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Abstract: This paper extends recent work on decision rule learning from neural networks for tabular
data classification. We propose alternative formulations to trainable Boolean logic operators as
neurons with continuous weights, including trainable NAND neurons. These alternative formulations
provide uniform treatments to different trainable logic neurons so that they can be uniformly trained,
which enables, for example, the direct application of existing sparsity-promoting neural net training
techniques like reweighted L1 regularization to derive sparse networks that translate to simpler rules.
In addition, we present an alternative network architecture based on trainable NAND neurons by
applying De Morgan’s law to realize a NAND-NAND network instead of an AND-OR network,
both of which can be readily mapped to decision rule sets. Our experimental results show that these
alternative formulations can also generate accurate decision rule sets that achieve state-of-the-art
performance in terms of accuracy in tabular learning applications.

Keywords: interpretable machine learning; decision rule sets; tabular learning

1. Introduction

Deploying inherently interpretable decision models that can provide human-
understandable explanations is critically important in machine learning domains like
healthcare and criminal justice, where human lives are often deeply impacted [1]. In these
domains, the datasets are typically provided as tabular data with naturally meaningful
features. One popular approach to tabular learning is the use of decision rule sets [2–6].
In decision rule sets, the model is represented in disjunctive normal form (DNF) as an
independent set of logical rules.

Decision rules are inherently interpretable: the rules are expressed in terms of logical
combinations of input conditions that must be satisfied for a positive prediction. In addition
to providing a prediction, the corresponding matching rule in the model also serves as
an explanation that humans can easily understand. In particular, the explanations are
stated directly in terms of meaningful input features, which can be categorical (e.g., color
equal to red, blue, or green) or numerical (e.g., score ≥ 100) attributes, where the binary
encoding of categorical and numerical attributes is well studied [5,6]. Although decision
rules can provide explainable predictions, they often produce inferior results in terms of
accuracy when compared to models like gradient-boosted and ensemble decision trees [7,8].
However, these black box models are difficult or impossible for humans to understand.
Their lack of interpretability makes it difficult to gain public trust for their use in high-stakes
applications like medical diagnosis and criminal justice, where decisions can have serious
consequences on human lives [1].

Despite their lack of interpretability, deep learning methods are widely employed
in tabular machine learning tasks due to their remarkable efficacy. At its core, deep
learning utilizes neural networks with multiple layers—namely, fully connected layers—to
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learn complex patterns from data. These layers are essentially interconnected nodes,
where each connection represents an aspect of the data being learned. This approach’s
success is primarily attributed to its high generalization capability and the well-developed
programming frameworks, such as Pytorch, that have made implementation much more
accessible. While fully connected layers are often the default choice, researchers have
also been exploring other specially designed neural network structures [9,10] for tabular
machine learning, aiming to achieve better performance or model interpretability.

Recently, Ref. [11] proposed a new paradigm for decision rule learning as a neural
net training problem in which the proposed DR-Net neural network architecture maps
directly to an AND-OR logic network in disjunctive normal form (DNF), which can be
readily translated into an explainable decision rule set for binary classification. In particular,
DR-Net is a three-layer architecture in which the first layer comprises the inputs, the hidden
layer comprises neurons that implement trainable logic-AND operators, and the output
neuron implements a trainable logical-OR operation. The trainable logical-AND neurons
form rules as a conjunction of input features, and the trainable logical-OR neuron forms
a rule set as a disjunction of rules. As detailed in [11], this approach can leverage a large
body of sophisticated neural net training techniques to achieve state-of-the-art predictive
performance while retaining the interpretability of decision rules.

Despite the advances made in the DR-Net work, there are several issues that deserve
further attention, which we aim to address in this paper. One issue is that the AND neurons
and the OR neurons in [11] are formulated differently: the trainable AND neurons have
continuous weights, whereas the trainable OR neurons require the binarization of weights to
0 or 1. The different treatments of the two logic operators make it more difficult to compose
them together in future multi-level neural net architectures. In addition, their different
treatments also make it more difficult to employ certain sparsity-promoting neural net
training techniques like reweighted L1 regularization, which are important for achieving
sparse networks that translate to simpler decision rules for tabular learning.

In this paper, we have substantially extended the work in [11] in the following ways:

• We propose a new formulation of a trainable OR neuron based on continuously trainable
weights without the need to binarize the weights, in the same way that the AND neuron
is formulated. Moreover, our new formulation of the OR neuron is generalized in the
same way as our AND neuron formulation in that inputs can now be negated by means
of negative weights. This creates more flexibility in the training process.

• We further added a new trainable “NAND neuron” (Not AND), which is also based
on the same model of trainable continuous weights.

• From De Morgan’s law, we know that an AND-OR logic network is logically equivalent to
a NAND-NAND logic network. Therefore, given our formulation of a trainable NAND
neuron, we propose a new neural net architecture called NN-Net (short for NAND-
NAND Net) for decision rule learning as an alternative to DR-Net. We also modified the
formulation of DR-Net with our new formulations of the AND and OR neurons.

• Further, given our new formulations of Boolean logic operators as trainable neurons
with continuous weights, existing sparsity-promoting neural net training techniques
like reweighted L1 regularization can be directly applied to derive simpler decision
rule sets, in addition to a stochastic L0 regularization approach that was previously
used in [11].

• In addition, we added many new experiments in our experimental evaluation sec-
tion. In particular, we evaluated our new formulations of DR-Net and NN-Net,
together with two sparsity-promoting regularization approaches. We also added new
experiments to analyze the training process and show the effects of the proposed
sparsity-promoting mechanisms, including the analysis of training convergence and
the effects of using different combinations of regularization coefficients, which affect
the model complexities.

The rest of the paper is outlined as follows: Section 2 provides some background.
Section 3 systematically defines different logic operators as fundamental building blocks
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of networks. Section 4 introduces a new version of DR-Net and proposes NAND-NAND
net as an alternative network structure that can also be mapped to a set of decision rules.
Section 5 describes sparsity-promoting regularization approaches for training the proposed
networks. Section 6 provides extensive evaluations of our proposed approaches. Section 7
summarizes related work. Section 8 concludes the paper.

2. Background
2.1. Binarization of Tabular Data

Although binary features commonly appear in tabular datasets, these datasets also
generally include categorical and numerical features, which are naturally used when
the data are collected. In this work, we assume that all data are binary encoded, and
thus, categorical and numerical features need to first be binarized using well-established
preprocessing steps in the machine learning literature. In particular, we follow exactly the
same binarization approach used in some decision rule learners [5,6], where we simply
one-hot encode all categorical features into binary vectors. Regarding numerical features,
we employ a quantile discretization strategy that takes into account the distribution of
numerical values within the training dataset, thereby establishing a set of distinct thresholds
for each feature. The original numerical value is then subjected to a one-hot encoding
process to form a binary vector, achieved by comparing it with the pre-set thresholds.
An example of this process would be thresholds based on age (i.e., age ≤ 25, age ≤ 50,
age ≤ 75), whereby each value is encoded as “1” if it falls below the threshold or “0” if
otherwise. This binarization approach for numerical features has been widely used by
decision rule learners, and has been shown to achieve better performance than directly
discretizing numerical values into intervals [5].

2.2. The Decision Rule Learning Problem

Once a tabular dataset has been binarized, as explained above, the goal of decision rule
learning is to train a classifier in the form of a Boolean logic function in disjunctive normal
form (OR-of-ANDs). Each logical-AND operation serves as a decision rule by forming the
conjunction of a subset of input features or their negations. An instance satisfies a rule if all
the conditions captured in the rule are satisfied for the instance. The logical-OR operation
serves to form a decision rule set by forming the disjunction of the rules. The logical-OR
operation means the final prediction will be positive if at least one rule is satisfied (i.e., the
AND operation is true). Otherwise, the final prediction will be negative.

In particular, a training set can be represented mathematically as a set of N data
samples (xn, yn), n = 1, . . . , N, where xn is a vector of D binarized features xn,i ∈ {0, 1},
i = 1, . . . , D, and yn ∈ {0, 1}. The decision rule set learned can be denoted as a set of
m terms: C = {c1, c2, . . . , cm}. We define term c as a conjunction of k features (e.g., an
input feature xi) or their negations (e.g., xi), where 1 ≤ k ≤ D. If an input feature xi or its
negation xi are both excluded from term c, we say xi is a “don’t care”, meaning whether
xi is 0 or 1 has no effect on the outcome of term c. Under this definition, an instance xn
satisfies a term only if all conditions in the terms are satisfied in the instance: i.e., xn,i = 1
for xi and xn,i = 0 for xi.

3. Boolean Logic Operators as Trainable Neurons

In this section, we present the formulation of several Boolean logic operators as
trainable neurons. In particular, we describe the formulation of three trainable logic
operators, AND, OR, and NAND (Not AND), that will be used as building blocks in the
neural net architectures described in the next section. Unlike the earlier work in [11], which
treated the AND and OR neurons differently, we formulate all three logic operators in
the same way in this paper, namely, as trainable neurons with continuous weights and
dynamic biases. We believe this uniform formulation of all three logical neurons is cleaner
and enables more consistent training of the neural nets that use them.
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3.1. AND Neuron

As discussed in Section 2.1, categorical and numerical attributes are first binarized into
Boolean vectors. Therefore, decision rules become simply a conjunction (or a logical-AND)
of the corresponding binary variables. We would like to define a neuron that is trainable in
the following sense: Given x ∈ {0, 1}D as a vector of D binary variables, we want to define
a neuron that can be trained to implement the conjunction of a subset of these D variables,
depending on whether the corresponding weights are non-zero or not. Zero weights would
be interpreted as the exclusion of the corresponding binary variables in the conjunction
subset. Further, for the binary variables included in the conjunction subset, we would
like to generalize the AND operator to include the conjunction of binary variable xi or its
negation xi, depending on whether the corresponding weight wi is positive or negative.
This is achieved by defining a soft formula, followed by a binary step activation function.

Specifically, given the binarized inputs as x ∈ {0, 1}D and the output as y, a neuron
that performs a soft AND operation is defined as follows:

yAND =
D

∑
i=0

wixi − ∑
wi>0

wi. (1)

In Equation (1), the dot product of the weights and inputs (∑D
i=0 wixi) is added with

a dynamic bias term (−∑wi>0 wi), whose value depends on all the positive weights of the
neuron. With the dynamic bias and binarized inputs, the range of the output of a soft
AND neuron is within (−∞, 0]. The condition to obtain an output y = 0 happens when the
inputs align with the signs of their corresponding weights: inputs must equate to 1 when
aligned with positive weights and 0 when corresponding to negative weights. Thus, a soft
AND neuron can be seen as a logic AND gate if we map the neuron output of 0 as TRUE
and other negative neuron outputs as FALSE. Note that, analogous to the functionality of
weights in conventional neurons, the occurrence of zero weights in a soft AND neuron
implies that the corresponding inputs exert no influence on the output.

However, the outputs of the soft AND neurons cannot be directly passed as inputs to
other soft AND neurons because they are not binary numbers, and thus, multiple layers of
soft neurons alone cannot be concatenated to form a neural network that performs logical
operations. Thus, in order for soft AND neurons to function as proper logical gates in the
neural network forward process, binary step functions are applied as the activation functions.

The binary step activation function for the soft AND neurons is defined as

f (x) =

{
1 if x = 0
0 otherwise,

(2)

which simply maps value 0 to value 1 and negative values to value 0. The activation
function defined in Equation (2) turns a soft AND neuron into a hard AND neuron that
exactly performs a logical AND gate operation, since the output is 1 only when all of the
input operands are TRUE (all inputs match the sign of the corresponding weights), and
0 otherwise. Given the binary step function in Equation (2) that discretizes continuous
inputs into binary integers, a process not inherently differentiable and unsuited for classic
gradient computation, we adopt the straight-through estimator discussed in [12], combined
with the gradient clipping technique. Denoted by ŷi is the binarized activation based on yi,
and we compute the gradient as follows:

gŷi =

{
0 if yi < −1
gyi otherwise,

(3)

where gŷi = ∂L
∂ŷi

and gyi = ∂L
∂yi

are the gradients of classification loss L with respect
to ŷi and yi, respectively. The condition yi < −1 is motivated by the ReLU1 function,
which clips the gradient with respect to the outputs that are more than 1 away from
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the maximum value, introduces non-linearity into the training process, and empirically
improves the performance.

3.2. OR Neuron

Like the trainable AND neuron described in the previous section, we would like
to define an OR neuron that can be trained to implement the disjunction (or the logical-
OR) of a subset of the input variables, with zero weights interpreted as the exclusion of
the corresponding binary variables. Also, like our formulation of the AND neuron, we
generalize the OR neuron to include the disjunction of a binary variable xi or its negation
xi, depending on whether the corresponding weight wi is positive or negative.

In [11], the OR neuron is formulated differently. The soft OR operation in this earlier
work is defined as yOR = ∑D

j=1 ŵixi − ε, where 0 < ε < 1 is a small value (e.g., ε = 0.5), and
where ŵi is the binarized version of the full-precision weight wi, such that ŵi = 0 if wi ≤ 0,
and 1 otherwise. This required binarization of weights is different from the formulation of
the AND neuron, which uses continuous weights. The different treatments of the two logic
operators make it more difficult to compose them together in future multi-level neural net
architectures, and their different treatments also make it more difficult to employ certain
sparsity-promoting neural net training techniques like reweighted L1 regularization that
we use in this work:

yOR =
D

∑
i=0

wixi − ∑
wi<0

wi. (4)

In particular, similar to the soft AND neuron, we define a soft OR neuron as follows: A
soft OR neuron is similar to a soft AND neuron in that it also consists of the dot product
and a dynamic bias, but the dynamic bias now depends on all the negative weights of the
neuron, as opposed to the positive weights in the soft AND neuron. Because of the flipping
sign of the dynamic bias in the soft AND neuron, the range of the output is also flipped to
be [0, ∞), where 0 means FALSE and can only be produced when all inputs do not match
the sign of the corresponding weights. Although 0 values can appear in the outputs of
both soft AND neurons and soft OR neurons, the interpretation is contrasting: it represents
TRUE for soft AND neurons but FALSE for soft OR neurons.

One of the benefits of using the formulations mentioned above to define soft AND
and OR neurons is that the neurons are interchangeable with conjunctions and disjunctions
while at the same time being fully differentiable. The dynamic bias provides logical
meanings to the signs of trainable weights and values of the outputs. In particular, the
operands of soft AND and OR operations are TRUE when the inputs of the neurons match
the signs of the corresponding weights, and soft AND and OR neurons output 0 (considered
TRUE for AND neurons and FALSE for OR neurons) only when all the operands are TRUE
and FALSE, respectively. Also, dynamic bias only involves linear operations such as
multiplications and deductions, and thus is fully differentiable, which helps the gradients
flow smoothly in the backward propagation process.

The soft OR neuron can be extended to be a hard OR neuron by applying a similar
binary step activation function

f (x) =

{
1 if x 6= 0
0 otherwise,

(5)

where the gradients are computed as

gŷi =

{
0 if yi > 1
gyi otherwise.

(6)

As will be seen later, the hard logic neurons are necessary building blocks of the
decision rules network, ensuring that the inferences of the network and the derived decision
rules are identical.
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3.3. NAND Neuron

Apart from the AND and OR operations, the NAND operator can also be used as a
building block for the decision rule set. As discussed in the next section, the concatenation
of two NAND operations is equivalent, and can be easily transformed to the OR-of-AND
form. Since the NAND operation is defined as an AND operation with the output negated,
we can define the soft NAND neuron by appending a negation function to the output of the
soft AND neuron:

yNAND = −yAND = ∑
wi>0

wi −
D

∑
i=0

wixi. (7)

Remember that the soft AND neuron defined in Equation (1) will output a continuous
value between (−∞, 0], where the output 0 can only be attained when all inputs match the
sign of the corresponding weights. The negation function in Equation (7) simply inverts
the soft AND neuron to output a value within the range [0, ∞). Since the output of the soft
NAND neuron can be interpreted in the same way as the output of the soft OR neuron,
the binary step activation function for the soft OR neuron defined in Equation (5) can
be used to turn the soft NAND neuron into the hard NAND neuron. Therefore, the soft
NAND operation, which consists of a soft AND operation and a negation function, together
with the binary step activation function defined in Equation (5), forms a logical NAND
gate that outputs 0 when all inputs match the sign of the corresponding weights, and 1
otherwise. To summarize, a soft NAND neuron is implemented using a soft AND neuron
with a negation function, and a hard NAND neuron is achieved by applying a step binary
activation function afterward.

4. Design Rule Learning as a Trainable Neural Network

In this section, we first review the DR-Net architecture proposed in [11]. However,
in the present work, we replace the AND and OR operators with our new formulations,
which are presented in Section 3. In addition, we introduce an alternative neural network
structure called a NAND-NAND net by leveraging the NAND neuron formulation, which
also maps correspondingly to a set of decision rules in disjunctive normal form (DNF) in
accordance with De Morgan’s law.

4.1. Decision Rules Network

As described in [11], the decision rules network (DR-Net for short) is a simple three-
layer neural network architecture, comprising an input layer of n input units, a hidden
layer of k neurons, and an output layer with a single output neuron. A toy example is
shown in Figure 1a for predicting college admissions, which we use to illustrate several
key ideas regarding the DR-Net architecture. In this example, the first input “GPA ≥ 3.0”
indicates that the student has at least a high school grade point average (GPA) of 3.0. The
second input “SAT ≥ 1000” indicates that the student has scored at least 1000 on the SAT
college entrance exam. The last two inputs indicate whether or not the student has work
experience and strong letters of recommendation, respectively.

Each of the n units at the input layer pass their corresponding assigned binarized
value to each neuron in the hidden layer. Denoted as the Rules Layer, the hidden layer
contains k AND neurons to implement k logical-AND operations. The output unit, denoted
as the Label Layer, implements a disjunction (logical OR) of the k AND neurons in the
hidden layer.

In the Rules Layer shown in Figure 1a, the blue lines indicate positive weights, the red
lines indicate negative weights, and the dashed lines indicate zero weights, which means
the corresponding inputs are excluded from the rule formed. For example, the first hidden
layer neuron is interpreted as the rule “GPA ≥ 3.0”. For the third hidden layer neuron,
the red lines indicate “NOT (GPA ≥ 3.0) AND NOT (SAT ≥ 1000)”, which is equivalently
represented as the rule “GPA < 3.0 AND SAT < 1000”. The last neuron is interpreted as the
rule “Work Experience AND Strong Recommendations”. Similarly, in the Label Layer, the
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blue lines again indicate positive weights, which means the corresponding rule is included
in the rule set, and the dashed lines indicate zero weights, which means the corresponding
rule is excluded from the rule set. Together with the hidden layer of the AND neurons,
the overall DR-Net architecture implements a trainable AND-OR network as a Boolean
formula in DNF that directly maps to an unordered set of IF-THEN rules, as shown, for
example, on the right-hand side of Figure 1b.

IF   GPA ≥ 3.0 OR 
SAT ≥ 1000 OR
Work-Experience AND Strong-Recommendations

THEN Admit-Student

Strong-
Recommendations

Work-
ExperienceGPA ≥ 3.0 SAT ≥ 1000 

(a)

La
be

l L
ay

er
R

ul
es

 L
ay

er

(b)

Work-Experience AND 
Strong-Recommendations

GPA < 3.0
AND 

SAT < 1000
GPA ≥ 3.0 SAT ≥ 1000 

Figure 1. (a) An example of the DR-Net architecture with 4 AND neurons is shown. The blue lines
to the AND neurons represent positive weights, while red lines represent negative weights. The
dashed line indicates the exclusion of the corresponding input feature. Please note that we represent
“NOT (GPA ≥ 3.0)” as “GPA < 3.0” in the third rule. Similarly, “NOT (SAT ≥ 1000)” is represented
as “SAT < 1000”. For the output OR neuron, the blue line indicates that the corresponding rule is
included in the rule set, and the dashed line indicates that the corresponding rule is excluded. (b) The
network maps directly to the corresponding decision rule set shown in the box on the right.

The key difference between this work and our earlier work in [11] is in the definitions
of the AND and OR neurons, as described in Section 3, in that both AND and OR neurons
are uniformly formulated the same way with continuous weights, which enables them
to be trainable with different regularization methods, for example, the sparsity-based
regularization methods described in Section 5. In addition, our OR neuron formulation is
generalized to allow for the negation of inputs. As explained in Section 3, the OR neuron is
generally defined so that it can include the disjunction of a binary variable xi or its negation
xi, depending on whether the corresponding weight wi is positive or negative.

A variant of Figure 1 is shown in Figure 2. As shown in Figure 2a, a negative weight
is indicated by the red line in the Label Layer, which corresponds to the negation of the
corresponding rule. In Figure 2a, the AND rule for the third hidden layer neuron is
“GPA < 3.0 AND SAT < 1000” . The corresponding red line to the OR output neuron means
the negation of this rule. By De Morgan’s law, this negation simply rewrites the AND
rule by negating each binarized feature and OR-ing them together, which means the result
logic will again be in disjunctive normal form. In particular, the negation of “GPA < 3.0” is
“GPA ≥ 3.0” and the negation of “SAT < 1000” is simply “SAT ≥ 1000” . Therefore, the
negation of “GPA < 3.0 AND SAT < 1000” is simply “GPA ≥ 3.0 OR SAT ≥ 1000”, which
results in the same set of IF-THEN rules, as shown in Figure 2b. The corresponding rule to
the red line is also shown in red in the IF-THEN rules shown in Figure 2b.
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IF   GPA ≥ 3.0 OR 
SAT ≥ 1000 OR
Work-Experience AND Strong-Recommendations

THEN Admit-Student

Strong-
Recommendations

Work-
ExperienceGPA ≥ 3.0 SAT ≥ 1000 

(a)

La
be

l L
ay

er
R

ul
es

 L
ay

er

(b)

Work-Experience AND 
Strong-Recommendations

GPA < 3.0
AND 

SAT < 1000
GPA ≥ 3.0 SAT ≥ 1000 

Figure 2. (a) A variation of the example in Figure 1, in which the red line to the output OR neuron
indicates the negation of the corresponding rule “GPA < 3.0 AND SAT < 1000.” By De Morgan’s law,
the negation of “GPA < 3.0 AND SAT < 1000” becomes “GPA ≥ 3.0 OR SAT ≥ 1000”, which results in
the same decision rule set. (b) The corresponding decision rule set is shown on the right.

4.2. NAND-NAND Network

In addition to modifying the DR-Net architecture with our formulations of AND and
OR neurons, we also propose an alternative architecture of the decision rules network
called the NAND-NAND network (NN-Net), which is also a three-layer fully connected
neural network that translates to a decision rule set in the disjunctive normal form with the
categorical and numerical attributes binarized based on the same strategy as DR-Net. In
particular, the main difference between NN-Net and DR-Net is that while the Rules Layer
and the Label Layer of DR-Net encode a set of logical AND operators and an OR operator,
respectively, NN-Net implements two levels of NAND operators cascading together with
its Rules and Label Layers.

As previously discussed, the set of decision rules in disjunctive normal form derived
from DR-Net can be viewed as OR-of-ANDs, which are naturally implemented with a set
of AND operators connecting to an OR operator. Mathematically, pk,i ∈ {xi, xi} is denoted
by the i-th predicate in the k-th rule, and a decision rule set is expressed as follows:

y =
∨
k

∧
i

pk,i, (8)

where
∨

and
∧

represent an AND operation and an OR operation, respectively. According
to De Morgan’s laws, the negation of a disjunction is the conjunction of the negations:∨

p =
∧

p. As a result, the DNF in Equation (8) can be converted to two levels of conjunc-
tions as follows: ∨

k

∧
i

pk,i =
∨
k

∧
i

pk,i =
∧
k

∧
i

pk,i, (9)

where
∧

p corresponds to a logical-NAND (NOT-AND) operation. In other words, NAND-
of-NANDs is logically equivalent to OR-of-ANDs. Therefore, NN-Net has the exact same
structure as DR-Net, where the hidden layer contains n hard NAND neurons and the
output layer only has one soft NAND neuron.

Although formulated differently, NN-Net can be interpreted in the same way as DR-
Net. That is, the hard NAND neurons in the Rules Layer of NN-Net encode rules in the
same ways as the hard AND neurons in the Rules Layer of DR-Net, which will then be
selected by the soft NAND neuron in the Label Layer. The equivalence of translation to
the decision rule set between NN-Net and DR-Net can be explained by the following two
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observations: (1) negations of the outputs from the Rules Layer NAND neurons can be
separated out and folded into the Label Layer, and (2) the negations of the inputs of the
NAND neuron in the Label Layer are essentially performing an OR operation, according to
De Morgan’s laws. The first observation shows that a set of conjunction rules can be readily
translated from the weights of the Rules Layer in NN-Net just like in DR-Net, while the
second one reveals that the method of interpreting the disjunction of the conjunction rules
derived from the Rules Layer also involves looking at the weights of the output neuron of
NN-Net. More specifically, in light of the extra negation of the inputs borrowed from the
hidden layer, the NOT-NAND neuron in the Label Layer of NN-Net will output true if one
of the neurons in the Label Layer has the output that matches the sign of the corresponding
weight. Thus, the neuron in the Label Layer combines the rules encoded in the Rules Layer
disjunctively, where the positive and negative weights require the positive and negative
associations of the corresponding rules, respectively, while the zero weights discard the
rules completely.

5. Simplifying Rules through Sparsity

The neural network structures we propose, DR-Net and NN-Net, specifically, provide
an innovative method for the derivation of decision rule sets using the optimization tech-
nique of stochastic gradient descent. A characteristic of these networks is that zero weights
in the Rules and Label Layers denote the exclusion of related input features and rules,
respectively. Thus, maximizing the sparsity of the Rules and Label Layers leads to a reduc-
tion in the number of conditions in the rule set, and concurrently eliminates superfluous
rules. However, an inherent challenge in the standard network training process is achieving
an exact zero weight, since the widely used L1 regularization does not explicitly penalize
non-zero parameters.

To explicitly reduce the complexity of the derived rule set, the earlier work [11] only
proposed one sparsity-promoting mechanism that leverages the recently proposed L0
regularization. In this work, the new uniform definitions of AND, OR, and NAND neurons
enable more versatile punning methods to be applied in our networks without any special
adaption. To attain many exact zero weights, we have experimented with incorporating
two sparsity-based mechanisms into the training process: (1) the recently proposed L0
regularization that introduces trainable mask variables that are attached to all weights,
and (2) the reweighted L1 regularization [13] approach that drives the weights with small
absolute values to zero by employing a log-sum penalty term.

In particular, the sparsity-promoting regularization is applied to both the Rules Layer
and the Label Layer as follows:

LR = λ1LR1 + λ2LR2 , (10)

where LR1 and LR2 are the regularization penalty terms with respect to the Rules Layer
and the Label Layer, respectively, and λ1 and λ2 are the corresponding regularization
coefficients that balance the classification accuracy and the rule set complexity. Intuitively,
larger λ1 and λ2 will result in a lower number of conditions per rule and a lower number
of rules, respectively. With the regularization techniques formulated by Equation (10)
incorporated, the overall loss function we optimize for can be expressed as follows:

L = LBCE + LR, (11)

where LBCE is the binary cross-entropy loss.

5.1. Sparsification with L0 Regularization

Following the L0 regularization approach to achieve network sparsity discussed in [14],
each weight is associated with a binary random variable zi ∈ 0, 1 to signify its retention or
removal, thereby enabling the representation of each weight wi as the product of a modified
weight w̃i and the corresponding binary random variable zi:

wi = w̃izi. (12)
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Assuming each zi follows a Bernoulli distribution with parameter πi that represents
the probability of the zi being 1, i.e., q(zi|πi) = Bern(πi), Ref. [14] uses L0 regularization
by adding all πi parameters to the loss function, penalizing the probabilities of masks
being 1, and thus enhancing network sparsity. This regularization is readily applied to both
DR-Net and NN-Net by substituting all weights with the product of the corresponding
mask variables.

We denote, as π1,i,j and π2,j, the penalty of the non-zero mask variables of the neurons in
the Rules Layer and the output neuron in the Label Layer, respectively, where i = 1, 2, . . . , D is
the feature index, and j = 1, 2, . . . , m is the index to the j-th neuron. Then, the regularization
loss LR in Equations (10) and (11) can be specified as follows:

LR = λ1LR1 + λ2LR2

= λ1

m

∑
j=1

D

∑
i=1

π1,i,j + λ2

m

∑
j=1

π2,j.
(13)

5.2. Sparsification with Reweighted L1 Regularization

Alternatively, the reweighted L1 regularization approach proposed in [13] encourages
both zero weights and weights with small absolute values. In particular, this regulariza-
tion technique penalizes smaller absolute value weights so that they are driven towards
zero faster, resulting in more weights at or near zero. We also incorporate a pruning
method [15] to prune weights with absolute values below a certain threshold. Weights near
this threshold that remain tend to be small so that they are more likely to be eliminated
from the logic operations. In particular, reweighted L1 minimization can be achieved by
employing a log-sum penalty term log(‖W‖1 + ε) in both layers. Therefore, the reweighted
L1 regularization loss LR is formulated as follows:

LR = λ1LR1 + λ2LR2

= λ1

m

∑
j=1

D

∑
i=1

log(|w1,i,j|+ β) + λ2

m

∑
j=1

log(|w2,j|+ β),
(14)

where w1,i,j and w2,j are the weights of the Rules Layer neurons and the Label Layer output
neuron, respectively, and β > 0 is a small value added to ensure numerical stability (e.g.,
β = 0.01).

6. Experimental Evaluation

In this section, we evaluate DR-Net and NN-Net with both sparsity-promoting mech-
anisms proposed in Section 5: DR-Net with L0 regularization (DR-Net-L0), DR-Net with
reweighted L1 regularization (DR-Net-RE), NN-Net with L0 regularization (NN-Net-L0),
and NN-Net with reweighted L1 regularization (NN-Net-RE). Specifically, for all four
variations, we show the convergence of networks in the training process, analyze the
effectiveness of the sparsity-promoting mechanisms in reducing the rule set complex-
ity, demonstrate the high predictive performances of the proposed DRNet and NNNet,
and compare with other state-of-the-art rule learning methods in terms of the accuracy–
complexity trade-off.

The numerical experiments were evaluated on four publicly available tabular learning
datasets, all of which contain more than 10,000 training instances. The first two datasets
are from the UCI Machine Learning Repository [16]: Adult Census (adult) and MAGIC
Gamma Telescope (magic). These datasets have also been used in recent works on decision
rule learning [5,6,17]. The remaining two datasets are the FICO HELOC dataset (heloc) [18]
and the home price prediction dataset (house) [19]. As with prior works [5,6] compared in
our evaluation, categorical and numerical attributes are first binarized using well-known
encodings, as explained in Section 2.1.
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The results of the experiments typically include test accuracies and complexities of
the derived decision rule sets. Three types of complexities of the decision rule sets are
considered in the experiments: number of rules, rule complexity, and model complexity,
which capture different aspects of the decision rule models. We define model complexity as
the number of rules plus the total number of conditions in the rule set, and rule complexity
as the average number of conditions in each rule of the model.

Unless specified otherwise, both DR-Net and NN-Net were trained for 2000 epochs
using the Adam optimizer with a fixed learning rate of 10−2 and no weight decay across
all experiments. For simplicity, the batch size was fixed at 400, the weights of Rules Layer
neurons were uniformly initialized within the range of 0 to 1, and the weights of the
Label Layer output neuron were initialized to all be 1. For L0 regularization, we used
the same parameters as proposed in [14]. For reweighted L1 regularization, the pruning
threshold was set as one tenth of the layer’s standard deviation, and β was selected to
be 0.01.

6.1. Training Analysis

We first analyzed the different behaviors of all four methods (DR-Net-L0, DR-Net-RE,
NN-Net-L0, and NN-Net-RE) in the training process, and then explored the possible influences
that different hyper-parameters can have over the derived decision rules. The results in this
subsection were obtained by training all four methods on the adult dataset, and each network
was initialized with 1000 neurons in the Rules Layer to allow sufficient modeling capability.

Training Convergence and Complexity Reduction. In this experiment, we empirically
demonstrate that the ideas of dynamic bias and the binary step activation function with
the modified straight-through estimator can work together to ensure a smooth training
procedure. Figure 3 shows four statistics (training loss, training accuracy, number of rules,
and rule complexity) recorded in the training processes of all four methods as functions of
the training epochs, which were all trained with λ1 = 10−1 and λ2 = 10−5 on the entire
adult dataset. Note that only the first half of the training procedure (first 1000 epochs) is
shown in the figure, while the second half was omitted from the figures to save space, as
we noticed that the four statistics for all networks were very stable after 1000 epochs.

First, we notice that DR-Net (DR-Net-L0 and DR-Net-RE) and NN-Net (NN-Net-L0
and NN-Net-RE) have very similar curves for all metrics, which experimentally proves
that their architectures are interchangeable and that our neuron designs truly mimic the
operations of the Boolean logic gates. The overall trends for all plots match our expectations.
In particular, the training losses, the number of rules, and the rule complexities decrease
with the increasing number of epochs until convergences at around epoch 400 for all
methods. Furthermore, the training accuracies increase from 0.75 (all predictions are 0) to
around 0.84 as the number of epochs increases.

However, there are many strong dips in the training process of the networks with L0
regularization, where the training accuracies suddenly drop to around 0.25 and resume
previous levels in the next epoch. Some minor spikes and dips are also noted in the plots
of the number of rules and the plots of the rule complexity, respectively, which exactly
correspond to the strong dips found in the plots of training accuracy. These spikes and dips
happened in the training process because a weight in the Label Layer was trained to be
negative, and thus, the corresponding rule in the Rules Layer was automatically converted
to a set of rules with a single negated feature in each rule according to De Morgan’s laws,
as discussed in Section 3. The conversion from the negation of a rule to a set of rules with a
single feature in each rule explains the spikes in the number of rules and dips in the rule
complexities. Since every instance has a very high probability of being covered by at least
one of the converted rules that have the single negated feature, the networks will predict all
instances to be the positive class, which results in the strong dips in the training accuracies.
However, as we can see from the plots, continuing training with only one more epoch can
conveniently fix the error, and thus, normally there will not be any negative weights in the
Label Layer in practice if all Label Layer weights are initialized with positive weights.
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Lastly, we note that the number of rules decreased dramatically in the first few epochs
of the training period for DR-Net-L0 and NN-Net-L0, as most of the rules were obviously
redundant and pruned simultaneously. The behavior of a significant decrease in the number
of rules can also be observed for the networks trained using reweighted L1 regularization
at around epoch 200, which explains the disturbances found in the rest of the plots in
Figure 3c,d.

(a) DR-Net-L0

(b) NN-Net-L0

(c) DR-Net-RE

(d) NN-Net-RE

Figure 3. Training statistics (training loss, training accuracy, number of rules, and rule complexity) as
functions of the number of epochs in the training process.

Effects of sparsity-promoting mechanisms. As discussed in Section 5, the rule set com-
plexities can be adjusted by setting different combinations of regularization coefficients λ1
and λ2. In theory, the regularization coefficient for the Rules Layer λ1 should affect the
number of conditions per rule, which is captured by rule complexity, and the regularization
coefficient for the Label Layer λ2 should influence the total number of rules. We explore,
in this experiment, how effective the two proposed sparsity-promoting mechanisms are
by changing the regularization coefficients and observing how the rule complexity and
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number of rules change, respectively. In particular, we trained all four methods with five
different λ1 and five different λ2 for each method on the adult dataset using five-fold
cross-validation. The average complexity values (rule complexity and number of rules) and
their standard deviations for different regularization parameters (λ1 and λ2) are shown in
Figure 4.

(a) DR-Net-L0

(b) NN-Net-L0

(c) DR-Net-RE

(d) NN-Net-RE

Figure 4. The relations between complexities (rule complexity and number of rules) and regulariza-
tion parameters (λ1 and λ2). All x-axes are on a log10 scale. All complexity values were averaged
over five cross-validation partitions, and the vertical bars represent standard deviations.

In the left column of Figure 4, each line in each plot shows the changes in the rule
complexity as λ1 increases for a fixed value of λ2. For all four methods, the rule complexities
monotonically decrease as λ1 increases from 10−4 to 1 (note that the values on the x-axes
are all on log scales), showing the high effectiveness of the regularization term for the Rules
Layer among all four methods. The good correlation between the rule complexity and λ1
for all methods provides our methods with a foundation for excellent accuracy–complexity
trade-off capabilities. Similarly, the lines in the right column of Figure 4 indicate how the
number of rules of the derived decision rule set is changed with respect to λ2 given that
λ1 is fixed for each line. The number of rules also decreases monotonically as λ2 increases
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from 10−7 to 10−3 for the networks with L0 regularization, while there is no clear relation
between the number of rules and λ2 for networks trained with reweighted L1 regularization.
Thus, compared to networks with reweighted L1 regularization, networks trained using L0
regularization demonstrate better potential for reducing the number of rules, as a larger
λ2 will consistently result in fewer rules. However, training networks with reweighted
L1 regularization should still be considered as a valid approach, since even the maximum
value of the number of rules for DR-Net-RE and NN-Net-RE shown in Figure 4 has been
pruned to be less than 125, which is a substantial reduction compared to the starting point
of 1000 rules.

6.2. Classification Performance and Interpretability

Next, we demonstrate the advantages of our proposed methods in terms of both
predictive performance and rule set interpretability by comparing them with three other
state-of-the-art rule learning algorithms: the RIPPER algorithm (RIPPER) [2], Bayesian rule
set (BRS) [5], and the column generation algorithm (CG) [6]. On the other hand, BRS and
CG are examples of recent works in the rule learning literature that explicitly consider the
interpretability in the training process. We used open-source implementations on GitHub
for all three algorithms, where the CG implementation [20] is slightly modified from the
original paper.

In running the experiments comparing our methods with the decision rule set learning
algorithms mentioned above, we only tuned the hyper-parameters that directly affect the
interpretability of the rule sets. In particular, we varied the maximum number of conditions
and the maximum number of rules, as they are provided by the implementation of RIPPER
to constrain the overall complexity of the final model. For BRS, we modified the prior
multiplier κ that affects the probability of selecting rules with different lengths, which
was also used in [6]. The official implementation [20] of the column generation algorithm
(CG) [6] provides two hyper-parameters to set the costs of adding a rule and a condition,
and thus they, instead of the complexity bound parameter C described in the previous
paper, were used in the experiments. Lastly, for DR-Net-L0, NN-Net-L0, DR-Net-RE, and
NN-Net-RE, combinations of λ1 and λ2 were varied.

Maximizing Accuracy. To show the upper limits of the predictive performances of our pro-
posed methods, we also included three traditional machine learning methods: classification
and regression tree (CART) [21], random forest (RF) [8], and a deep neural network (DNN).
In the experiment, we used scikit-learn [22] implementations for both CART and RF, for
which the maximum depth of trees was fixed to be 100 to achieve better generalization.
DNN consisted of six fully connected layers with the ReLU function as the activation func-
tion between the layers, and each hidden layer of DNN had a fixed number of 50 neurons
to ensure enough learning capacity. DNN was trained with 10,000 epochs, a batch size
of 2000, a learning rate of 10−2, and a weight decay of 10−2. Note that RF and DNN are
typically considered as uninterpretable models, which serve as baselines and benchmarks of
what black box models can achieve with the datasets.

To ensure a fair comparison among all rule learners, we leveraged five-fold nested
cross-validation to select the best set of hyper-parameters for each rule learner on each
dataset that maximized the validation accuracy. Also, the ranges of the hyper-parameters
to be varied for each method were purposely constrained so that the learned decision rule
sets were fairly interpretable to the users. Thus, for DR-Net-L0, DR-Net-RE, NN-Net-L0,
and NN-Net-RE, the number of neurons in the Rules Layer was chosen to be only 50. The
test accuracy results of all models on all datasets are shown in Table 1. Note that all results
in Table 1 for CG, BRS, RIPPER, CART, RF, and DNN are copied from [11].

It can be seen in Table 1 that across all datasets, all variants of DR-Net and NN-Net
outperform other interpretable models in terms of the testing accuracy in most cases,
with few exceptions. The method with the overall best testing accuracy (NN-Net-L0) can
achieve a very similar predictive performance compared to uninterpretable models (RF and
DNN), with only a 3% discrepancy. As expected, there is no noticeable difference between
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the variants of DR-Net and NN-Net in terms of the accuracies, since their architectures
are essentially established based on the same logic operations. The results in Table 1
suggest that our proposed methods are very competitive as a machine learning model for
interpretable classification.

Table 1. Test accuracy based on the nested five-fold cross-validation (%, standard error in parentheses).

Dataset Magic Adult Heloc House

Interpretable

NN-Net-RE 84.14 82.59 70.76 84.89
(0.69) (0.23) (0.66) (0.46)

NN-Net-L0 84.45 83.13 70.71 86.17
(0.51) (0.59) (0.67) (0.50)

DR-Net-RE 84.63 82.50 71.05 84.84
(0.53) (0.68) (0.57) (0.66)

DR-Net-L0 84.10 83.09 70.07 85.90
(0.82) (0.51) (0.89) (0.50)

DR-Net 84.42 82.97 69.71 85.71
(0.53) (0.51) (1.05) (0.40)

CG 83.68 82.67 68.65 83.90
(0.87) (0.48) (3.48) (0.18)

BRS 81.44 79.35 69.42 83.04
(0.61) (1.78) (3.72) (0.11)

RIPPER 82.22 81.67 69.67 82.47
(0.51) (1.05) (2.09) (1.84)

CART 80.56 78.87 60.61 82.37
(0.86) (0.12) (2.83) (0.29)

Uninterpretable

RF 86.47 82.64 70.30 88.70
(0.54) (0.49) (3.70) (0.28)

DNN 87.07 84.33 70.64 88.84
(0.71) (0.42) (3.37) (0.26)

Accuracy–complexity trade-off. Finally, the accuracy–complexity trade-off abilities were
evaluated among all decision rule learning methods, which included DR-Net-L0, DR-Net-
RE, NN-Net-L0, NN-Net-RE, RIPPER, BRS, and CG. Different sets of accuracy–complexity
pairs were generated for each method on each dataset by running the algorithm with a wide
range of hyper-parameter values. We ran the experiments on all datasets, and the results,
along with the average of the five-fold cross-validation, are shown in Figures 5 and 6. For
each method compared, the dots connected by the line segments shown correspond to
Pareto efficient models, where all other points below the Pareto frontier have either lower
accuracies or higher complexities. Again, all results in Figures 5 and 6 for CG, BRS, and
RIPPER are from [11].

The defining attribute of both DR-Net and NN-Net, namely, the ability to reach
high test accuracy while maintaining an acceptable level of model complexity, is further
emphasized in Figures 5 and 6. For both the heloc and house datasets, it becomes apparent
that all variants of DR-Net and NN-Net outperform other rule learners across all three
complexity metrics. This superiority is demonstrated by the fact that their Pareto efficient
points consistently occupy the top positions. With regard to the magic and adult datasets,
all variations of DR-Net and NN-Net continue to showcase superior performance over other
rule learners in terms of accuracy, and this margin of superiority becomes substantially
evident when the model complexity, rule complexity, or the number of rules surpasses a
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specific threshold. BRS, on the other hand, fails to present a clear accuracy–complexity
trade-off, as its results are tightly clustered within a narrow range, an observation that has
been noted and explained in [6,11]. This experiment affirms the potential advantages of
DR-Net and NN-Net over other rule learners, primarily due to their capability of achieving
a significantly higher test accuracy with a relatively moderate sacrifice in complexity.

(a) Magic

(b) Adult

(c) Heloc

(d) House

Figure 5. Accuracy–Complexity trade-offs on all datasets for DR-Net and NN-Net trained using L0

regularization. Pareto efficient points are connected by line segments.
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(a) Magic

(b) Adult

(c) Heloc

(d) House

Figure 6. Accuracy–Complexity trade-offs on all datasets for DR-Net and NN-Net trained using
reweighted L1 regularization. Pareto efficient points are connected by line segments.

7. Related Work

Decision rule learning has been extensively studied in the literature, most of which
employs heuristic algorithms, but earlier methods optimize for criteria that are not nec-
essarily directly related to classification accuracy or model simplicity. Examples include
association rule mining and classification [23,24], logical analysis methods [25–27], and
greedy set covering approaches [2].

Recently, researchers have improved on decision rule learning algorithms by explicitly
considering the interpretability of rules in designing algorithms. In particular, one solution
of incorporating interpretability is to add model complexity to the optimization objective so
that simplicity can be jointly optimized together with prediction accuracy. Some methods
in this category select rules from a set of candidate rules, and thus, a rule-mining algorithm
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is employed in the preprocessing step for these methods. Examples include a Bayesian
framework that is approximately solved using simulated annealing [5] and an optimization
problem solved by a local search algorithm [4]. However, the requirement of starting
with pre-mined rules limits the overall search space and their ability to find a globally
optimized solution.

There are other methods based on integer programming (IP) formulations that do
not require pre-mining of the rules, but only approximate solutions can be found for large
datasets due to the inherent complex nature of the problems. For example, in [6], the IP
problem is approximately solved by relaxing it into a linear programming problem and
applying the column generation algorithm. In [3], various optimization approaches are
utilized, including block coordinate descent and alternating minimization algorithm.

In addition to decision rule sets, decision lists [28–30] and decision trees [21,31] are also
explainable rule-based models. Decision lists capture rules in an ordered IF-THEN-ELSE
sequence. However, the cascading of rules in an IF-THEN-ELSE sequence means that
the interpretation of an activated rule will unfortunately require an understanding of all
preceding rules, which makes the explanation more difficult for humans to understand.
Decision trees implicitly organize rules into a tree structure, corresponding to paths in the
tree. However, these rules are typically more complex, and thus, decision trees are often
prone to overfitting.

Building on the notable success that deep neural networks have had on perceptual
learning tasks like image classification, researchers have also recently turned to neural
network models for tabular data learning [9,10,32,33]. The works in [9,10] aimed to capture
the aspects of gradient boosting decision trees and random forests that have made these
models successful, and they were able to achieve comparable performance using these
approaches with neural models. However, like gradient boosting decision trees and random
decision forests, these models are also uninterpretable in the sense that they do not provide
explanations that are easily understandable by humans. On the other hand, the works
in [32,33] are designed to be explainable.

8. Conclusions

In this paper, we extended recent work on decision rule learning based on neural net
architectures that can be accurately trained for tabular data classification. In particular,
we presented alternative formulations to trainable Boolean logic operators as neurons
with continuous weights, including trainable NAND neurons. These alternative formu-
lations provide uniform treatments to different trainable logic neurons so that they can
be trained the same way. This enables, for example, the direct application of existing
sparsity-promoting neural net training techniques like reweighted L1 regularization to
derive sparse networks that translate to simpler decision rule sets, in addition to a stochas-
tic L0 regularization approach that was previously used in [11]. Further, we presented
an alternative network architecture based on trainable NAND neurons by applying De
Morgan’s law to realize a NAND-NAND network instead of an AND-OR network. Our
experimental results show that these alternative formulations can also generate accurate
decision rule sets that achieve state-of-the-art performance in terms of accuracy in tabular
learning applications.

Furthermore, since all our proposed AND, OR, and NAND neurons are now uniformly
defined, layers of different neurons can be freely concatenated using a different order than
the ones proposed in this paper. For example, a neural network that directly translates to a
Conjunctive Normal Form classifier can be easily formulated by concatenating a layer of OR
neurons with an output AND neuron. It would be an interesting direction of future research
to see whether different layers of logical neurons can be combined in more complicated
ways to achieve better predictive performances while maintaining good interpretability.
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