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Abstract: Due to the requirement of video surveillance, machine learning-based single image de-
raining has become a research hotspot in recent years. In order to efficiently obtain rain removal
images that contain more detailed information, this paper proposed a novel frequency-aware single
image deraining network via the separation of rain and background. For the rainy images, most of
the background key information belongs to the low-frequency components, while the high-frequency
components are mixed by background image details and rain streaks. This paper attempted to
decouple background image details from high frequency components under the guidance of the
restored low frequency components. Compared with existing approaches, the proposed network has
three major contributions. (1) A residual dense network based on Discrete Wavelet Transform (DWT)
was proposed to study the rainy image background information. (2) The frequency channel attention
module was introduced into the adaptive decoupling of high-frequency image detail signals. (3) A
fusion module was introduced that contains the attention mechanism to make full use of the multi
receptive fields information using a two-branch structure, using the context information in a large
area. The proposed approach was evaluated using several representative datasets. Experimental
results shows this proposed approach outperforms other state-of-the-art deraining algorithms.

Keywords: deep learning; machine learning; knowledge extraction; single image deraining; frequency
aware; discrete wavelet transform; attention mechanism

1. Introduction

Rainy environments often lead to a series of visibility degradations. The presence
of rain causes strong light fluctuations which blur the background scene and change the
content and color of the image. Some rain image samples are shown in Figure 1. Common
types of rain include rain streak, rain-mist and raindrop. Rain streak will present as
a bright line on an image and tends to concentrate on the high frequency components
of images. Rain-mist is usually generated by the accumulation of rain streak, and will
contaminate both low frequency and high frequency components of images. Raindrop
has different shapes due to a transmission change of the window or lens [1]. All these
types of rain cause spatially variant image degradation [2]. Image distortion is often
accompanied by the failure of many computer vision tasks, such as video surveillance [3–5]
and autonomous driving [6–8]. Therefore, it is very important to study image restoration
in rainy weather environments.

In the past decades, various machine learning-based approaches for deraining have
been proposed [9–14]. Traditional machine learning-based approaches treat the single image
deraining task as a signal separation problem between the rain pattern and the background
pattern. These approaches are based on different basic machine learning models, such as
frequency domain representation, sparse representation, Gaussian mixture model, etc. In
recent years, deep learning-based approaches have learned the mapping between rainy
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images and the corresponding clean image pairs for the deraining task [15–17]. Though
these deep learning-based approaches can achieve better performance than traditional
approaches, there is still room for further improvement.

Figure 1. Rainy image samples.

First, many previous studies directly learnt the mapping relationship of clear-rain
data pairs without considering the inherent characteristics of rain streaks, and the final rain
removal images were obtained by simply subtracting the rain streaks from the images with
rain. This approach can result in the inadequate removal of rain streaks or the accidental
removal of background information coupled to the rain streaks. Second, most previous
approaches have a limited receptive field, and it is difficult to obtain contextual informa-
tion from large regions. Third, many deraining approaches have built complex network
structures by stacking modules together to achieve a better outcome of deraining images.
This kind of design increases the network parameters and is not efficient. Meanwhile, the
stacking of modules causes a poor interpretability of the model, which is inconvenient for
further improvements.

To solve these issues, a frequency-aware network and an adaptively selected two-
branch structure were proposed to efficiently obtain deraining images. The contributions
can be summarized as follows:

(1) A frequency-aware single image deraining network was proposed. This proposed
network framework decomposes the single-image rain removal task into two subtasks,
with rain-free region background information extraction and rain-obscured region signal
recovery, so the network can better preserve background detail.

(2) To solves the problem that the continuous region without rain needs a large
perceptual field, the image is converted from the spatial domain to the frequency domain
by performing discrete wavelet transformation (DWT). Meanwhile, the proposed attention
mechanism allows the network to extract rain-free background information in the low-
frequency band, and this provides a reference for the image recovery of regions with rain.

(3) Frequency channel attention was introduced to adaptively enhance or weaken
the signals of different frequency bands to better complete the task of image recovery in
rain-affected regions.

(4) Experiments conducted on four commonly used publicly deraining datasets shows
the efficiency of the proposed approach. Compared to previous popular approaches, the
proposed approach achieved a better balance of performance and efficiency.

2. Related Works

In the past few years, many excellent rain removal approaches were proposed. This
section provides a review on the approaches of single image deraining.

2.1. Traditional Methods

Research on the single image deraining task began in 2012, and early approaches
mainly used a priori knowledge to represent the features of the background and rain layers.
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The development of model-based approaches was driven by the following ideas: image
decomposition, sparse coding and prior-based Gaussian mixture models.

Lin [18] proposed an image decomposition method, which is based on a morphological
component analysis. This approach first decomposes a single image with rain to extract the
high frequency layer of the image, the extracted high frequency layer is further decomposed
into two constituents with and without rain using dictionary learning and sparse coding
algorithms. Although this approach can recover some of the light rain present in the image,
this approach leads to the blurring of some details due to the preprocessing of bilateral
filtering. In subsequent work, Luo [19] improved the study of rain sparsity and introduced
mutual exclusion in discriminative sparse coding (DSC). Therefore, the background layer
can be better separated from the non-linear composite components. Though this approach
maintains clear texture details, some rain patterns appear in the output images.

Then Zhu [20] proposed an iterative rain removal approach, which uses the prior
information of the rain streak layer to recover the details of the background texture. This
approach achieved better results on some synthetic datasets, even with comparable perfor-
mance to some deep learning-based approaches proposed in the same period. However,
the approach cannot achieve satisfactory results when processing real rainy images because
the rain streaks in real images move to different directions. Li [21] used Gaussian mixture
models (GMMs) to model rain streaks and background layers. This approach can effectively
remove small and medium scale rain streaks, but cannot handle large scale rain streaks.

These traditional approaches based on prior knowledge often rely on some specific
assumptions, but such assumptions do not always work well for the complex rain situations
in a real scenario.

2.2. CNN-Based Methods

In 2017, the single image deraining task entered a data-driven era. Due to the powerful
feature representation capability of deep learning, deep learning-based approaches have
become popular [22–27]. Different kinds of network architectures, such as convolutional
neural networks (CNN) [28–30], recurrent neural networks (RNN) [31,32], and generative
adversarial networks (GAN) [33,34], have been widely utilized. The embedding of these
new models has led to significant performance gains in deraining tasks. However, these
approaches rely on the statistical analysis of a large number of rain streaks and background
images data.

Yang [35] first proposed a joint rain streak detection and removal network (JORDER).
This network can handle many types of rain situations such as heavy rain, overlapping
rain streaks, and water accumulation. However, this approach generates under-exposure
problems and loss of vertical texture in some background scenes. In the same year, Fu [36,37]
attempted to remove rain using a Deep Detail Network (DetailNet). The approach only
utilized high frequency detail information as the input. It was demonstrated that learning
only rain residuals is beneficial for deraining because it is relatively sparse, which can
lead to easier and stable training. However, this approach cannot handle images with
heavy rain.

Further studies proposed many new deep learning-based approaches [38–41]. These
approaches utilized more recent network structures and introduced new prior information
related to rain streaks. These approaches have better results in both evaluation metrics and
generated image quality. However, when dealing with some real, unseen images during
training, the deraining results are usually not good due to the limitations of supervised
learning. Additionally, most of these approaches use some existing network modules in
deep learning, then by training the model in an end-to-end manner, inherent prior structure
within the rainy images can be ignored.

2.3. Semi-Supervised or Unsupervised Methods

In the last two years, to improve the generality and scalability of model architectures,
many semi and unsupervised learning methods have been attempted to learn directly from
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real rainy images. Wei [42] proposed a semi-supervised learning method using paired
synthetic images and unpaired real images for learning. Although this idea is advanced,
the algorithm does not perform as expected, especially with real rainy images.

In [43], the unsupervised de-constrained generative adversarial network (UD-GAN)
extracts information from two unpaired images by introducing a self-supervised constraint.
This approach consists of two collaborative modules. One is used to detect the difference
between the real rainy image and the generated rainy image, the other is used to adjust the
brightness of the generated image to enhance the visual effect of deraining results. This
method can better remove rain from real rainy images, but loses some background detail.

Meanwhile, other works [44,45] combined the improved CycleGAN structure and
transfer learning with constraints, in order to learn the information from both domains to
achieve better single image deraining results. However, these methods did not achieve the
expected results. Based on this, a recent work [46] added bilateral constraint learning and
contrast learning to adversarial learning, and achieved better deraining results under an
unpaired rainy images dataset.

3. Proposed Approach

Though previous approaches improved performance, there are still many issues to be
solved. These problems include that it is difficult to protect the structural information of
the image, especially in complex situations. Previous approaches cannot reconstruct high-
quality rain-free images well. Meanwhile, the network structures of previous approaches
are not interpretable. Therefore, a method with strong interpretability, with the ability to
effectively remove rain streaks and protect the structure of the image is in demand.

This section covers some basic concept relevant to the proposed approach, then the
proposed model is introduced in detail.

3.1. Relevant Concepts

Discrete wavelet transformation (DWT) is a discretization of the scale and translation of
the fundamental wavelet. 2D-DWT is usually implemented by four convolution filters with
fixed parameters (convolution size of 2). After the DWT transformation, the image can be
obtained as the four rightmost sub-bands shown in Figure 2. The output includes frequency
domain information of the original image, while because of the downsampling operation,
each sub-image also includes the spatial domain information of the original image. DWT is
commonly used in image processing tasks, especially image compression, because in most
cases the low-frequency components often already contain the basic features of the image,
while the high-frequency signal only covers some detailed information of the image.

the DWT operation is suitable for the single image deraining task [47]. First, as
rain streaks tend to be concentrated in high-frequency signals, and sub-bands containing
information are contained in the frequency domain of the image after DWT, which will help
the network to perform frequency selection and background information extraction in rain-
free regions. Second, the spatial resolution of each band is reduced to half of original image
after the DWT process. Therefore, the image is equivalently processed on a small scale,
and the larger streaks in the original image become smaller, so the rain streaks are more
easily removed. Third, the rain-free background area is often composed of large continuous
pixels, a module with a larger receptive field is appropriate for extracting information,
and DWT has a good balance between increasing the receptive field and the computing
efficiency. In general, discrete wavelet transformation can capture both frequency domain
and spatial location information, and because of its time-frequency localization property,
it should be used to retain more detailed information, which will help to reconstruct the
deraining images.
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Figure 2. Diagram of the 2D-DWT process.

An attention mechanism is a structure that is widely embedded in network models [48,49].
It can autonomously learn a set of weight coefficients to represent the weight of importance.
Currently, the attention mechanism has become one of the most widely used components
in the field of deep learning. Similarly, attention mechanisms are also widely used in the
field of computer vision, and the three main types of applications are channel attention,
spatial attention, and self-attention. Channel attention is the most used in rain removal
tasks, which can selectively use each channel’s information and suppress useless features
to reduce noise. Due to the powerful adaptive character of the attention mechanism,
multiple channel attention modules are introduced to the proposed approach of this paper
to adaptively guide the network in training. In addition to the commonly used channel
attention module (SE-block), the Frequency Channel Attention [50] and Self-selective
Kernel Attention [51] were also introduced to this proposed approach. They were utilized
to decouple the high frequency background detail signals fused in the rain-obscured region
and fused two-branch network structure.

Unlike the traditional channel attention module, the frequency channel attention (FCA)
module promotes the global average pooling (GAP) in the frequency domain. To compen-
sate for the shortcoming that GAP can only represent the lowest frequency information,
FCA introduces a finite number of frequency components to replace the lowest frequency
information. By integrating more frequency components, different information is extracted
to form a multispectral description. Specifically, FCA can be derived based on sound
mathematical theory, using a more general form of a two-dimensional discrete cosine trans-
form (2D-DCT) instead of GAP to achieve fusion of multiple frequency components. This
operation converts the spatial domain to the frequency domain, effectively increasing the
frequency feature information and forming a multi-frequency channel attention, which can
compensate for the shortcomings of insufficient feature information prevalent in traditional
channel attention methods.

Selective Kernel Block, the twin of Squeeze-and-Excitation Block, is similar in structure
to SE-block, the differences is that a selective kernel block is a multi-branch structure that
can consider multiple receptive fields and thus has multiple scales. It was born from
the joint inspiration of Inception-block and SE-block. It uses convolutional kernels with
multiple different receptive fields to learn and obtain feature maps at different scales,
first fusing the feature maps and then obtaining the weight coefficients of each branch
feature separately through network learning, then performing weighted fusion on this
basis and producing the final feature map. Thus, it takes into account the multiscale feature
representation and allows the network to adaptively focus on the important scale features.
Therefore, it can adaptively adjust the receptive fields and then dynamically reorganize the
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features. The proposed approach is precisely the feature extraction through two branches
with different receptive fields. Therefore, in order to refine the detailed signal in the rain-
obscured area through the background signal in the rain-free area, and to perfectly fuse the
two parts to obtain the final results, we introduced SK-block to help us better adaptively
adjust the multi-branch fusion process.

3.2. Proposed Model

Single image deraining tasks often face problem of over smoothing for outcome images.
This is due to the image detail appearing at a relatively high-frequency, and it is always
coupled with high-frequency rain patterns [52–57]. However, approaches focusing on
repairing the lost image background detail are rarely implemented. In order to extract
the background from rain-free regions and recover details from rain-obscured regions, we
proposed a new single image deraining network architecture based on frequency-aware
rain scenes, which can be called FADNet (Frequency-Aware Deraining Network). The
entire network structure with two branches is shown in Figure 3. The upper branch is
used to extract the background details in the rain-free region with the low-frequency
component, and the lower branch is used to repair the high-frequency details coupled in
the rain-obscured region.

Figure 3. Diagram of the proposed approach.

As can be seen, discrete wavelet transform and channel attention block are introduced
to extract the low-frequency background signal in the rain-free region more efficiently. In
addition, the detail restoration module with frequency channel attention (FCA) is utilized
to decouple the background detail signal information contained in the rain-obscured area
adaptively. Then, SK-Block adaptively fuses the extracted two-branch signals, followed by
a series of convolution operations to reconstruct a clear rain-free image.

The network acquires the information flow from different scales of the dual-branch.
In addition to the introduction of DWT and SE-block in the upper branch, background
signal extraction in the rain-free region is mainly performed by stacking the Residual
Dense Module (RDM). After the DWT operation, the feature map of the low-frequency
part of the frequencies is first passed through the SE-block and then input to the Residual
Dense Network, which adaptively extracts the low-frequency background signal of the
rain-free region. The residual dense network is composed of several residual dense blocks.
This paper used three residual dense blocks considering the balance of performance and
efficiency. Finally, the extracted residual dense network was connected to the other three
partial frequencies in the original order and input to IWT losslessly to obtain the final
background signal extraction network, which can be expressed as follows:

B = fiwt([X_LL′, X_LH, X_HL, X_HH]) (1)
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where B denotes the corresponding final clean image, fiwt denotes the inverse discrete
wavelet transform operation, and X_LL′ denotes the low frequency signal extracted by
residual dense network operation.

The proposed model not only focuses on the background structure signal in the
rain-free region, but also on the high-frequency background detail signal coupled in the
rain-obscured region. In order to better preserve the background detail information in
the rain-obscured region while removing the rain lines, the Detail Recovery Module is
introduced in the following branches to decouple the background detail signals. The
structure of this module is schematically shown in Figure 4.

Figure 4. Diagram of the detail recovery module.

This figure shows that the detail recovery module adopts a network architecture
similar to U-Net, with the frequency channel attention module embedded at the bottom.
The process of this module is to first map the rain map to the feature potential space through
the encoder of the U-Net, then perform different frequency band adaptive enhancement and
weakening of the feature signals in the potential space through FCA, followed by extraction
of the general signal of the rain-obscured region through the U-Net decoder which filters out
the rain lines in the high frequency region. Finally, the detail signal from the rain-obscured
region extracted in the high frequencies is further refined by performing the convolution
operation passed into the fusion network combined with the background signal of the
rain-free region. We can see that the detail recovery module adds a jump cascade between
the coder–decoder, which allows the network to fuse the feature maps obtained from the
encoders at the corresponding locations on the channel during the upsampling process.
With this fusion function, the network is able to retain more detailed and generate clearer
deraining images. The whole module contains three upsampling and downsampling
instances, and each layer of the coder-decoder contains two convolution operations.

Unlike some previous algorithms that included two independent branch structures [53],
this paper further considered the problem of information fusion with two branches. Con-
sidering that these two branches use different perceptual fields in the feature extraction
process, they are independently distributed in the signal feature space with different sizes.
To better combine the two signals, we introduced the SK-Attention module, which can
dynamically select the receptive field size for a better fusion process. Specifically, feature
signals obtained from the two branches are concatenated. Then, the features are input to
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SK-block for multi-branch dynamic selection. The final deraining result is obtained after a
series of convolution operations. The specific calculation process is as follows:

B = fconv( fsk(concat[ f1, f2])) (2)

where f1 and f2 denote the feature signals extracted from the two branches. fsk and fconv
denote the SK-Block operation and a series of convolution operations, respectively. B
denotes the final deraining background image obtained after network reconstruction.

In this process, the upper branch generates the background signal from the rain-free
region obtained. This background signal is utilized to refine the coupled signal of the
rain-obscured region obtained from the lower branch. After that, the two parts are finally
fused together. Because of the dynamic selection ability of SK-Block, multiscale image
features are used efficiently to obtain better rain removal results.

4. Experiment Results and Analysis

This section covers the datasets and loss functions utilized in the experiment, experi-
mental setup details, experimental results and analysis.

4.1. Experiment Datasets

The experiment was conducted on several commonly used deraining datasets. These
datasets simulate different situations including light rain, moderate rain and heavy rain.
These datasets include (1) Rain200L [35] which simulates the light raining situation, in
which 1800 training pairs and 200 testing pairs are included; (2) Rain200H [35], which
simulates the heavy raining and rain-mist situations, in which 1800 training pairs and
200 testing pairs are included; (3) Rain800 [58] which contains 700 training pairs and
100 testing pairs; (4) Rain1200 [59], which has 12,000 training pairs and 1200 testing pairs.
For the 12,000 training pairs, 4000 pairs simulate light rain, 4000 pairs simulate moderate
rain, and 4000 pairs simulate heavy rain. Table 1 shows the differences between these
datasets. The sample rain streaks from these deraining datasets are shown in Figure 5.

Table 1. Comparison on commonly used deraining datasets.

Datasets Training Pairs Testing Pairs

Rain200L 1800 200
Rain200H 1800 200
Rain800 700 100

Rain1200 12,000 1200

Figure 5. Sample rain streaks from deraining datasets.

4.2. Loss Function and Experiment Setup

Most of the deep learning-based deraining tasks utilize the mean squared error (MSE)
as a loss function. MSE allots more weight to areas with a large difference, while areas with
rain only have a small difference from high frequency details and do not have sufficient
weight. Utilizing only MSE will lead to overlooking useful high-frequency information for



Mach. Learn. Knowl. Extr. 2022, 4 746

a deraining task. To obtain better results, the structural similarity index (SSIM) is added to
the loss function, and the proposed loss function will be as follows:

L = | f (O)− B|2 + 1− SSIM( f (O), B) (3)

In this equation, B indicates the ground truth image, and f (O) indicates the resultant
image after deraining.

The experiment model is based on Pytorch. All the convolution layers have a 3*3 kernel,
no batch normal layer is utilized, and the active function is ReLU. To be consistent for input
and output images, the stride is set to 1, with 1 pixel padding. For the residual dense block,
3 blocks are utilized to balance the performance and efficiency. The model is trained by
Adam, with a batch size of 16 and 300 epochs.

4.3. Results on Deraining Quality

Peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) are two of the
most commonly used metrics to evaluate deraining images. PSNR is used to evaluate the
color and brightness distortion, higher values indicate that a image looks more likely to
reference image. SSIM is used to measure the structural similarity of tow images, two same
image will have SSIM value of 1.

Ablation experiments were conducted on the Rain200H dataset, between Model 1,
Model 2 and the proposed FADNet model. Model 1 has FCA but not DWT, Model 2
has DWT but not FCA, while the FADNet model has both DWT and FCA. The results of
the ablation experiment are shown in Table 2. FADNet outperforms both Model 1 and
Model 2. Specifically in PSNR, FADNet increases by 0.39 dB compared to Model 1 without
DWT, indicating that DWT is an effective method to reconstruct clearer rain-free images.
Additionally, for SSIM, FADNet increases by 0.07 compared to Model 2 without FCA,
indicating that the FCA module can enrich the image details and help output images to
maintain a clearer structure.

Table 2. Results of the ablation experiment for DWT and FCA modules.

Approaches With DWT With FCA PSNR-Rain200H SSIM-Rain200H

Modle1 NO YES 26.59 0.858
Modle2 YES NO 26.76 0.855

FADNet (Proposed) YES YES 26.98 0.862

Ablation experiments were also conducted on the Rain200H dataset to obtain the
optimal number of residual dense blocks (RDBs). Results of the ablation experiment for
the number of RDBs are shown in Table 3. The model has better performance when the
number of RDB increases from 1 to 3. The models have similar performance with the RDB
of 3, 4, and 5. When the number of RDB equals 3, the network achieved the best balance of
performance and parameters. Therefore, FADNet selected three as the number of RDB.

Table 3. Results of the ablation experiment for numbers of RDB.

RDB Numbers PSNR-Rain200H SSIM-Rain200H Model Parameters

1 24.88 0.846 1,473,955
2 26.56 0.858 1,768,995

3 (FADNet) 26.98 0.862 2,064,035
4 26.99 0.860 2,359,075
5 26.95 0.861 2,654,115
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The proposed approach (FADNet) was compared with several state-of-the-art ap-
proaches. These approaches include DSC [19], GMM [21], DDN [36], RESCAN [60],
PReNet [61], SPANet [62], Syn2Real [63], MPRNet [52] and DID-GAN [46]. In these
approaches, DSC and GMM are traditional deraining modes, the rest are popular deep
learning-based deraining models.

Table 4 shows the deraining quality of various approaches. The proposed approach
outperformed other approaches on most of the deraining datasets. Especially for the
Rain800 dataset, the proposed approach achieved a large performance increase for both
PSNR and SSIM. To make the comparison clearer, Figure 6 shows the PSNR value of
different approaches, and Figure 7 shows the SSIM value of different approaches, while the
last column indicates the proposed approach.

In addition to the PSNR and SSIM values, Figure 8 shows images after the deraining
process. For Deraining images with the Rain200H dataset, the proposed approach produced
less rain drops. The proposed approach also retained more details of the original image
and possessed less blur.

Table 4. Comparison of the quality of deraining in deraining data sets.

Approaches PSNR-
Rain800

SSIM-
Rain800

PSNR-
Rain1200

SSIM-
Rain1200

PSNR-
Rain200H

SSIM-
Rain200H

PSNR-
Rain200L

SSIM-
Rain200L

DSC(2015) 20.95 0.753 21.44 0.790 13.17 0.427 25.68 0.875
GMM(2016) 24.04 0.802 23.66 0.832 13.04 0.467 27.16 0.898
DDN(2017) 24.24 0.808 27.33 0.898 24.64 0.806 33.01 0.967

RESCAN(2018) 24.09 0.841 29.10 0.884 24.40 0.779 34.09 0.970
PReNet(2019) 24.90 0.806 30.17 0.900 25.52 0.854 32.41 0.914
SPANet(2019) 22.41 0.838 30.05 0.934 23.04 0.852 31.59 0.965
MPRNet(2021) 26.62 0.865 33.66 0.931 27.88 0.874 35.12 0.959

FADNet(Proposed) 27.49 0.886 33.78 0.941 26.98 0.862 35.68 0.972

Figure 6. PSNR value of different approaches.
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Figure 7. SSIM value of different approaches.

Figure 8. Results of rain images in Rain200H dataset.

4.4. Results on Time Consumption

Table 5 present the results for model parameters and processing time per image. For
the model size, the proposed model had more parameters than the traditional model, but
less parameters than the models proposed in recent years. For time consumption, the
proposed approach was faster than most popular approaches.
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Table 5. Comparison on model parameters and processing time per image

Approaches Model Parameters Time (s)

RESCAN(ECCV’18) 149,823 0.61
PReNet(CVPR’19) 168,963 0.19
MPRNet(CVPR’21) 3,637,249 0.26
SPDNet(ICCV’21) 3,318,741 0.28

FADNet(Proposed) 2,064,035 0.20

5. Conclusions and Discussion

This paper built a frequency-aware single image deraining model. The model had the
following merits: (1) This model introduced DWT to extend the receptive field without extra
computation cost. A clear low-frequency signal can be extracted by DWT. (2) Frequency
channel attention is introduced to adaptively recover high frequency background details.
(3) SK-Block is introduced to perform fusion from multi-receptive fields. The results on
several deraining datasets indicate the efficiency and deraining quality of the proposed
approach. The proposed approach has less artefacts and retains more useful details in an
efficient manner.

Although the proposed FADNet achieved good results in effectively removing rain
streaks, there is still room to improve. Future works will focus on improving the efficiency
so that it can be used for real time application, and improving the generalization ability for
real-world scenarios.
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