the dependent variable and the set of independent
variables. The logistic sigmoid function is used to return a probability value by transforming
the output, which can be mapped to discrete classes. Regularization techniques are used to
avoid overfitting (any modification made to a learning algorithm is intended to reduce the
generalization error).

(iii) Random Decision Forest (RF): Random Decision Forest [23] is a supervised machine
learning algorithm that randomly creates and merges more than one decision tree into a
forest. During training time, the RF algorithm operates by constructing a multitude of
decision trees and outputting the class that is a classification or mean prediction (regression)
of individual trees. It adds additional randomness to the model by growing trees. The best
feature is searched among a random subset of features instead of searching for the most
crucial feature while splitting a node. Random Decision Forest is an effective approach for
mitigating the issue of overfitting the training dataset. This technique addresses overfitting
by constructing multiple decision trees on different subsets of the dataset. The collective
predictions of these trees are then combined to form a mean prediction, which improves
the overall accuracy of the forest and helps prevent overfitting.

(iv) Extra Tree Classifier (ETC): The Extra Tree [24] method is also known as extremely
randomized trees. An Extra Tree Classifier’s main objective is to randomize the input
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features of a tree, where the large proportion of the variance of the induced tree depends
on the choice of the optimal cut-point. It constructs randomized decision trees from the
original learning samples and uses the above-average decision to improve accuracy and
avoid overfitting. The method selects a cut-point at random and drops the idea of using
bootstrap copies of the training sample. Cut-point randomization often reduces the variance
when the bootstrapping idea is dropped and can also lead to an advantage in terms of bias.
This method has yielded state-of-the-art results in high-dimensional complex problems.

(v) Gradient Boosting Classifier (GBC): GBC [25] is a machine learning technique used for
classification and regression problems. It builds a model in a forward-stage-wise fashion
like other boosting methods. It allows for the optimization of arbitrary differentiable loss
functions. It involves three elements: (a) a loss function to be optimized, (b) a weak learner
to make predictions, and (c) an additive model to add weak learners to minimize the loss
function. Gradient Boosting Classifier’s main objective is to minimize the model’s loss by
adding weak learners in a stage-wise fashion using a procedure similar to that of gradient
descent. While adding a new weak learner, the existing weak learners in the model remain
unchanged. To correct or improve the final output, the output of a new learner is added to
the existing sequence of learners.

(vi) K-Nearest Neighbors (KNNs): K-Nearest Neighbors [26] is an algorithm that classifies
new cases based on a similarity measure of all stored available instances. It has been used
as a non-parametric statistical estimation and pattern recognition technique. A case is
assigned to the common class among the K-Nearest Neighbors, measured by a distance
function, and classified by a majority vote of its neighbors. If k = 3, then the class is assigned
to a class of its three nearest neighbors.

(vii) eXtreme Gradient Boosting (XGB): The implementation of eXtreme Gradient Boost-
ing [27] offers several advanced features for model tuning, algorithm enhancement, and
computing environments. It can perform in three different forms of gradient boosting
(Gradient Boosting (GB), Stochastic Gradient Boosting (GB), and Regularized Gradient
Boosting (GB)). It is strong enough to support fine tuning and the addition of regularization
parameters. It uses regularized model formalization to avoid overfitting and results in
better performance. Moreover, XGB trains faster compared with other methods.

The following table (Table 1) shows the important parameters that are used to train
the models using the seven classification algorithms.

Table 1. Selected hyperparameters of machine learning methods.

SVM LR RF ETC GBC KNNs XGB

C = 1.0 penalty = “l2” n_estimators = 100 n_estimators = 100 n_estimators = 100 n_neighbors = 5 n_estimatorst = 100

kernel = “rbf” tol = 1 × 10−4 criterion = “gini” criterion = “gini” loss = “log_loss” weights = “uniform” learning_rate = 0.3

gamma = “scale” C = 1.0 max_depth = None max_depth = None learning_rate = 0.1 algorithm = “ball_tree” max_deptht = 10

2.2.4. Stacking

In addition to the above-described ML algorithms, we employed the stacking model
explained below [28–32] to address the limitations of individual classification algorithms.
The approach reduces the generalized error rate and increases accuracy by combining the
prediction probabilities of the individual classification models [30–32]. Figure 2 shows the
workflow for implementing the stacking approach. Two stages of learners were used to
implement the stacking model. In the first stage of classifiers, base classifiers were used.
In the second stage, meta-classifiers were used. To find the base and meta-classifiers for
the first and second stages of the stacking framework, we examined the seven different
machine learning algorithms described above, whose characteristics are defined below,
and performed the five different stacking models listed below. The models were built and
optimized using Scikit-learn [33]. We used three different models, as explained earlier in
this section. The below-mentioned stacking models (SM-1, SM-2, SM-3, SM-4, and SM-5)
were performed using two different datasets:
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(1) SM-1: LR, KNNs, SVM as base classifiers; SVM as meta-classifier.
(2) SM-2: LR, SVM, KNNs, XGB as base classifiers; XGB as meta-classifier.
(3) SM-3: LR, KNNs, SVM as base classifiers; XGB as meta-classifier.
(4) SM-4: RDF, LR, KNNs as base classifiers; GBC as meta-classifier.
(5) SM-5: RDF, LR, GBC as base classifiers; KNNs as meta-classifier.
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Figure 2. The flowchart represents the implementation of the stacking approach incorporating
different combinations of ML algorithms.

2.3. Model Selection and Validation by Correlating ML Algorithm with GGs

To address our working hypothesis that genomic alterations in patients diagnosed
with indolent and aggressive tumors could lead to measurable changes distinguishing the
two patient groups, including GG 7, we implemented 3 models to find the best classifier.
In Model 1, we selected all the samples with Gleason Grades 6 and 3 + 4 indolent versus
Gleason Grades 8–10 and 4 + 3 aggressive at different threshold levels for all the log-fold
change values of 0.5, 0.7, 1, 1.5, and 2. This model was based on the current classifica-
tion protocol where samples with Gleason Grade 7 assigned with a pathological score of
3 + 4 are classified as indolent, whereas samples with Gleason Grade 7 assigned with a
pathological score of 4 + 3 are classified as aggressive PCas, consistently with the American
Urological Association guidelines [14]. Using features selected based on this model, we
applied the seven ML methods described above to evaluate the classification of GGs. In
Model 2, we used the samples with Gleason Grades 6 and 8–10 for all log-fold change
values (0.5, 0.7, 1, 1.5, 2). Here, the samples with GG = 7 were removed, and the model
was trained on Gleason Grade 6 (indolent) versus Gleason Grades 8, 9, and 10 (aggressive)
tumors using the seven ML classifiers. In Model 3, we used samples with Gleason Grade 7
for all log-fold change values (0.5, 0.7, 1, 1.5, 2). The model was trained on Gleason Grade
7 (3 + 4) indolent versus Gleason Grade 7 (4 + 3) aggressive tumors using the seven ML
classifiers. Because GG 7 follows a variable clinical course, we used Model 2 for training
and correctly classified samples with GG 7 as a test set.
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2.4. Performance Evaluation

We evaluated the performance of ML classifiers based on the results using two ap-
proaches. In the first approach, we created a set of classifier performance evaluation metrics,
with their names and definitions being mentioned in Table 2 below. In the second approach,
principal component analysis (PCA) plots were used to check if the samples were correctly
classified as indolent and aggressive. We should see a clear separation of samples in the
plot if the classifiers predicted them correctly. The evaluation metrics used are presented
in Table 2.

Table 2. Names and definitions of the evaluation metrics.

Name of Metric Definition

True positive (TP) Correctly predicted positive samples
True negative (TN) Correctly predicted negative samples
False positive (FP) Incorrectly predicted positive samples
False negative (FN) Incorrectly predicted negative samples
Recall/sensitivity/true positive rate (TPR) TP

TP+FN
Specificity/true negative rate (TNR) TN

TN+FP
Fall-out rate/false positive rate (FPR) FP

FP+TN
Miss rate/false negative rate (FNR) FN

FN+TP
Accuracy (ACC) TP+TN

FP+FP+TN+FN
Balanced accuracy (Bal_ACC) 1

2

(
TP

TP+FN + TN
TN+FP

)
Precision TP

TP+FP
F1 score (harmonic mean of precision and recall) 2TP

2TP+FP+FN
Mathews correlation coefficient (MCC) (TP×TN)−(FP×FN)√

(TP+FN)×(TP+FP)×(TN+FP)×(TN+FN)

3. Results
3.1. Discovery Genes Associated with Indolent and Aggressive PCas

To address the hypothesis that genomic alterations could lead to measurable changes
associating gene expression to indolent and aggressive PCas, we separately compared gene
expression levels between indolent tumors and controls, and between aggressive tumors
and controls, as described in the Methods section under Level 1 Analysis. Comparing
gene expression levels between indolent tumors and controls produced a signature of
18,215 (p < 0.05) differentially expressed genes. Repeating the same analysis comparing
gene expression levels between aggressive tumors and controls produced a signature of
21,042 significantly (p < 0.05) differentially expressed genes.

3.2. Discovery of Genes or Features Associated with the Two Types of PCa Used in ML Algorithms

To discover genes/features used in developing and validating classification algorithms,
we performed a subgroup analysis based on three models as explained in the Methods
section under Level 2 Analysis. In Model 1, we compared gene expression levels between
patients with GG 6 and GGs 8–10 using the genes associated with the two diseases. The
analysis conducted in Model 2 yielded 15,105 significantly (p < 0.05) and 20,712 significantly
(p < 0.05) differentially expressed probes associated with indolent and aggressive PCas,
respectively. We used volcano plots (Supplementary Figures S5–S7) to discover a signature
of genes significantly (p < 0.05) associated with each disease state. In Model 2, because GG
7 follows a variable clinical course, we compared gene expression levels between patients
with GGs 6, 7 (3 + 4) and patients with GGs 8–10, 7 (4 + 3). As described earlier in the
Data Analysis section, individuals with GG 7 assigned a pathological score of 3 + 4 were
considered GG6, and individuals with GG 7 assigned a pathological score of 4 + 3 were
considered GGs 8–10 [14]. This model produced xx genes. In Model 3, we compared
gene expression levels between patients presenting with GG 7 assigned a pathological
score of 3 + 4, and patients with GG 7 assigned a pathological score of 4 + 3. This yielded
5220 significantly (p < 0.05) and 3352 significantly (p < 0.05) differentially expressed probes
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associated with indolent and aggressive tumors, respectively. We then compared indolent
and aggressive PCas using the differentially expressed probes from the earlier analysis and
used volcano plots to discover a signature of genes significantly (p < 0.05) associated with
each disease state. A summary of genes or features discovered with Model 1–3 Differential
Expression Analysis on indolent and aggressive diseases used in algorithm development
and validation at different threshold levels as determined according to logFC is presented
in Table 3.

Table 3. Distribution of the number of genes according to −logFC values for Models 1–3.

LogFC Cutoff
No. of Genes

Model 1 Model 2 Model 3

0.5 2074 3513 513
0.7 821 2028 381
1 213 836 174

1.5 24 186 25
2 3 52 5

3.3. Results of Classification Based on Different Models

The object of this study was to evaluate the efficacy of ML algorithms for the classi-
fication of PCa patients into indolent versus aggressive PCas using gene expression data
from TCGA. To address this objective, we evaluated different ML classification algorithms
under different models (Models 1–3) using different sets of features selected using different
threshold levels as determined with −logFC. ML classifiers included SVM, LR, RF, ETC,
GBC, KNNs, and XGB. The results are summarized below.

In model 1 (full model), we considered all the samples with Gleason Grades 6–10 and
applied ML classifiers at different threshold levels, abs(logFC) > 0.5, 0.7, 1, 1.5, and 2. The
results of this investigation are presented in Figure 3 for the classification algorithms and
in Figure 4 for principal component analysis, showing the separation between indolent
and aggressive tumors. As shown in Figure 3, the SGD classifier achieved the highest
accuracy at LogFC 2, 78.18%. MultiClassClassifier achieved the lowest accuracy at LogFC
0.7, 62.63%. Using a PCA plot to check if the samples were correctly represented as indolent
and aggressive revealed a mixture and misclassification of samples (Figure 3). Most of the
misclassification was attributed to GG 7.
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Figure 4. Three-dimensional principal component analysis (PCA) plot of Model 1. (Here, blue
represents indolent samples, and red represents aggressive samples).

In model 2, we removed the samples with GG 7 and applied machine learning classi-
fiers to the remaining samples (GG 6 versus GGs 8–10) with different LogFC cutoffs. Here,
we sought to address misclassification resulting from the inclusion of data from individuals
diagnosed with GG 7. The results of this investigation are presented in Figure 5. The
classification accuracy improved significantly, and the misclassification error was reduced.
The SGD classifier obtained the highest accuracy at LogFC 1, 91.97%, and MultiClassClas-
sifier obtained the lowest accuracy at LogFC 2, 87.15%. PCA analysis (Figure 6) revealed
that most of the samples with GGs 6, 8–10 were correctly classified. Model 2 achieved
significantly higher accuracy and lower misclassification rates than Model 1.
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Figure 6. Three-dimensional principal component analysis (PCA) plot of Model 2. (Here, blue
represents indolent samples, and red represents aggressive samples).

Because GG 7 follows a variable clinical course, in model 3, we examined an additional
classification approach to further address the misclassification problem for samples with
GG 7. Under this approach, we applied ML classifiers to 3 + 4 versus 4 + 3 samples using
the same cutoffs as those used in Model 1 and Model 2. The results of this investigation are
presented in Figure 7. The accuracy was significantly lower, and the misclassification rate
increased significantly. PCA analysis (Figure 8) revealed that most of the samples with GG
7 were misclassified. Overall, the results of Model 3 achieved significantly lower accuracy
and higher misclassification rates compared with Models 1 and 2, further confirming the
part of our hypothesis that high misclassification was attributable to GG 7.
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Having discovered that including GG 7 causes high misclassification rates, we applied
10-fold cross-validation to all the ML classifiers for samples with GG 7 at different threshold
levels, abs(logFC) > 0.5, 0.7, 1, 1.5, and 2. The highest and lowest accuracy values were
obtained with the SGD classifier at LogFC 0.7, 54%, and MultiClassClassifier at LogFC 0.5,
11%, respectively. Figure 9 shows that Model 3 was misclassified compared with Model 1
and Model 2.
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We implemented a supervised machine learning method to classify Model 3 by treating
it as the test set and Model 2 as the training set. The accuracy significantly improved at
all LogFC values for all the five different classifiers. According to Figure 10, the highest
and lowest accuracy values were obtained with MultiClassClassifier at LogFC 1.5, 87.55%,
and the SimpleLogistic classifier at LogFC 2, 73.74%, respectively. According to Table 4,
we can discern that the highest accuracy obtained by an individual classifier (SVM) using
Scikit-learn was 86%.
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Table 4. Performance of various classifiers in Model 1 after classifying samples with GG 7. The best
score values are bold-faced.

M
et

ri
c/

M
et

ho
d

LR ET
C

K
N

N
s

SV
M

G
B

C

R
F

X
G

B

Sensitivity 0.85 0.93 0.86 0.91 0.91 0.92 0.90
Specificity 0.67 0.49 0.59 0.69 0.54 0.51 0.67
Bal. acc. 0.76 0.72 0.72 0.90 0.72 0.71 0.80

Accuracy 0.80 0.82 0.79 0.86 0.82 0.82 0.85
Precision 0.88 0.84 0.86 0.90 0.86 0.85 0.89
F1 score 0.87 0.88 0.86 0.90 0.88 0.88 0.89

MCC 0.50 0.84 0.45 0.61 0.49 0.49 0.61

3.4. Stacking Results

We increased the accuracy to 86% by correctly classifying samples with GG 7. A
Genetic Algorithm (GA) was implemented to reduce the number of features to identify
the genes/features that contribute to the disease. GAs are metaheuristics that gradually
refine solutions using natural selection, where the best individuals are selected to produce
offspring for the next generation. GAs are used to generate high-quality solutions to
optimization by relying on operators such as selection, crossover, and mutation. In the
optimization using the GA, the parameters were set as (i) population size of 50, (ii) elite
rate of 5%, (iii) crossover rate of 90%, and (iv) mutation rate of 50%. Figure 2 represents the
stacking method. After applying the Genetic Algorithm, the resulting models contained
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1020 (Model 1) and 1681 (Model 2) genes. Later, we assumed that classifying with all the
samples could increase our accuracy using both models.

Using stacking in Model 1, we evaluated different combinations of base classifiers and
meta-classifiers using our stacking technique. Table 5 represents the performance metric of
Model 1, and the highest accuracy was obtained with Stacking Model 1 (SM-1), 96%. Then,
we used a principal component analysis (PCA) plot to check if the samples were correctly
represented as indolent versus aggressive PCas. In Figure 11, we observe that most of the
samples were correctly classified.

Table 5. Performance of various stacking methods for Model 1. The best score values are bold-faced.

M
et

ri
c/

M
et

ho
d

Se
ns

it
iv

it
y

Sp
ec

ifi
ci

ty

A
cc

ur
ac

y

Pr
ec

is
io

n

F1
Sc

or
e

M
C

C

B
al

an
ce

d
A

cc
ur

ac
y

SM-1 0.99 0.85 0.96 0.95 0.97 0.88 0.92
SM-2 0.96 0.83 0.93 0.95 0.95 0.81 0.87
SM-3 0.97 0.84 0.93 0.95 0.96 0.84 0.91
SM-4 0.98 0.68 0.91 0.90 0.94 0.74 0.83
SM-5 0.94 0.81 0.91 0.94 0.94 0.74 0.87
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Figure 11. The figure represents the principal component analysis of Model 1.

For the stacking method under Model 2, we removed the samples with GG 7 and
applied the stacking technique with different combinations for the rest of the samples. The
results are presented in Table 6. Model 2 is now more comparable to Model 1, and the
highest accuracy was obtained with Stacking Model 1 (SM-1), 97%. Almost all the samples
were classified correctly (Figure 12). Due to our model’s inability to achieve 100% accuracy,
a few misclassified samples persisted within our models. Figure 9 shows the number of
misclassified samples in GG7 and Model 1 at different threshold levels, abs(logFC) > 0.5,
0.7, 1, 1.5, and 2.



Mach. Learn. Knowl. Extr. 2023, 5 1316

Table 6. Performance of various stacking methods for Model 2. The best score values are bold-faced.

M
et

ri
c/

M
et

ho
d

Se
ns

it
iv

it
y

Sp
ec

ifi
ci

ty

A
cc

ur
ac

y

Pr
ec

is
io

n

F1
Sc

or
e

M
C

C

B
al

an
ce

d
A

cc
ur

ac
y

SM-1 0.98 0.90 0.97 0.99 0.98 0.87 0.94
SM-2 0.95 0.79 0.94 0.97 0.96 0.72 0.91
SM-3 0.96 0.79 0.95 0.97 0.97 0.72 0.92
SM-4 0.98 0.62 0.94 0.95 0.96 0.66 0.80
SM-5 0.98 0.59 0.93 0.95 0.96 0.64 0.78
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4. Discussion

The accurate classification of individuals diagnosed with PCa into those with indolent
tumors that could be put under surveillance and those with aggressive diseases requiring
immediate medical attention remains an unresolved challenge. Clinical oncologists face the
dilemma of over-treating individuals with indolent tumors and under-treating individuals
with aggressive tumors, with the potential consequence of bad clinical outcomes in either
case. This study was undertaken to investigate the potential utility of ML algorithms for
classifying PCa patients into patients with indolent tumors that could be safely monitored
and patients with aggressive tumors with lethal potential that require immediate thera-
peutic intervention. Our investigation shows that using the current protocol based on GG
scoring alone could lead to high misclassification errors. The practical consequence is that
this could lead to unnecessary treatment of men with indolent tumors, a practice that could
impair their quality of life and potentially their economic well-being. Likewise, under-
treatment due to misclassification could lead to loss of life in those who could otherwise
be saved. Our investigation shows that implementing ML algorithms could accurately
classify cancer patients into patients with indolent and aggressive PCas. Our investigation
also shows that while ML algorithms vary in their accuracy, using stacking methods that
combine different ML algorithms could significantly increase the accuracy and reduce
misclassification errors and could be used to complement current protocols based on GGs.

In our study, we used Differential Expression Analysis and a Genetic Algorithm to
reduce the number of features to identify the probes contributing to the disease. We
also performed different ML classifiers using 10-fold cross-validation to minimize the
misclassification rate and improve accuracy compared with previous studies. Later, we
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used a stacking-based ML technique using a different combination of ML classifiers with
10-fold cross-validation and yielded better results (Model 1: 96% with SM-1; Model 2: 97%
with SM-1). To validate and compare the performance of our stacking models, we compared
their performance with that of existing methods. The following table (Table 7) compares
the proposed method with the existing methods. As shown in Table 7, our proposed Model
1 at 96% and Model 2 at 97% were significantly superior to the existing ones.

Table 7. Performance comparison with existing methods.

Method Accuracy

Yang et al. [8] 82.54%

Danaee et al. [9] 89.13%

Casey et al. [34] 85.00%

Proposed Method (SM1) 96.00%

Proposed Method (SM2) 97.00%

Some limitations of the study: Transcriptomics, the study of gene expression, in
prostate cancer (Gleason Grades) provides valuable insights into gene activity [5]. How-
ever, it is crucial to acknowledge that transcriptomics alone may not fully capture the
complexities of prostate cancer and effectively characterize patients. Prostate cancer is a
heterogeneous disease with diverse underlying molecular mechanisms [1]. While tran-
scriptomics reveals gene expression patterns, other data types, such as mutations and
epigenetics, are equally vital to shaping cancer development and progression [2]. Muta-
tions in the DNA sequence can lead to abnormal protein functions, contributing to tumor
formation. Identifying specific mutations associated with different Gleason Grades can
offer valuable diagnostic and prognostic information. Epigenetic alterations, modifications
in DNA without sequence changes, profoundly influence gene expression and impact
prostate cancer cell behavior and treatment response. Understanding epigenetic patterns in
various Gleason Grades can provide insights into the disease’s biology and potentially lead
to targeted therapies [13]. An integrated approach is necessary to comprehensively under-
stand prostate cancer, combining data from multiple sources, including transcriptomics,
mutations, and epigenetics. This approach allows researchers to gain a more nuanced
understanding of the disease, enabling improved patient characterization based on the
underlying molecular features of their tumors. However, in this study, we did not con-
sider these features. Moreover, working with TCGA data presents challenges due to its
unbalanced-design nature, causing technical difficulties in managing data dimensionality
and fitting models to a large number of variables. Many studies have encountered similar
issues when working with TCGA datasets. Addressing these challenges is essential to
ensure robust and reliable analyses and advance our prostate cancer knowledge. These
areas will be the focus of future investigations.

5. Conclusions

Our research highlights the significance of genomic alterations in distinguishing pa-
tients with indolent and aggressive tumors. Machine learning (ML) has emerged as a
powerful toolset, providing precision, specificity, and sensitivity in accurately identifying
truly indolent tumors that can be safely monitored and aggressive tumors requiring im-
mediate treatment. With a unique combination of ML classifiers, the stacking-based ML
technique demonstrated remarkable accuracy, surpassing 96% in 10-fold cross-validation.
While the classification accuracy is commendable, there is potential for further improve-
ment by incorporating additional features derived from mutation and epigenetic data,
which would enhance patient characterization. While transcriptomics provides valuable
insights into gene activity in prostate cancer, it is equally important to consider other
genetic factors, such as mutations and epigenetics. By integrating these additional data
points, we can gain a more comprehensive understanding of the disease, ultimately en-
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hancing our ability to characterize patients and guide personalized treatment strategies.
In addition, we plan to assess the effectiveness of neural network models in our future
research. These models could prove valuable in integrating genomic data with somatic
mutation information to classify indolent and aggressive prostate cancers and identify the
driving factors behind disease aggression using machine learning. We believe that the tool
we have developed will be useful in advancing our understanding of prostate cancer.

6. Patents

No patents resulted from the work reported in this manuscript.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/make5040066/s1. The following supplementary figures for data
analysis are included.

Author Contributions: Data collection and processing: Y.K.K.M. and T.K.K.M. Conception and
design of the experiments: M.W.U.K., J.W., C.H. and M.T.H. Performing of experiments: Y.K.K.M.
Data analysis: Y.K.K.M., T.K.K.M., M.W.U.K. and C.H. Contribution of reagents/materials/analysis
tools: Y.K.K.M., M.W.U.K., C.H. and M.T.H. Writing of the paper: Y.K.K.M., T.K.K.M., M.W.U.K., J.W.,
C.H. and M.T.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by internal funds from LSUHSC-School of Medicine Startup
funds, and external funds from National Institute of Health and National Institute of General Medical
Sciences USA (grant numbers 2U54GM104940-07 and 2P20GM121288-06), and National Center for
Advancing Translational Sciences USA (grant number UL1TR003096). All the views expressed in this
manuscript are those of the authors and do not represent the funding sources or agency.

Data Availability Statement: The code and data related to the development of PCa-Clf can be found
here: http://cs.uno.edu/~tamjid/Software/PCA_Predict/PCa-Clf.zip (accessed on 26 September
2023). All the original DNA methylation data and clinical information used in this investigation
are publicly available in TCGA (https://www.cancer.gov/about-nci/organization/ccg/research/
structural-genomics/tcga) and downloadable via the Genomics Data Commons (https://gdc.cancer.
gov/). Data generated from the analysis supporting the findings of this study are provided in
supplementary tables in the Supplementary Materials accompanying this report.

Acknowledgments: The authors thank Louisiana State University Health Sciences Center School
of Medicine and University of New Orleans for providing the environment and laboratory space
used to execute this project. The authors also thank Anthony Michael Marchiafava and Dixon James
Wingrove for thoroughly reviewing the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rodney, S.; Shah, T.T.; Patel, H.R.; Arya, M. Key papers in prostate cancer. Expert Rev. Anticancer Ther. 2014, 14, 1379–1384.

[CrossRef] [PubMed]
2. Watson, M.J.; George, A.K.; Maruf, M.; Frye, T.P.; Muthigi, A.; Kongnyuy, M.; Valayil, S.G.; Pinto, P.A. Risk stratification of

prostate cancer: Integrating multiparametric MRI, nomograms and biomarkers. Future Oncol. 2016, 12, 2417–2430. [CrossRef]
[PubMed]

3. Epstein, J.I.; Allsbrook, W.C., Jr.; Amin, M.B.; Egevad, L.L.; ISUP Grading Committee. The 2005 International Society of Urological
Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma. Am. J. Surg. Pathol. 2005, 29, 1228–1242.
[CrossRef] [PubMed]

4. Epstein, J.I.; Allsbrook, W.C., Jr.; Amin, M.B.; Egevad, L.L.; ISUP Grading Committee. The 2014 International Society of Urological
Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal
for a New Grading System. Am. J. Surg. Pathol. 2016, 40, 244–252. [CrossRef]

5. Lavi, A.; Cohen, M. Prostate cancer early detection using psacurrent trends and recent updates. Harefuah 2017, 156, 185–188.
6. Moyer, V.A.; U.S. Preventive Services Task Force. Screening for prostate cancer: U.S. Preventive Services Task Force recommenda-

tion statement. Ann. Intern. Med. 2012, 157, 120–134. [CrossRef]
7. Lin, J.S.; O’Connor, E.A.; Evans, C.V.; Senger, C.A.; Rowland, M.G.; Groom, H.C. US Preventive Services Task Force evidence

syntheses, formerly systematic evidence reviews. In Screening for Colorectal Cancer: A Systematic Review for the U.S. Preventive
Services Task Force; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2016.

https://www.mdpi.com/article/10.3390/make5040066/s1
https://www.mdpi.com/article/10.3390/make5040066/s1
http://cs.uno.edu/~tamjid/Software/PCA_Predict/PCa-Clf.zip
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://gdc.cancer.gov/
https://gdc.cancer.gov/
https://doi.org/10.1586/14737140.2014.974565
https://www.ncbi.nlm.nih.gov/pubmed/25348075
https://doi.org/10.2217/fon-2016-0178
https://www.ncbi.nlm.nih.gov/pubmed/27400645
https://doi.org/10.1097/01.pas.0000173646.99337.b1
https://www.ncbi.nlm.nih.gov/pubmed/16096414
https://doi.org/10.1097/PAS.0000000000000530
https://doi.org/10.7326/0003-4819-157-2-201207170-00459


Mach. Learn. Knowl. Extr. 2023, 5 1319

8. Yang, L.; Wang, S.; Zhou, M.; Chen, X.; Jiang, W.; Zuo, Y.; Lv, Y. Molecular classification of prostate adenocarcinoma by the
integrated somatic mutation profiles and molecular network. Sci. Rep. 2017, 7, 738. [CrossRef]

9. Danaee, P.; Ghaeini, R.; Hendrix, D.A. A deep learning approach for cancer detection and relevant gene identification. In Pacific
Symposium on Biocomputing 2017; World Scientific: Singapore, 2017; pp. 219–229.

10. Takeuchi, T.; Hattori-Kato, M.; Okuno, Y.; Iwai, S.; Mikami, K. Prediction of prostate cancer by deep learning with multilayer
artificial neural network. Can. Urol. Assoc. J. 2019, 13, E145–E150. [CrossRef]

11. Wulczyn, E.; Nagpal, K.; Symonds, M.; Moran, M.; Plass, M.; Reihs, R.; Nader, F.; Tan, F.; Cai, Y.; Brown, T.; et al. Predicting
prostate cancer specific-mortality with artificial intelligence-based Gleason grading. Commun. Med. 2021, 1, 1–8. [CrossRef]

12. Liu, J.; Lichtenberg, T.; Hoadley, K.A.; Poisson, L.M.; Lazar, A.J.; Cherniack, A.D.; Kovatich, A.J.; Benz, C.C.; Levine, D.A.; Lee,
A.V.; et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. The Cancer
Genome Atlas Research Network. Cell 2018, 173, 400–416.e11. [CrossRef]

13. The Genomics Data Commons. Available online: https://portal.gdc.cancer.gov/ (accessed on 26 September 2023).
14. Bekelman, J.E.; Rumble, R.B.; Chen, R.C.; Pisansky, T.M.; Finelli, A.; Feifer, A.; Nguyen, P.L.; Loblaw, D.A.; Tagawa, S.T.; Gillessen,

S.; et al. Clinically Localized Prostate Cancer: ASCO Clinical Practice Guideline Endorsement of an American Urological
Association/American Society for Radiation Oncology/Society of Urologic Oncology Guideline. J. Clin. Oncol. 2018, 36,
3251–3258. [CrossRef] [PubMed]

15. Robinson, M.D.; Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol.
2010, 11, R25. [CrossRef] [PubMed]

16. Li, J.; Witten, D.M.; Johnstone, I.M.; Tibshirani, R. Normalization, testing, and false discovery rate estimation for RNA-sequencing
data. Biostatistics 2012, 13, 523–538. [CrossRef]

17. Mamidi, T.K.K.; Wu, J.; Hicks, C. Interactions between Germline and Somatic Mutated Genes in Aggressive Prostate Cancer.
Prostate Cancer 2019, 2019, 4047680. [CrossRef]

18. Doyle, M.; Phipson, B.; Ritchie, M.; Doyle, M.; Dashnow, H.; Law, C. RNA-Seq Analysis in R. Available online: http://combine-
australia.github.io/2016-05-11-RNAseq/ (accessed on 26 September 2023).

19. Brownlee, J. How to Run Your First Classifier in Weka. Mach. Learn. Mastery. 2020. Available online: https://
machinelearningmastery.com/how-to-run-your-first-classifier-in-weka/ (accessed on 26 September 2023).

20. Kuchi, A.; Hoque, M.T.; Abdelguerfi, M.; Flanagin, M.C. Machine learning applications in detecting sand boils from images.
Array 2019, 3–4, 100012. [CrossRef]

21. Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [CrossRef]
22. Szilágyi, A.; Skolnick, J. Efficient Prediction of Nucleic Acid Binding Function from Low-resolution Protein Structures. J. Mol. Biol.

2006, 358, 922–933. [CrossRef]
23. Ho, T.K. Random decision forests. In Proceedings of the Proceedings of 3rd International Conference on Document Analysis and

Recognition, Montreal, QC, Canada, 14–16 August 1995; Volume 271, pp. 278–282.
24. Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [CrossRef]
25. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
26. Altman, N.S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Am. Stat. 1992, 46, 175–185.
27. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd Acm Sigkdd International Conference

on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016.
28. Gattani, S.; Mishra, A.; Hoque, T. StackCBPred: A stacking based prediction of protein-carbohydrate binding sites from sequence.

Carbohydr. Res. 2019, 486, 107857. [CrossRef] [PubMed]
29. Hu, Q.; Merchante, C.; Stepanova, A.N.; Alonso, J.M.; Heber, S. A Stacking-Based Approach to Identify Translated Upstream

Open Reading Frames in Arabidopsis Thaliana. In Book A Stacking-Based Approach to Identify Translated Upstream Open Reading
Frames in Arabidopsis Thaliana; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 138–149.

30. Iqbal, S.; Hoque, M. PBRpredict-Suite: A Suite of Models to Predict Peptide Recognition Domain Residues from Protein Sequence.
Bioinformatics 2018, 34, 3289–3299. [CrossRef]

31. Mishra, A.; Pokhrel, P.; Hoque, T. StackDPPred: A stacking based prediction of DNA-binding protein from sequence. Bioinformatics
2018, 35, 433–441. [CrossRef] [PubMed]

32. Flot, M.; Mishra, A.; Kuchi, A.S.; Hoque, T. StackSSSPred: A Stacking-Based Prediction of Supersecondary Structure from
Sequence. Protein Supersecondary Struct. Methods Protoc. 2019, 1958, 101–122.

33. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2012, 12, 2825–2830.

34. Casey, M.; Chen, B.; Zhou, J.; Zhou, N. A machine learning approach to prostate cancer risk classification through use of RNA
sequencing data. In International Conference on Big Data; Springer International Publishing: Cham, Switzerland, 2019; pp. 65–79.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/s41598-017-00872-8
https://doi.org/10.5489/cuaj.5526
https://doi.org/10.1038/s43856-021-00005-3
https://doi.org/10.1016/j.cell.2018.02.052
https://portal.gdc.cancer.gov/
https://doi.org/10.1200/JCO.18.00606
https://www.ncbi.nlm.nih.gov/pubmed/30183466
https://doi.org/10.1186/gb-2010-11-3-r25
https://www.ncbi.nlm.nih.gov/pubmed/20196867
https://doi.org/10.1093/biostatistics/kxr031
https://doi.org/10.1155/2019/4047680
http://combine-australia.github.io/2016-05-11-RNAseq/
http://combine-australia.github.io/2016-05-11-RNAseq/
https://machinelearningmastery.com/how-to-run-your-first-classifier-in-weka/
https://machinelearningmastery.com/how-to-run-your-first-classifier-in-weka/
https://doi.org/10.1016/j.array.2019.100012
https://doi.org/10.1109/72.788640
https://doi.org/10.1016/j.jmb.2006.02.053
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1016/j.carres.2019.107857
https://www.ncbi.nlm.nih.gov/pubmed/31683069
https://doi.org/10.1093/bioinformatics/bty352
https://doi.org/10.1093/bioinformatics/bty653
https://www.ncbi.nlm.nih.gov/pubmed/30032213

	Introduction 
	Experimental Materials and Methods 
	Source of Transcriptome and Clinical Datasets 
	Data Processing and Analysis for Gene Selection 
	Level 1 Analysis 
	Level 2 Analysis 
	Feature Selection and Implementation of ML and Genetic Algorithms 
	Stacking 

	Model Selection and Validation by Correlating ML Algorithm with GGs 
	Performance Evaluation 

	Results 
	Discovery Genes Associated with Indolent and Aggressive PCas 
	Discovery of Genes or Features Associated with the Two Types of PCa Used in ML Algorithms 
	Results of Classification Based on Different Models 
	Stacking Results 

	Discussion 
	Conclusions 
	Patents 
	References

