
Citation: Klosa, D.; Büskens, C. Low

Cost Evolutionary Neural Architecture

Search (LENAS) Applied to Traffic

Forecasting. Mach. Learn. Knowl. Extr.

2023, 5, 830–846. https://doi.org/

10.3390/make5030044

Academic Editors: Moamar

Sayed-Mouchaweh, Mohd Arif Wani,

Vasile Palade and Mehmed M.

Kantardzic

Received: 13 June 2023

Revised: 17 July 2023

Accepted: 24 July 2023

Published: 28 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machine learning &

knowledge extraction

Article

Low Cost Evolutionary Neural Architecture Search (LENAS)
Applied to Traffic Forecasting †

Daniel Klosa * and Christof Büskens

WG Optimization and Optimal Control, Center for Industrial Mathematics, University of Bremen,
28359 Bremen, Germany; bueskens@uni-bremen.de
* Correspondence: dklosa@uni-bremen.de
† This paper is an extended version of our paper published in the Proceedings of the 21st IEEE International

Conference on Machine Learning and Applications (ICMLA), Nassau The Bahamas, 12–14 December 2022.

Abstract: Traffic forecasting is an important task for transportation engineering as it helps authorities
to plan and control traffic flow, detect congestion, and reduce environmental impact. Deep learning
techniques have gained traction in handling such complex datasets, but require expertise in neural
architecture engineering, often beyond the scope of traffic management decision-makers. Our study
aims to address this challenge by using neural architecture search (NAS) methods. These methods,
which simplify neural architecture engineering by discovering task-specific neural architectures,
are only recently applied to traffic prediction. We specifically focus on the performance estimation
of neural architectures, a computationally demanding sub-problem of NAS, that often hinders the
real-world application of these methods. Extending prior work on evolutionary NAS (ENAS), our
work evaluates the utility of zero-cost (ZC) proxies, recently emerged cost-effective evaluators of
network architectures. These proxies operate without necessitating training, thereby circumventing
the computational bottleneck, albeit at a slight cost to accuracy. Our findings indicate that, when
integrated into the ENAS framework, ZC proxies can accelerate the search process by two orders of
magnitude at a small cost of accuracy. These results establish the viability of ZC proxies as a practical
solution to accelerate NAS methods while maintaining model accuracy. Our research contributes
to the domain by showcasing how ZC proxies can enhance the accessibility and usability of NAS
methods for traffic forecasting, despite potential limitations in neural architecture engineering exper-
tise. This novel approach significantly aids in the efficient application of deep learning techniques in
real-world traffic management scenarios.

Keywords: neural architecture search; traffic forecasting; zero-cost proxies

1. Introduction

Forecasting future traffic conditions, such as flow and speed, by analyzing historical
traffic patterns is an essential task for transportation engineering. Accurate traffic forecasts
can detect congestion and help authorities plan and control traffic flow, enabling intelligent
traffic systems (ITS) to adjust to future events, leading to more uniform traffic flow, and
reduced CO2 emissions, ultimately reducing environmental impact. With the increasing
availability of traffic data, there has been a growing interest in developing machine learning
algorithms for traffic forecasting.

However, traffic forecasting poses several challenges. Future traffic conditions at a
single measurement site depend not only on recent conditions in the temporal dimension
but also on upstream measurements in the spatial dimension. Additionally, large datasets
with hundreds of measurement sites and complex road networks can make modeling
dependencies between them difficult.

Linear regression [1], auto-regressive moving average [2], vector auto-regression [3],
and k-nearest neighbors [4,5] are traditional methods that fall short in capturing the complex

Mach. Learn. Knowl. Extr. 2023, 5, 830–846. https://doi.org/10.3390/make5030044 https://www.mdpi.com/journal/make

https://doi.org/10.3390/make5030044
https://doi.org/10.3390/make5030044
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0003-0904-0597
https://doi.org/10.3390/make5030044
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make5030044?type=check_update&version=2

Mach. Learn. Knowl. Extr. 2023, 5 831

spatio-temporal dependencies present in large traffic datasets. As a result, recent research
has shifted towards deep learning models such as long-short term memory and gated
recurrent unit [6] to capture temporal dependencies, and graph convolutional neural
networks (GCN) to learn spatial dependencies within the data [7–9].

One limitation of GCN models is their reliance on prior knowledge of the spatial
connections within the graph-structured road network, typically in the form of an adja-
cency matrix. GraphWaveNet [7] and AGCRN [10] address this issue by learning spatial
dependencies directly from the data. However, these methods still rely on handcrafted
neural architectures designed by experts. Moreover, deploying these approaches in real-
world applications requires additional customization for the specific scenario, which can
be time-consuming and require considerable effort.

Neural architecture search (NAS) methods have gained popularity in recent years
for discovering customized neural architectures for various tasks, reducing the tedious
process of neural architecture design. While early NAS frameworks focused on computer
vision and language modeling [11,12], they can also be applied to graph data [13,14] and
spatio-temporal data [15].

NAS typically involves three components: the search space, search strategies, and
performance estimation. The search space defines the general structure of discovered
network architectures, including the operations and their connections within the network.
Different search strategies exist, such as reinforcement learning (RL), gradient-based search,
and evolutionary NAS (ENAS). RL-based algorithms are known to require significant
computational resources, even on smaller datasets such as CIFAR-10 [16]. Gradient-based
NAS methods, such as those used in [12], are more efficient but can become trapped in
local minima and require the construction of a supernet in advance. ENAS can explore
the search space more thoroughly without a given supernet, but can also suffer from
long computation times. The performance estimation strategy defines how discovered
architectures are evaluated. Typically, this involves training them for a certain number of
epochs, which can be costly. However, techniques such as weight inheritance and network
morphisms eliminate the need for training from scratch, greatly reducing training time [17].
It is also possible to evaluate discovered architectures without training at all [18,19].

The research on NAS for traffic forecasting is limited. Early work [20] investigates the
implementation of genetic algorithm (GA) for optimizing gradient descent hyperparameters
and hidden layers in multi layer perceptrons (MLP) on a small dataset. Rahimipour et al. [21]
search for number of neurons in two layer MLPs and slopes of the activation functions using
GA on a small (three measurement sites) real-world dataset. A particle swarm optimization
algorithm is used in [22] to optimize the amount of neurons in the hidden layers of deep
belief networks, learning rate and momentum. However, they also limit their study to a
small dataset and fix the amount of hidden layers. To our knowledge, Pan et al. [15] are
the first to implement gradient-based NAS for traffic forecasting in their framework called
AutoSTG. They are using a cell-based approach of learning one smaller architecture (a cell)
and applying it in sequence multiple times to obtain a larger network, similar to [12]. Their
operation space is made up of none, identity, temporal convolution, and spatial graph
convolution. Additionally, they apply meta learning to learn the adjacency matrices for the
spatial graph convolutions and kernels for their temporal convolutions. To our knowledge,
Klosa and Büskens [23] are the first to apply ENAS for the task of traffic forecasting on four
real world datasets. They use a simple genetic algorithm to search through an architecture
space flexible in size. Their algorithm does not make use of performance estimation
strategies, which leads to tremendous computation times, rendering their approach unfit
for application in the real world.

Our study proposes to advance the field by integrating zero-cost (ZC) proxies into
the architecture search algorithm used by Klosa and Büskens [23]. ZC proxies offer the
advantage of being able to rank neural architectures within the search space without
necessitating expensive training [18,19]. This technique has shown promising results in
image classification, natural language processing, and computer vision. Our proposed

Mach. Learn. Knowl. Extr. 2023, 5 832

application of ZC proxies to spatio-temporal data forecasting and specifically to traffic data
is therefore novel.

However, it is crucial to acknowledge the potential limitations of this approach. ZC
proxies have predominantly been tested in fields other than regression tasks, and their
effectiveness in traffic forecasting is not yet fully understood. Additionally, some potential
challenges may arise in terms of biases towards architecture size, stability with regard to
weight initialization and mini-batch sampling, and the correlation between ZC proxies and
validation loss.

To rigorously investigate these issues, our research will aim to answer the follow-
ing questions:

1. Are ZC proxies biased towards architecture size?
2. Are ZC proxies stable with regards to weight initialization and mini-batch sampling?
3. Are ZC proxies stable with regards to architecture size?
4. Are ZC proxies and validation loss correlated?

Addressing these questions will provide a deeper understanding of the capabilities
and limitations of ZC proxies in the context of traffic forecasting, ultimately helping to
determine whether this method can be applied reliably in real-world settings.

This research paper is structured as follows; In Section 2 we define the problem of
traffic forecasting, introduce the bilevel optimization problem NAS solves, the architecture
search space, the genetic algorithm and define the ZC proxies examined in this work. We
answer the above mentioned research questions in Section 2.6. We describe the experimental
setup of our low cost evolutionary neural architecture search (LENAS) in Section 2.7 and
evaluate the performance on four real world datasets in Section 3. In Section 4, we discuss
the results, outline possible directions for future work before comming to a conclusion.

2. Materials and Methods

In this section, we describe the task of traffic forecasting. Afterwards, we define neural
architecture search and the components making up our framework LENAS. For that, we
define the search space, the search method and ZC proxies as our performance estimation.
Afterwards we answer the above stated research questions and describe the experimental
setup of the LENAS framework.

2.1. Traffic Forecasting

Let G = (V , E , W) denote an undirected graph, where V is a set of vertices or nodes
representing the | V |= N measurement sites in the road network, E a set of edges indicating
the connectivity between measurement sites and W ∈ RN×N a weighted adjacency matrix,
representing the proximity between nodes. Then, given a timestamp t, the traffic conditions
on the graph G are denoted by a graph signal Xt ∈ RN×F, where F ∈ N is the amount of
features observed at each measurement site or node. Finally, the goal of traffic forecasting is
to learn a function f for predicting future T graph signals on the graph G from T′ historical
graph signals:

yt = [Xt+1, ..., Xt+T] = fθ([Xt−T′+1, ..., Xt];G) ∈ RN×D×T

Here, D ∈ N denotes the amount of features to predict for each measurement site.

2.2. Neural Architecture Search

The objective of NAS is to find an optimal architecture A from the space of architectures
A that minimizes the loss function L on a given dataset D. To be more precise, we want to
solve a bilevel optimization problem:

A∗ = min
A∈A
L(θ∗(A), A,Dvalid) (1)

s.t. θ∗(A) = arg min
θ
L(θ, A,Dtrain) (2)

Mach. Learn. Knowl. Extr. 2023, 5 833

Here, Dtrain ⊂ D and Dvalid ⊂ D respectively denote the training and validation
datasets and θ the network parameters.

To solve the bilevel optimization problem, NAS can be split into three components:
the architecture search space, the search method, and the performance estimation, which
are described in the following sections.

2.3. Architecture Search Space

Figure 1 shows the architecture search space of our method. As can be seen, we are not
using a cell-based search approach as in [15], but evolve whole architectures with varying
number N ∈ N of nodes. The nodes are ordered in a sequence, forming a directed acyclic
graph. Each edge (i, j), i, j ∈ N is associated with an operation o(i,j) from the operation
space O mapping the node x(i) to node x(j). To obtain node x(j) all of its preceding nodes
are summed up:

x(j) = ∑
i<j

o(i,j)(x(i)), j = 2, ..., N.

The node x(1) is the input node and the node x(N) is the output node of the network. We
apply a 2D 1 × 1 convolution to a given input Xt ∈ D to obtain node x(1) and another 2D
1 × 1 convolution to the output node x(N) followed by a fully connected layer (FC) to
obtain the final output. The number of input and output channels n(i)

c and n(j)
c for each

operation o(i,j) is fixed to n(i)
c = min(2i+1, 128).

The operation space is inspired by existing approaches [8,15], which mainly use
convolutional operations. In this work, we use the following operations:

12D Conv
1x1 kernel

3

2
4

5

6 2D Conv
1x1 kernel

FC

Historic data

Future data

[Wed;
19:05-20:05]

Dilated Convolution
Graph Convolution

Skip Connection
None

Figure 1. Architecture search space of our framework.

2.3.1. None

The none or zero operation zeroes out the input. This is equivalent to not having a
connection between nodes.

2.3.2. Skip Connection

Skip connection usually copies the input. However, since channels differ between
nodes, the skip connection employed is a 2D 1 × 1 convolution that upscales the channel
dimension when necessary. This operation has no mutable parameters.

2.3.3. Dilated Causal Convolution

Dilated convolutions are a modification of the standard convolutional operations,
designed to increase the receptive field of a network without substantially increasing the
number of parameters or the computational cost [24]. Specifically, dilated causal convolu-
tions represent a type of convolution that only allows access to past (causal) information, a
feature that is particularly useful when processing sequential or temporal data such as in
the cases of time-series prediction or speech synthesis.

In the standard convolutional operations, the elements of the filter are applied to the
input elements in a compact, contiguous manner. On the contrary, in dilated convolutions,

Mach. Learn. Knowl. Extr. 2023, 5 834

the filter is applied to the input with gaps, which are determined by a dilation rate. This
leads to an exponential expansion of the receptive field as the size of the filter grows linearly.
This combination of causality with the increased receptive field enables the network to
efficiently capture long-range temporal dependencies.

Note that the receptive field only increases exponentially when dilation factors increase
by a factor of two with each following layer [24]. To fulfill this, we modify the dilation
factors manually after each crossover and mutation operation. Mutable parameters are the
dilation factor and kernel size.

2.3.4. Graph Convolution

Graph convolutional networks (GCNs) have displayed significant effectiveness in
various applications owing to their ability to capture topological correlations present in
graph-structured data [7,8,10,15]. Among several methodologies to perform graph convo-
lutions, the method of Chebyshev polynomial approximation has been particularly notable.

The graph convolution operation based on Chebyshev polynomial allows the network
to take into account different scales of neighborhood when processing a node in the graph.
From the perspective of spectral graph theory, the Chebyshev polynomial approximation
has been used to generalize the convolution operation in the Fourier domain, leading to
computational efficiency and ensuring a flexible receptive field.

The central concept is to approximate the spectral decomposition of the graph Lapla-
cian, a crucial element of graph Fourier transform, with Chebyshev polynomials. Given a
signal x on a graph and a filter defined as a function gθ of the Laplacian L, the convolution
of x with gθ on the graph is represented in the spectral domain:

gθ ∗ x = gθ(L)x

To circumvent the computational overhead associated with the spectral decomposition
of the Laplacian, especially for large graphs, the filter gθ can be approximated using
Chebyshev polynomials Tk:

gθ ≈
K

∑
k=0

θkTk(L̃)

where L̃ = 2L
λmax
− I is the scaled Laplacian, λmax is the largest eigenvalue of L, and I is the

identity matrix. Tk can be computed recursively as:

Tk(x) = 2xTk−1(x)− Tk−2(x)

with T0(x) = 1 and T1(x) = x. Consequently, the filter becomes a K-localized operator,
meaning it relies only on the K-hop neighborhood of each node, where K is the order of
the polynomial. This method leads to a significant reduction in computational complexity
while providing control over the balance between the model’s capacity and computational
efficiency. K is the mutable parameter in this operation.

2.4. Search Method

We use the same genetic algorithm (GA) as a search method for NAS as in our previous
work [11] with the addition of using ZC proxies as performance estimators. The GA is
summarised in Algorithm 1. We warmstart the genetic algorithm by choosing a large
starting population size nw and selecting the best np performing architectures for the
following nc cycles. For performance estimation of each architecture we use the naswot ZC
proxy as described in Section 2.5 due to the performance in the experimental Section 2.6.

Mach. Learn. Knowl. Extr. 2023, 5 835

Algorithm 1 Genetic algorithm with naswot

Require: nw > 0, np > 0, nc > 0
1: population← ∅
2: best← ∅
3: while |population| < nw do . Warmstart
4: model.arch← RandomInit()
5: model. f itness← naswot(model.architecture)
6: add model to population
7: end while
8: population← Elitism(population) . best genomes
9: for i in range(nc) do

10: o f f spring← ∅
11: while | o f f spring |< np do
12: parents← BinaryTournament(population, 2)
13: children← UniformCrossover(parents)
14: add children to o f f spring
15: end while
16: for model in o f f spring do
17: model.arch← Mutate(model.architecture)
18: model. f itness← naswot(model.architecture)
19: if model. f itness < best. f itness then
20: best← model
21: end if
22: end for
23: add o f f spring to population
24: population← BinaryTournament(population, np)
25: end for
26: return best

Once the population is initialized and evaluated, the crossover and mutation cycle
is repeated ng ∈ N times. We do not use a stopping criterion, but have a fixed amount
of cycles. We use binary tournament for selecting two parents for crossover. In binary
tournament, two chromosomes are picked at random and the one with better fitness, in
our case the ZC proxy score, is selected. Hence, better performing architectures are more
likely to be selected, but we still retain diversity. After two parents are selected, we apply
uniform crossover by selecting a random subset of nodes in the two parent’s architectures
to be switched. If the sizes of the architectures are different, we switch a maximum of
nodes equal to the amount of nodes in the smaller architecture and retain the sizes. Then,
the two resulting children are mutated and added to the current generation. Mutation
operations include:

• Switching edges (o(i,j) ↔ o(i
′ ,j′))

• Removing an operation (o(i,j) ← None)
• Changing the type of operation (o(i,j) ← o′(i,j), where o′ ∈ O is selected at random)
• Mutating the parameters of an operation (kernel size and/or dilation factor can be

increased or decreased to next possible size)
• Adding or removing a node (adding also adds an operation from the operation space,

except None)

After mutation, the channels and dilation factors of some operations need to be
modified as previously mentioned. All children are then trained and evaluated. Lastly,
we use a binary tournament to select np models from the current generation to stay in
the population.

After nc cycles, we return the model with the best fitness (naswot score) over all generations.

Mach. Learn. Knowl. Extr. 2023, 5 836

2.5. Zero-Cost Proxies

As mentioned earlier, performance estimation is the bottleneck of NAS when it comes
to computation time. Zero-cost (ZC) proxies aim at evaluating an architectures performance
without the need of training, i.e., they evaluate network performance from one forward
pass and/or backwards pass of a single mini-batch of random data. In the following, we
give a brief overview of the zero-cost proxies used in this work. The ZC proxies snip,
grasp, synflow, and Fisher are inspired by pruning theory in which they are used to prune
network parameters least contributing to network performance. In recent works they have
been applied to score whole neural networks without training [19,25]. The ZC proxies
jacob_cov and naswot have been solely designed with scoring networks for NAS in mind.
We note that all ZC proxies have been thoroughly investigated for classification tasks [19,25],
however, research on regression is to the authors’ knowledge non-existent.

2.5.1. Gradient Norm

In gradient norm (grad_norm) the Euclidean norm of the gradients resulting from one
mini-batch of data is summed up. Ref. [25] use it in their work on ZC proxies as a baseline.

2.5.2. Single-Shot Network Pruning

Single-shot network pruning (snip) was proposed in [26] for parameter pruning at
initialisation stage of neural networks. It was used in [25] as a ZC proxy by computing

snip(θ) = |∂L
∂θ
� θ|

for each parameter θ in the architecture A and obtaining the sum snip(A) = ∑θ∈A snip(θ).
� denotes the Hadamard product.

2.5.3. Gradient Signal Preservation

Gradient signal preservation (grasp) was introduced to improve upon snip in [27].
The idea being to incorporate the change of gradient norm instead of loss when pruning
a parameter:

grasp(θ) = −
(

H
∂L
∂θ

)
� θ

Here, H denotes the Hessian. It was used in [25] as a ZC proxy by computing the sum
grasp(A) = ∑θ∈A grasp(θ).

2.5.4. Synaptic Flow Pruning

Synaptic flow pruning (synflow) has been introduced as a method of pruning network
parameters without the need of training or data [28]. It does so by taking the product of all
network parameters as a lossR, avoiding layer collapse:

syn f low(θ) =
∂R
∂θ
� θ

It was used in [25] as a ZC proxy by computing the sum syn f low(A) = ∑θ∈A syn f low(θ).

2.5.5. Fisher

Fisher was introduced in [29] as a method to prune activation channels having the
least effect on the loss in a neural network. It computes the sum over all gradients of the
activation layers a in an architecture:

f isher(a) =
(

∂L
∂a

a
)2

To use it as a ZC proxy, we compute the sum f isher(A) = ∑a∈A f isher(a) as in [25].

Mach. Learn. Knowl. Extr. 2023, 5 837

2.5.6. Jacob Covariance

Jacobian covariance (jacob_cov) as introduced in [30] measures the flexibility of a
neural network by computing the covariance of the Jacobians of the rectified linear units for
a minibatch. The idea being that for a network to be able to tell inputs apart the covariance
should be low. For more details we refer to the original work [30].

2.5.7. NAS without Training

NAS without training (naswot) is what we will call the successor of jacob_cov as
described in [30]. Naswot builds on the same idea, but instead of computing the covariance
of the Jacobians, it computes a distance metric based on the activations of the rectified linear
units within a network. Given a minibatch X = {xi}b

i=1 of size b ∈ N. After a forward
pass of the minibatch we obtain the activations of each rectified linear unit ai. Then, the
activations are flattened and converted into a binary code ci, s.t. ci,m = 0 if ai,m = 0 and
ci,m = 1 if ai,m > 0. Afterwards, we compute the Hamming distance dH(ci, cj) ∈ [0, 1] of
the binary codes to measure their similarity. We then obtain the matrix

KH =

dH(c1, c1) · · · dH(c1, cb)
...

. . .
...

dH(cb, c1) · · · dH(cb, cb)

and finally compute the naswot score:

naswot(A) = log|KH |

We use the implementation of [25] for all ZC proxies except naswot, where we used
the implementation as in [30] and made some adjustments to make it viable to use for
regression tasks instead of classification as intended by the authors.

2.6. Robustness, Bias, and Usability of ZC Proxies

In this section, we aim to answer the research questions with regards to robustness,
bias, and usability of zero-cost proxies for NAS in our setting. All of the following experi-
ments are carried out on the PeMSD8 dataset described in Section 2.7.

Since we want to use ZC proxies in genetic algorithm as a measure of fitness, the
resulting scores and true fitness should lead to the same or similar ranking within the
population. Hence, in the following experiments, we will sample a population with
different architectures from our search space and compute the Spearman rank correlation of
ZC proxy score and true fitness. The true fitness is determined by training the architectures
until they converge and taking the best validation loss. As a loss function, we use the MAE
for training.

The main objective is to find a ZC proxy with high correlation to the validation loss.
However, there are also questions to be answered when it comes to robustness. We want
to find a ZC proxy that is not affected by the weight initialization of the network, nor
the sampling of the mini batch used for computation. Furthermore, the choice of channel
depths and the size of the mini batch should not affect the score. Previous work [19] has
discussed that the size of the architecture, i.e., the amount of layers in a network might
have an effect on ZC proxy scoring. To examine this behaviour, apart from the ZC proxy
score z, we will also compute

zl = z/nl , zc = z/nc

as the scaled variants of the score by the number of layers nl and number of channels nc in
each network. The results will answer research question 1 as stated in the Introduction.

Mach. Learn. Knowl. Extr. 2023, 5 838

2.6.1. Are ZC Proxies Robust with Regards to Weight Initialization and
Mini-Batch Sampling?

To answer the second research question, we compute ZC proxy scores for each of
30 sampled architectures on 24 different random seeds. We obtain a ranking of architectures
by score for each random seed. Then, we compare the rankings by computing the Spearman
rank correlation. Correlation close to 0 indicates that rankings are not correlated, rendering
the ZC proxy unusable. Correlation close to 1 (or −1 when negative correlation) indicates
similar or same rankings. Additionally, we repeat this process for three different sizes
of mini batches (24, 32 and 64). We show the results in Table 1, where we take the mean
Spearman rank correlation over the three mini batch sizes.

It can be seen that grad_norm, snip, and synflow obtain good correlations, while
naswot performs the best. Scaling by number of layers and number of channels greatly
improves the jacob_cov score and improves naswot to reach a perfect correlation. Scaling
synflow improves the proxy slightly and grad_norm, snip, grasp, and Fisher get worse
when scaled.

According to these results, naswot is the best choice when scaled since the Spearman
rank correlation is perfect. It does not matter which random seed or mini-batch sampling is
chosen, naswot scored the architectures in the same order every time.

Table 1. Mean Spearman rank correlation over multiple random seeds for each ZC proxy score z and
its scaled variants by layers zl and channels zc.

Grad_norm Snip Grasp Fisher Synflow Jacob_cov Naswot

z 0.739 0.809 0.491 0.321 0.793 0.473 0.917
zl 0.395 0.454 0.308 0.209 0.824 0.983 0.999
zc 0.605 0.535 0.377 0.217 0.841 0.987 0.999

2.6.2. Are ZC Proxies Robust with Regards to Architecture Size?

For the third research question, we compute ZC proxy scores of the 30 sampled ar-
chitectures for different size configurations. We initialize each of the 30 architectures with
the channel depth at first layer c1 ∈ {4, 8} and maximum channel depth throughout the
architecture cmax ∈ {32, 64, 128}, resulting in six different combinations. For each of the six
size combination, we score the 30 architectures and rank them accordingly. Afterwards we
compute the Spearman rank correlation between these rankings. Additionally, this experi-
ment is repeated for 24 different random seeds. The results are shown in Table 2, where we
show the mean Spearman rank correlation over the 6 hyperparameter combinations and
24 random seeds.

Again, scaled naswot shows the most robustness closely followed by scaled jacob_cov,
hence, the choice of hyperparameters does not matter when using these two ZC proxies.
All other ZC proxies are not robust with respect to hyperparameter choice, and therefore,
if used, hyperparameters need to be chosen carefully when using these ZC proxies. We
note that these results are also affected by the robustness of ZC proxies with respect to the
initialization, i.e., low correlation between random seeds also results in low correlation
with respect to hyperparameter choice.

Mach. Learn. Knowl. Extr. 2023, 5 839

Table 2. Mean Spearman rank correlation over multiple architecture sizes for each ZC proxy score z
and its scaled variants by layers zl and channels zc.

Grad_norm Snip Grasp Fisher Synflow Jacob_cov Naswot

z 0.741 0.809 0.492 0.325 0.787 0.475 0.908
zl 0.371 0.361 0.296 0.213 0.822 0.983 0.999
zc 0.773 0.707 0.520 0.258 0.857 0.990 0.997

2.6.3. Are ZC Proxies and Validation Loss Correlated?

To answer the fourth research question, we sample 161 random architectures from our
search space. As for the third research question, we initialize each of the 161 architectures
with the channel depth at first layer c1 ∈ {4, 8} and maximum channel depth throughout
the architecture cmax ∈ {32, 64, 128}, resulting in 966 total architectures. As mentioned
before, to obtain the true fitness of each architecture, we train them until convergence three
times for different batch sizes (32, 64, 128) and set the fitness to the best validation loss
reached during training. We report the mean Spearman rank correlation of ZC proxy score
and best validation loss (fitness) over all combinations in Table 3.

Overall, naswot performs the best out of all proxies. Snip and scaled jacob_cov perform
approximately as well as naswot, while grasp, Fisher, and synflow are outperformed.

Table 3. Mean Spearman rank correlation of the best validation loss of each architecture and each ZC
proxy score z and its scaled variants by layers zl and channels zc.

Grad_norm Snip Grasp Fisher Synflow Jacob_cov Naswot

z −0.655 −0.684 −0.484 −0.398 −0.252 −0.483 −0.693
zl 0.015 −0.243 −0.064 −0.068 −0.052 −0.729 0.737
zc 0.400 0.201 0.148 0.098 0.047 −0.732 0.737

To sum up, no ZC proxy is perfectly robust out of the box for our setting with regards
to weight initialization, mini-batch sampling, mini-batch size, and architecture size. After
scaling by the number of layers or channels in the architecture, naswot is robust and
jacob_cov slightly worse. All other ZC proxies are not robust and therefore unusable
for traffic prediction. Scaled naswot and scaled jacob_cov are the most correlated with
validation loss. Combining the robustness and correlation results, naswot comes out as
the best ZC proxy to use for our search space and task. The robustness with respect to
architecture size makes it possible to run scaled naswot on very small versions of the
architectures, further lowering computation cost.

2.7. Low Cost Evolutionary Neural Architecture Search

In this Section we incorporate the naswot ZC proxy into the genetic algorithm de-
scribed in Section 2.4 and evaluate our method on four real world datasets. In the following we
describe the four datasets, the evaluation metrics and baseline models we use for comparison.

2.7.1. Datasets

Our experiments are conducted on four real world datasets, two of which are con-
cerned with traffic flow prediction and two with traffic speed prediction:

• PeMSD4–The PeMSD4 dataset is made up of traffic flow measurements from 307 loop
detectors in the San Francisco Bay Area within the period from 1 January 2018 to
28 February 2018 [10].

• PeMSD8–The PeMSD8 dataset contains traffic flow measurements from 170 loop
detectors in the San Bernardino Area from 1 July 2016 to 31 August 2016 [10].

Mach. Learn. Knowl. Extr. 2023, 5 840

• METR-LA–The METR-LA dataset includes traffic speed readings at 207 sensors located
on the highways of Los Angeles County from 1 March 2012 to 30 June 2012 [31].

• PEMS-BAY–The PEMS-BAY dataset comprises traffic speed data from 325 measure-
ment sites in the Bay Area of California from 1 January 2017 to 31 May 2017 [31].

All datasets are aggregated into 5 min windows, resulting in 288 timestamps per day.
For training, the data are normalized by standard normalization for each node and feature.
Given a timestamp t, we want to predict the next hour of traffic conditions, i.e., 12 timesteps.
The input Xt ∈ RN×F×12 to our network is made up of a recent, daily, and weekly segment
from the historical data. These segments are defined as follows:

Xrecent
t = [Xt−11, ..., Xt]

Xdaily
t = [Xt+1−288, ..., Xt+12−288]

Xweekly
t = [Xt+1−7×288, ..., Xt+12−7×288]

As can be seen, the recent segment comprises the last hour of data, the daily segment
includes data from the same hour to be predicted, but on the day before and the weekly
segment contains the same hour we predict, but one week earlier. Additionally, we include
data about time of the day and day of the week for the prediction segment. The segments
and time information are stacked in the feature dimension of the input, i.e., Xt ∈ RN×5×12.
Stacking in the feature dimension has not been done in previous works. In [8,32] multiple
modules with the same architectures and a fusion layer are used, while in [10,15] only
the recent segment is used. We have conducted experiments comparing different input
methods and concluded that stacking multiple segments in the feature dimension works
best for our approach. However, future research might be conducted to set a standard for
the task of traffic prediction.

We seperate the datasets into training, validation and test sets with a 7-1-2 ratio. The
adjacency matrices are constructed as in previous works by road network distance and
Gaussian kernel threshholding [7].

We remark that, due to the choice of inputs, the resulting datasets include fewer
samples than in other works, where only the last 12 timesteps are used as inputs [7,10,15].
Therefore, direct comparisons with their results are to be taken with caution. For fair
comparison in this work, we evaluate the baseline models on our datasets.

2.7.2. Metrics

We use mean absolute error (MAE), rooted mean squared error (RMSE) and mean
absolute percentage error (MAPE) to evaluate our framework and the baselines:

MAE =
1
N

N

∑
i=1
| ŷi − yi |,

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)2,

MAPE = 100%× 1
N

N

∑
i=1

| ŷi − yi |
yi

Here, N, ŷi and yi respectively refer to the number of samples, predicted values and
ground truth values. Since yi can be zero-valued for some measurements, we only compute
MAPE when ground truth is larger than one.

Mach. Learn. Knowl. Extr. 2023, 5 841

2.7.3. Baselines

We compare our framework against the following models:

• Historical average (HA)–Traffic is modeled as a seasonal process. We predict fu-
ture timesteps by taking the average over the last nd (to be determined) days of the
same time.

• AGCRN–Adaptive graph convolutional recurrent network captures spatio and tempo-
ral dependencies automatically from the data without the need of predefined adjacency
matrices for the graph convolution [10].

• Graph WaveNet–Deploys WaveNet [33] and graph convolutions for modelling spatio-
temporal graph signals. The adjacency matrix is self-adapting by discovering struc-
tures in the data without prior knowledge [7].

• AutoSTG–Gradient-based NAS framework for spatio-temporal prediction. Pan et al. [15]
use special modules for capturing spatio-temporal dependencies from meta data of
the attributed graph.

We evaluate all baselines on our own dataset as described in Section 2.7.1. To this
end, we adapt the publicly available code and conduct the recommended hyperparameter
search of each model.

2.7.4. Framework Settings

We apply GA on each of the four datasets until convergence of the algorithm. We have
not performed extensive hyperparameter tuning, as we want to show that the algorithm
can be applied by non-experts. We use a warmstart size of 1000 genomes to explore a large
chunk of the search space in the beginning. This should lead to a high diversity in the
population. Afterwards, we decrease the population size to 100 for a faster search time.
Note that this is a big increase in population size to previous work [11]. The crossover
probability is fixed to 0.9 while mutation probability pm is adaptively set for each genome
based on their rank in the interval [0.05, 0.15]:

pm(A) = 0.15− np−rank(A)
np

× 0.1

We use the naswot score to rank architectures. As shown in Section 2.6, the naswot
score is stable with regards to batch size and architecture size. Hence, we can select them
to be small, which will lead to faster search time. Therefore, each network is scored by
naswot with a minibatch size of 32, maximum channel size of 32 and starting channel
size of 4. We conduct each experiment on one Nvidia GeForce GTX 3090 GPU. The
best model architecture is trained until convergence for different starting learning rates
(0.02, 0.01, 0.005) and batch sizes (32, 64, 128). Finally, the best performing model on the
validation set is used for measuring performance on the test set.

3. Results

The results of the prediction performance for the four datasets are presented in Table 4,
where the MAE, RMSE, and MAPE for the 15 min, 30 min, and 60 min horizons are reported.
The experiments were conducted twice with different random seeds, except for the LENAS
experiments which were conducted thrice.

As anticipated, the simplest model, HA, showed the worst performance on all four
datasets due to its inability to capture the complexity of the spatio-temporal data. This
model can only capture the general trend of the data and fails to adapt to local changes in
the trend.

Mach. Learn. Knowl. Extr. 2023, 5 842

On the other hand, the two hand-crafted deep learning models, AGCRN and GWN,
which can model spatio-temporal dependencies, achieved better predictive performance.
However, AGCRN had the worst performance among all deep learning models. GWN
outperformed all other methods on the METR-LA dataset and achieved the best or com-
parable performance to AutoSTG and ENAS while slightly outperforming LENAS on the
PEMS-BAY dataset.

We were unable to conduct experiments with AutoSTG on PeMSD4 and PeMSD8 due
to the lack of metadata for these datasets. Nonetheless, AutoSTG was the best-performing
method on the PEMS-BAY dataset for the 15 min horizon and exhibited comparable perfor-
mance to other approaches but lacked stability with different random seeds.

The ENAS framework described in [23] outperformed all other approaches on PeMSD4
for all metrics and on most metrics on PeMSD8. However, its performance on METR-LA
was underwhelming compared to GWN. For PEMS-BAY, the ENAS framework was able to
keep up with GWN and AutoSTG.

As expected, LENAS was unable to outperform ENAS as it searches the architecture
space less accurately. The results on METR-LA and PEMS-BAY were competitive with
other deep learning models, while the performance was lacking on PeMSD8 and PeMSD4,
especially for the shorter horizons.

Regarding search time, ENAS exhibited the worst performance, requiring approxi-
mately 300 GPU hours for the smallest dataset (PeMSD8) and approximately 1200 GPU
hours for the largest dataset (PEMS-BAY). AutoSTG had to be run multiple times for differ-
ent combinations of architecture-related hyperparameters, with each run taking around
10 GPU hours for search and 5 h for training the discovered architectures. AGCRN and
GWN took the least time since they did not include an architecture search process. LENAS
improved ENAS search time to 1–4 GPU hours depending on the dataset with a much
larger population size.

Mach. Learn. Knowl. Extr. 2023, 5 843

Table 4. Traffic forecast performance on PeMSD4, PeMSD8, METR-LA and PEMS-BAY datasets. Here, GWN, ENAS and LENAS respectively denote Graph WaveNet,
GA without ZC proxies and our framework.

MAE RMSE MAPE

PeMSD4 15 min 30 min 60 min 15 min 30 min 60 min 15 min 30 min 60 min

HA 34.33± 0.00 34.33± 0.00 34.33± 0.00 53.27± 0.00 53.27± 0.00 53.27± 0.00 24.22%± 0.00% 24.22%± 0.00% 24.22%± 0.00%
AGCRN 19.02± 0.07 19.88± 0.11 21.05± 0.36 30.99± 0.49 32.66± 0.53 34.56± 0.12 12.49%± 0.33% 12.92%± 0.32% 13.92%± 0.25%
GWN 18.28± 0.04 19.24± 0.06 20.95± 0.04 29.44± 0.09 31.09± 0.16 33.83± 0.21 11.98%± 0.03% 12.60%± 0.02% 13.71%± 0.00%
ENAS 17.95± 0.01 18.77± 0.00 20.44± 0.02 29.22± 0.01 30.67± 0.00 33.21± 0.03 11.55%± 0.01% 12.04%± 0.03% 13.22%± 0.03%
LENAS 18.42± 0.04 19.34± 0.06 20.81± 0.10 29.62± 0.05 31.14± 0.07 33.42± 0.11 11.82%± 0.04% 12.43%± 0.05% 13.43%± 0.08%

PeMSD8 15 min 30 min 60 min 15 min 30 min 60 min 15 min 30 min 60 min

HA 31.33± 0.00 31.33± 0.00 31.33± 0.00 48.72± 0.00 48.72± 0.00 48.72± 0.00 23.50%± 0.00% 23.50%± 0.00% 23.50%± 0.00%
AGCRN 13.17± 0.08 13.67± 0.13 14.88± 0.23 22.34± 0.12 23.66± 0.15 25.67± 0.19 8.46%± 0.08% 8.81%± 0.11% 9.73%± 0.24%
GWN 13.69± 0.15 14.18± 0.08 14.98± 0.08 21.90± 0.13 23.18± 0.05 25.03± 0.05 8.81%± 0.15% 9.17%± 0.09% 9.94%± 0.02%
ENAS 13.14± 0.01 13.62± 0.17 14.85± 0.18 21.77± 0.07 23.18± 0.25 25.27± 0.15 8.33%± 0.07% 8.68%± 0.14% 9.64%± 0.07%
LENAS 14.19± 0.01 14.89± 0.07 15.85± 0.04 22.48± 0.01 23.97± 0.10 25.65± 0.02 8.88%± 0.03% 9.35%± 0.05% 10.21%± 0.01%

METR-LA 15 min 30 min 60 min 15 min 30 min 60 min 15 min 30 min 60 min

HA 13.66± 0.00 13.66± 0.00 13.66± 0.00 21.28± 0.00 21.28± 0.00 21.28± 0.00 19.82%± 0.00% 19.82%± 0.00% 19.82%± 0.00%
AGCRN 3.38± 0.00 4.07± 0.00 5.04± 0.00 7.48± 0.00 9.28± 0.00 11.34± 0.00 8.46%± 0.00% 10.39%± 0.00% 12.90%± 0.00%
GWN 2.84± 0.01 3.22± 0.01 3.62± 0.04 5.45± 0.03 6.44± 0.00 7.39± 0.05 7.40%± 0.05% 8.67%± 0.14% 10.14%± 0.20%
AutoSTG 3.05± 0.24 3.69± 0.41 4.60± 0.77 5.73± 0.29 7.21± 0.53 9.02± 1.06 7.67%± 0.48% 9.56%± 0.86% 11.93%± 1.43%
ENAS 2.97± 0.00 3.40± 0.01 3.88± 0.01 5.75± 0.02 6.78± 0.01 7.80± 0.01 7.90%± 0.04% 9.50%± 0.07% 11.27%± 0.07%
LENAS 3.06± 0.06 3.54± 0.06 4.00± 0.04 5.94± 0.12 7.07± 0.20 8.15± 0.17 8.14%± 0.27% 9.85%± 0.23% 11.45%± 0.13%

PEMS-BAY 15 min 30 min 60 min 15 min 30 min 60 min 15 min 30 min 60 min

HA 3.28± 0.00 3.28± 0.00 3.28± 0.00 6.54± 0.00 6.54± 0.00 6.54± 0.00 7.99%± 0.00% 7.99%± 0.00% 7.99%± 0.00%
AGCRN 1.41± 0.03 1.72± 0.01 1.99± 0.01 2.95± 0.02 3.89± 0.01 4.56± 0.02 3.09%± 0.01% 3.99%± 0.00% 4.79%± 0.00%
GWN 1.33± 0.01 1.62± 0.02 1.90± 0.02 2.81± 0.02 3.71± 0.04 4.44± 0.11 2.84%± 0.01% 3.74%± 0.04% 4.59%± 0.12%
AutoSTG 1.32± 0.05 1.63± 0.07 1.93± 0.09 2.80± 0.10 3.78± 0.15 4.59± 0.21 2.82%± 0.15% 3.80%± 0.26% 4.71%± 0.32%
ENAS 1.32± 0.00 1.63± 0.00 1.91± 0.00 2.81± 0.00 3.71± 0.01 4.45± 0.01 2.82%± 0.00% 3.74%± 0.01% 4.59%± 0.00%
LENAS 1.36± 0.00 1.68± 0.00 1.95± 0.01 2.87± 0.01 3.81± 0.02 4.53± 0.03 2.93%± 0.01% 3.89%± 0.01% 4.67%± 0.01%

Mach. Learn. Knowl. Extr. 2023, 5 844

4. Discussion and Conclusions

In this research, we explored zero-cost proxies, namely the naswot proxy, to estimate
network performance for traffic forecasting tasks. Our novel approach centered on utilizing
a performance estimation process, rather than training until convergence, as typically
employed in other frameworks such as ENAS.

We observed that our LENAS framework, despite its advantage of fast search times
and lower computational costs, displayed worse performance compared to other deep
learning models. This underperformance is largely attributed to the disconnect between the
naswot score and the validation loss of the architectures. Our results indicated an average
Spearman rank correlation of 0.737, as highlighted in Table 3, signifying a substantial
margin of error when ranking architectures using the naswot score as opposed to the
validation loss.

The lack of correlation between the naswot score and the validation loss was a primary
factor contributing to the inaccuracies in our model. Hence, while the naswot proxy, once
normalized by network size, proved to be stable concerning weight initialization, mini-
batch sampling, and size, its use revealed notable challenges in achieving comparable
accuracy with the baseline models that do not incorporate performance estimation.

The experimental trials conducted with two traffic speed benchmarks and two traffic
flow benchmarks affirmed the double-edged nature of using the naswot score. On one
hand, we managed to speed up the neural architecture search process by two orders of
magnitude and explore the architecture space more thoroughly. Conversely, this came at the
cost of a decrease in accuracy, which emphasizes the need to balance speed with precision
in the application of such zero-cost proxies. When analyzing the experimental results in
Table 4, LENAS often performs worse than GWN, a handcrafted approach, suggesting
that the inclusion of naswot as performance estimator might be less effective than using
GWN. Both methods use adjacency matrices for the graph convolution. The choice of
the adjacency matrix can be crucial for the performance of the neural network. LENAS
employs a predefined adjacency matrix, while GWN uses an adaptive matrix which adapts
to the data at hand. This might be beneficial for the GWN approach and, hence, in future
research, LENAS should be extended to include adaptive adjacency matrices or attention
mechanisms [34].

In light of our findings, future research endeavors should prioritize designing zero-
cost proxies specifically geared towards regression tasks to yield more accurate results.
While our LENAS framework showed potential in terms of reduced search time and low
computational requirements, the accuracy of the naswot proxy needs further enhancement.

Overall, the exploration of zero-cost proxies such as the naswot score has shown
the potential and challenges of such an approach. This work opens up new pathways for
evolutionary neural architecture search processes, especially in the field of traffic forecasting,
provided the inaccuracies are effectively addressed in future iterations.

Author Contributions: Conceptualization, D.K. and C.B.; methodology, D.K.; software, D.K.; valida-
tion, D.K.; formal analysis, D.K.; investigation, D.K.; resources, D.K.; data curation, D.K.; writing—
original draft preparation, D.K.; writing—review and editing, D.K.; visualization, D.K.; supervision,
C.B.; project administration, D.K.; funding acquisition, C.B. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was funded by the European Regional Development Fund (ERDF).

Data Availability Statement: We only used publicly available data, see Section 2.7.1.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sun, H.; Liu, H.X.; Xiao, H.; He, R.R.; Ran, B. Use of Local Linear Regression Model for Short-Term Traffic Forecasting. Transp.

Res. Rec. 2003, 1836, 143–150. [CrossRef]
2. Makridakis, S.; Hibon, M. ARMA Models and the Box–Jenkins Methodology. J. Forecast. 1997, 16, 147–163. [CrossRef]

http://doi.org/10.3141/1836-18
http://dx.doi.org/10.1002/(SICI)1099-131X(199705)16:3<147::AID-FOR652>3.0.CO;2-X

Mach. Learn. Knowl. Extr. 2023, 5 845

3. Zivot, E.; Wang, J. Vector Autoregressive Models for Multivariate Time Series. In Modeling Financial Time Series with S-Plus;
Springer: New York, NY, USA, 2003.

4. Mallek, A.; Klosa, D.; Büskens, C. Impact of Data Loss on Multi-Step Forecast of Traffic Flow in Urban Roads Using K-Nearest
Neighbors. Sustainability 2022, 14, 11232. [CrossRef]

5. Mallek, A.; Klosa, D.; Büskens, C. Enhanced K-Nearest Neighbor Model For Multi-steps Traffic Flow Forecast in Urban Roads.
In Proceedings of the 2022 IEEE International Smart Cities Conference (ISC2), Pafos, Cyprus, 26–29 September 2022; pp. 1–5.
[CrossRef]

6. Fu, R.; Zhang, Z.; Li, L. Using LSTM and GRU neural network methods for traffic flow prediction. In Proceedings of the 2016
31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 11–13 November 2016;
pp. 324–328. [CrossRef]

7. Wu, Z.; Pan, S.; Long, G.; Jiang, J.; Zhang, C. Graph WaveNet for Deep Spatial-Temporal Graph Modeling. In Proceedings of the
IJCAI, Macao, 10–16 August 2019.

8. Ge, L.; Li, S.; Wang, Y.; Chang, F.; Wu, K. Global Spatial-Temporal Graph Convolutional Network for Urban Traffic Speed
Prediction. Appl. Sci. 2020, 10, 1509. [CrossRef]

9. Klosa, D.; Mallek, A.; Büskens, C. Short-Term Traffic Flow Forecast Using Regression Analysis and Graph Convolutional Neural
Networks. In Proceedings of the 2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf
on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems &
Application (HPCC/DSS/SmartCity/DependSys), Haikou, China, 20–22 December 2021; pp. 1413–1418. [CrossRef]

10. Bai, L.; Yao, L.; Li, C.; Wang, X.; Wang, C. Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting. In
Proceedings of the NIPS’20’: 34th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada,
6–12 December 2020.

11. Pham, H.; Guan, M.; Zoph, B.; Le, Q.; Dean, J. Efficient Neural Architecture Search via Parameters Sharing. In Proceedings of the
35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; Machine Learning Research; Dy, J.,
Krause, A., Eds.; Volume 80, pp. 4095–4104.

12. Liu, H.; Simonyan, K.; Yang, Y. DARTS: Differentiable Architecture Search. In Proceedings of the International Conference on
Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

13. Gao, Y.; Yang, H.; Zhang, P.; Zhou, C.; Hu, Y. Graph Neural Architecture Search. In Proceedings of the IJCAI’20: Twenty-Ninth
International Joint Conference on Artificial Intelligence, Online, 7–15 January 2021.

14. Zhou, K.; Song, Q.; Huang, X.; Hu, X. Auto-GNN: Neural Architecture Search of Graph Neural Networks. arXiv 2019,
arXiv:1909.03184.

15. Pan, Z.; Ke, S.; Yang, X.; Liang, Y.; Yu, Y.; Zhang, J.; Zheng, Y. AutoSTG: Neural Architecture Search for Predictions of Spatio-
Temporal Graph. In Proceedings of the WWW ’21: Web Conference 2021, New York, NY, USA, 19–23 April 2021; pp. 1846–1855.
[CrossRef]

16. Zoph, B.; Le, Q. Neural Architecture Search with Reinforcement Learning. In Proceedings of the International Conference on
Learning Representations, Toulon, France, 24–26 April 2017.

17. Elsken, T.; Metzen, J.H.; Hutter, F. Efficient Multi-Objective Neural Architecture Search via Lamarckian Evolution. In Proceedings
of the 7th International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

18. Lopes, V.; Alirezazadeh, S.; Alexandre, L.A. EPE-NAS: Efficient Performance Estimation Without Training for Neural Architecture
Search. In Artificial Neural Networks and Machine Learning–ICANN 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 552–563.
[CrossRef]

19. White, C.; Zela, A.; Ru, B.; Liu, Y.; Hutter, F. How Powerful are Performance Predictors in Neural Architecture Search? Adv.
Neural Inf. Process. Syst. 2021, 34, 28454–28469. [CrossRef]

20. Vlahogianni, E.I.; Karlaftis, M.G.; Golias, J.C. Optimized and meta-optimized neural networks for short-term traffic flow
prediction: A genetic approach. Transp. Res. Part C Emerg. Technol. 2005, 13, 211–234. .: 10.1016/j.trc.2005.04.007. [CrossRef]

21. Rahimipour, S.; Moienfar, R.; Hashemi, S.M. Traffic Prediction Using a Self-Adjusted Evolutionary Neural Network. J. Mod.
Transp. 2018, 27, 306–316. [CrossRef]

22. Li, L.; Qin, L.; Qu, X.; Zhang, J.; Wang, Y.; Ran, B. Day-ahead traffic flow forecasting based on a deep belief network optimized by
the multi-objective particle swarm algorithm. Knowl.-Based Syst. 2019, 172, 1–14. [CrossRef]

23. Klosa, D.; Büskens, C. Evolutionary Neural Architecture Search for Traffic Forecasting. In Proceedings of the 21st IEEE
International Conference on Machine Learning and Applications, to Appear in IEEE Xplore, Nassau, Bahamas, 12–15 December
2022; pp. 1230–1237.

24. Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. In Proceedings of the International Conference on
Learning Representations (ICLR), San Juan, Puerto Rico, USA, 2–4 May 2016.

25. Abdelfattah, M.S.; Mehrotra, A.; Dudziak, L.; Lane, N.D. Zero-Cost Proxies for Lightweight NAS. arXiv 2021. [CrossRef]
26. Lee, N.; Ajanthan, T.; Torr, P.H.S. SNIP: Single-shot Network Pruning based on Connection Sensitivity arXiv 2018. [CrossRef]
27. Wang, C.; Zhang, G.; Grosse, R. Picking Winning Tickets Before Training by Preserving Gradient Flow. arXiv 2020. [CrossRef]
28. Tanaka, H.; Kunin, D.; Yamins, D.L.K.; Ganguli, S. Pruning neural networks without any data by iteratively conserving synaptic

flow. arXiv 2020. [CrossRef]

http://dx.doi.org/10.3390/su141811232
http://dx.doi.org/10.1109/ISC255366.2022.9921897
http://dx.doi.org/10.1109/YAC.2016.7804912
http://dx.doi.org/10.3390/app10041509
http://dx.doi.org/10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00212
http://dx.doi.org/10.1145/3442381.3449816
http://dx.doi.org/10.1007/978-3-030-86383-8_44
http://dx.doi.org/10.48550/ARXIV.2104.01177
http://dx.doi.org/10.1016/j.trc.2005.04.007
http://dx.doi.org/10.1007/s40534-018-0179-5
http://dx.doi.org/10.1016/j.knosys.2019.01.015
http://dx.doi.org/10.48550/ARXIV.2101.08134
http://dx.doi.org/10.48550/ARXIV.1810.02340.
http://dx.doi.org/10.48550/ARXIV.2002.07376
http://dx.doi.org/10.48550/ARXIV.2006.05467

Mach. Learn. Knowl. Extr. 2023, 5 846

29. Theis, L.; Korshunova, I.; Tejani, A.; Huszár, F. Faster gaze prediction with dense networks and Fisher pruning. arXiv 2018.
[CrossRef]

30. Mellor, J.; Turner, J.; Storkey, A.; Crowley, E.J. Neural Architecture Search without Training. arXiv 2020. [CrossRef]
31. Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. In

Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.
32. Guo, S.; Lin, Y.; Feng, N.; Song, C.; Wan, H. Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow

Forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019;
Volume 33, pp. 922–929. [CrossRef]

33. van den Oord, A.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K.
WaveNet: A Generative Model for Raw Audio. In Proceedings of the 9th ISCA Workshop on Speech Synthesis Workshop (SSW 9),
Sunnyvale, CA, USA, 13–15 September 2016; p. 125.

34. Cai, L.; Janowicz, K.; Mai, G.; Yan, B.; Zhu, R. Traffic transformer: Capturing the continuity and periodicity of time series for
traffic forecasting. Trans. GIS 2020, 24, 736–755. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.48550/ARXIV.1801.05787
http://dx.doi.org/10.48550/ARXIV.2006.04647
http://dx.doi.org/10.1609/aaai.v33i01.3301922
http://dx.doi.org/10.1111/tgis.12644

	Introduction
	Materials and Methods
	Traffic Forecasting
	Neural Architecture Search
	Architecture Search Space
	None
	Skip Connection
	Dilated Causal Convolution
	Graph Convolution

	Search Method
	Zero-Cost Proxies
	Gradient Norm
	Single-Shot Network Pruning
	Gradient Signal Preservation
	Synaptic Flow Pruning
	Fisher
	Jacob Covariance
	NAS without Training

	Robustness, Bias, and Usability of ZC Proxies
	Are ZC Proxies Robust with Regards to Weight Initialization and Mini-Batch Sampling?
	Are ZC Proxies Robust with Regards to Architecture Size?
	Are ZC Proxies and Validation Loss Correlated?

	Low Cost Evolutionary Neural Architecture Search
	Datasets
	Metrics
	Baselines
	Framework Settings

	Results
	Discussion and Conclusions
	References

