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Abstract: This paper explores the use of Private Aggregation of Teacher Ensembles (PATE) in a setting
where students have their own private data that cannot be revealed as is to the ensemble. We propose
a privacy model that introduces a local differentially private mechanism to protect student data. We
implemented and analyzed it in case studies from security and health domains, and the result of the
experiment was twofold. First, this model does not significantly affecs predictive capabilities, and
second, it unveiled interesting issues with the so-called data dependency privacy loss metric, namely,
high variance and values.
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1. Introduction

Boosted by the growth of available data and computing power, progress in the field of
artificial intelligence is leading to significant improvements in the ability to solve a variety
of tasks with the help of intelligent artifacts powered by machine learning algorithms. This
is the case in critical domains such as health and security, where researchers are actively
working towards developing increasingly accurate algorithms for tackling problems like
disease diagnosis [1] and intrusion detection [2–5].

Particularly, but not exclusively in these two domains, the opportunity to build
intelligent predictive systems brings along, however, difficult challenges that must be
addressed. Typically, substantial amounts of training data are required to learn predictive
models to achieve satisfactory performance, but this requirement may not be fulfilled by a
single organization alone. Howevr, this shortcoming could be overcome by organizations
sharing raw data or predictive models trained with such data. As an example along this
line, the last decade has seen a push from NGOs and research institute. for the broader
release of open government data [6].

In the case of Europe, for instance, access to public data is legislated by Directive (EU)
2019/1024 on open data and the re-use of public sector information [7].

Certainly, data sharing is not only a function of the legislation on open data, but also
of the need to make it freely available to public and private actors who have the technical
ability to use this data for scientific innovation [8].

However, despite the benefits of sharing, in most cases data can neither be easily
published nor transferred [6,9]. Indeed, most data gathered by organizations, whether
public or private, contain information about citizens, clients, users or patients who are the
real owners of that data, such as, ID, passwords, and social security, bank account and
credit card numbers. Obviously, regardless of the problem-solving value it may have for
an organizations or external third parties, that data does not belong to them.

Figure 1 illustrates a situation where privacy is neglected. Here, data from a num-
ber of clients data owners are stored in the database of an e-commerce company trusted
curator that allows a data analytics service provider (third party) to query its database.
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Without appropriate protection measures, such queries, not necessarily intentional, may
reveal sensitive owner data, such as the person’s identity. To avoid this loss of privacy,
appropriate measures must be taken when allowing access to an organization’s database,
notwithstanding any anonymization technique that removes personally identifiable infor-
mation [10]. Indeed, several attacks capable of reidentifying individuals in this context
have been described [11–14]. Furthermore, private information from unpublished data
can be exposed by allowing third parties to query predictive models by so-called model
inversion attacks [15].

Figure 1. Context without privacy.

Therefore, sharing information, either as raw data or trained models, must ensure
appropriate levels of privacy. This issue is not only technical but also legal, as there are
laws regarding the privacy of data within databases.

For instance , Europe’s General Data Protection Regulation (GDPR) defines a nor-
mative framework of data protection that applies to all EU organizations independent
of where they are located [16]. Hence, there exists a clear tension between the ability to
provide access to data and maintain privacy.

Clearly, it is essential to install mechanisms for protecting private information con-
tained in data that is made available to third parties. Such mechanisms must be applied
irrespective of how the data is shared, whether by publishing a dataset or by allowing
external stakeholders to query a database. Moreover, data protection mechanisms should
be able to keep enough useful information to solve tasks [17].

The motivation of this work is to study a scenario where several organizations are
involved in sharing models, each one of which is exculsively trained to use its own
organization’s database. The Private Aggregation of Teacher Ensembles (PATE) [18,19]
has been proposed for such purpose. It consists of building an ensemble model that adds
random noise to the outputs of the predictors (teachers) before aggregating them. PATE
provides differential privacy (DP) [20] protection to the databases of the organizations
participating in the ensemble, but does not provide any protection for the third party
(student) who queries the ensemble to train its own model with its own data.

This paper proposes and experimentally evaluates an approach consisting of pro-
tecting the third party’s data by adding a DP mechanism before sending the query to the
ensemble in the context of the PATE. This technique is implemented and analyzed in two
examples of critical domains: cybersecurity and health. The former concerns the detection
of malicious web requests, while the latter is focused on cardiopathy classification based
on hearbeat data.

2. Differential Privacy

Dwork defines DP as the data curator’s promise to an individual that he or she will not
be affected in any way as the result of a database query by a third party [20]. Another way of
putting it is that DP allows the acquisition of information of the overall population but not
any specific information about individuals. More precisely, DP is a general mathematical
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framework based upon quantifying privacy loss as a random variable. The goal is to enable
the design of specific mechanisms that provide data protection through the establishment
of a desired quantity ε of privacy loss within a given confidence δ.

2.1. Formalizing Differential Privacy

Let D be the universe of databases. We do not assume here any particular representa-
tion of databases, but we do require D to be equipped with a distance ‖·‖. In this context,
two databases d, d′ ∈ D are called “adjacent” or “neighbor”, if ‖d− d′‖ = 1.

A randomized algorithm, or mechanismM with output domain O takes as input a
database d ∈ D, and possibly other parameters, and outputs some o ∈ O, according to
some probability distribution.

DP does not define a particular mechanism for privacy. In this paper we used the
Laplace mechanism based on the Laplace distribution centered at 0 with scale b and
probability density function Lap(s) given by

Lap(s)(u) =
1
2s

exp
(
−|u|

s

)
Given any function f : D → Ok, the Laplace mechanism is defined as:

MLap(s)(d, f ) = f (d) + (R1, . . . , Rk)

where Ri are i.i.d random variables with distribution Lap(s). That is, this mechanism
returns a noisy response which consists in adding a random perturbation to the result of
the evaluating function f on database d.

DP defines the privacy loss as a random variable as follows. For a given mechanism
M, databases d, d′ ∈ D, and output o ∈ O, the privacy loss at o, denoted `(o), is:

`(o) = log
P[M(d) = o]
P[M(d′) = o]

(1)

Given ε, δ ∈ [0, 1], M is said to be (ε, δ)-“differentially private” if for all adjacent
databases d, d′ ∈ D it holds that:

Po∼M(d)[`(o) ≥ ε] ≤ δ (2)

To simplify the notation, we denote L the random variable distributed asM(d) whose
values are given by evaluating ` at outcomes sampled fromM(d), and write

P[L ≥ ε] ≤ δ (3)

For example, the Laplace mechanism Lap(1/ε) is (ε∆ f , 0)-differentially private, where
∆ f is the ‖·‖-sensitivity of function f , defined as

∆ f = max d,d′∈D
‖d−d′‖=1

‖ f (d)− f (d′)‖ (4)

DP ensures that there is no further privacy loss after applying a mechanismM. This
property is called “post-processing”. Formally, ifM is (ε, δ)-differentially private, then
for any arbitrary randomized mapping g : O → O′, g ◦M is (ε, δ)-differentially private
as well.

Moreover, DP has the strength of having a composition theorem that limits the privacy
loss through repeated queries to the database independently of the type of query or
mechanism. Formally, let Mi be (εi, δi)-differentially private mechanisms for i ∈ [1, k].
Then the mechanismM = (M1, . . . ,Mk) is (∑k

i=1 εi, ∑k
i=1 δi)-differentially private.
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2.2. Privacy Models

Differential privacy proposed two main types of privacy models that we took into
consideration when implementing our privacy compliant architecture. The local model
(Figure 2), also known as the non-interactive or offline model, consists of creating a database
with data already privatized. This means that a randomized mechanismM is applied
to the data recollected from the individuals before it is stored in the database by the
Trusted Curator. Privatization and its leakage takes place when recollecting the individual
information, not when querying the database. This model takes advantage of the post-
processing property of differential privacy so that data scientists can send as many queries
to the database as they desire without worrying about leakage composition. The database
is privatized only once, and this model allows the database to be released entirely under
(ε, δ)-differentially private guarantees.

Figure 2. Local model.

The centralized model (Figure 3), also known as interactive or online model, consists
of the data scientists’ sending n queries to the database, which is owned or protected by a
Trusted Curator. The query is a function applied to the database, and then the result of the
function is privatized with some mechanism M, such as some (ε, δ)-differentially private
mechanism. This model allows, for example, a second database query based on previous
responses. However, each query has to be considered as a composition of mechanisms,
and the accumulated ε leakage has to be taken into account. Each query to the database
has an upper bound leakage of ε while k queries has an upper bound of kε leakage due
to composition.

Figure 3. Centralized model.
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3. Private Aggregation of Teacher Ensembles

Private Aggregation of Teacher Ensembles (PATE) [18,19], is a technique that enables
the training of machine-learning models of arbitrary architecture isuch that privacy guar-
antees can be described through differential privacy. The technique proposes to train
multiple “teacher” models on sets of sensitive private data, and then use an ensemble of
these teachers to guide the training of a “student” model with public, unlabeled data. The
student training data is sent through each teacher model to obtain a label prediction, and a
noisy aggregation of predictions is used as the training sample label (Figure 4). The PATE
implements a centralized model of privacy.

The thinking behind the PATE’s privacy guarantees is that if multiple distinct teacher
models agreed on an input label, no private data of their training examples wereleaked
since the conclusion was arrived at by consensus, and no particular model revealed too
much information. If, however, there was a strong disagreement among the teachers and
the most probable class was likely to be defined by a single model’s prediction, the random
noise added by the aggregation mechanism would play a bigger role in defining the output,
thereby protecting the individual model predictions.

Figure 4. Private Aggregation of Teacher Ensembles (PATE).

Although the aggregation mechanisms can vary, the general idea often consists in
counting how many teacher models predict each class as being the most probable, adding
noise to this count, and then picking the most probable one. The aggregation mechanism
employed in this work is the one proposed in [18], which consists in adding noise sampled
from a Laplace distribution to the teachers’ class prediction count. For a given student train-
ing sample x, given the label count of teacher predictions Nc(x) for class c, the aggregation
mechanism that outputs the noisy prediction of the ensemble is defined as

pred(x) = arg max
c

{
Nc(x) + Lap

(
1
γ

)}
(5)

3.1. Analysis of PATE Privacy Loss

We provide here a detailed but simplified analysis of PATE privacy loss. The PATE with
the aggregation mechanism given in Equation (5) provided (2γ, 0)-differential privacy [18].
Therefore, a direct application of the DP composition theorem resulted in T queries to
the teacher ensemble yield (2Tγ, 0)-DP. However, the privacy leakage could have been
reduced if we had reduced the confidence in the DP guarantees, that is, to have δ > 0.
To do this would have meant fixing the desired bound δ > 0 on the tail probability of the
privacy loss random variable L and then finding the smallest ε to satisfy Equation (3). To
do this, we applied the moment-generating function method to derive the following bound
on the tail probability:

P[L ≥ ε] ≤ exp(φL(λ)− λε) (6)

where φL(λ) is the logarithm of the moment-generating function ML of L:

φL(λ) = log ML(λ) = logE[exp(λL)] (7)
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This means that P[L ≥ ε] was guaranteed to be smaller than any δ such that

exp(φL(λ)− λε) ≤ δ. (8)

Now, we can rewrite the above equation as follows:

1
λ

(
φL(λ)− log δ

)
≤ ε (9)

Hence, by fixing δ, we obtained the minimum bound of the privacy loss that could be
ensured with such δ:

ε∗ = min
λ

1
λ

(
φL(λ)− log δ

)
(10)

It follows from [18] that the PATE with the aggregation mechanism defined in Equation (5),
satisfied:

φL(λ) ≤ 2γ2λ(λ + 1) (11)

By the composability theorem of [18], the moment-generating function of the mecha-
nism obtained by applying the PATE T times is TφL(λ). Therefore, after T queries, we had
a data-independent privacy guarantee of (ε∗ind, δ), where

ε∗ind = min
λ

1
λ

(
2Tγ2λ(λ + 1)− log δ

)
(12)

We will refer to ε∗ind as the “data independent epsilon”. Figure 5 gives an example
of the data-independent epsilon for γ = 0.05, δ = 10−5 and T = 1000, computed using
Wolfram Alpha.

8/5/21, 12:04 PMminimize (1/l) ( 2000 (0.05)^2 l (l + 1) - log(10^(-5)) ), l from 1 to 3 - Wolfram|Alpha
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Figure 5. Graph of 2Tγ2λ(λ + 1)− log δ. Data independent epsilon is ε∗ind ' 20.1743 at λ ' 1.51743.

Indeed, the epsilon bound on the privacy loss could have been made smaller if
we had brought into the picture the actual predictions delivered by the ensemble of
teachers. This bound is called the “data dependent epsilon” [18]. A tighter bound on the
moment-generating function could have been computed if we had taken into account the
fact that when the quorum among the teachers was strong, the majority outcome was
overwhelmingly likely, so the privacy loss was smaller when this outcome occurred. The
following theorem, proved in [18], provides a data-dependent bound on φL as a function ψ
of the most probable predicted class c∗ of the teacher ensemble:

φL(λ) ≤ ψL(λ; P[M(d) 6= c∗]) (13)

For this result to be applied, an upper bound of P[M(d) 6= c∗] was computed in [18].
For the sake of readability, we omit the details here. Thanks to this bound that depends
on the teacher agreement, a tighter tail bound was computed for specific responses of the
ensemble to a sequence of T student queries :

ε∗dep = min
λ

1
λ

(
ψL(λ)− log δ

)
(14)
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3.2. Sensitive Student Data Scenario

In this paper we were concerned with the case where the student did not have access
to a public dataset but had its own private data. In this scenario, the student was not able
or willing to share its private data with the teacher ensemble or trusted curator (Trusted
Curator A). For this case, we proposed a framework where the student relied on another
curator, which we called Trusted Curator B, the role of which was to privatize student
data by using a randomized (e.g., Laplace) Mechanism to grant the student differential
privacy guarantees over its data. Here, Trusted Curator A provided a centralized privacy
model, which protected the data used to train teachers, while Trusted Curator B provided
a local privacy model, by granting DP guarantees for each individual data point in the
student organization sent to Trusted Curator A to be labelled by the teacher ensemble. This
scenario is illustrated in Figure 6.

It is worth mentioning that several works have experimentally shown that ensembles
are robust to noise in data [21,22]. Therefore, based on that evidence and the PATE’s being
an ensemble model, it was reasonable to think that the predictive capacity of the PATE
would not suffer much from the controlled noise added by Trusted Curator B.

Figure 6. PATE with protected student data.

4. Experimental Results

In this section we describe the experimental setup and apply the approach presented
in the previous section to two case studies representative of the domains of interest:
security and health. Following the same strategy as the original PATE paper [18], teacher
models were trained and used to generate labels for the student training samples, using
an ensemble based on a Laplace aggregation mechanism with γ = 0.05. Every teacher
i ∈ [1, n] was presented with a labelled independent dataset di = (xi, yi), which was used
for training. The student was presented with an unlabelled independent dataset x. Trusted
Curator B privatized student data with a Laplace mechanism with distribution Lap(1/ρ).
To analyze this setting different values of ρ were used. In both case studies, database
elements were vectors of real numbers having an l1-norm equal to 1. Thus, the distance
‖·‖ iwasl1-norm. Moreover, the fact that the vectors had a norm equal to 1 ensured that
the ‖·‖-sensitivity of the Laplace mechanism applied by Trusted Curator B was 2, resulting
in a (2ρ, 0)-DP mechanism. For each value of ρ, 10 student models were trained, each one
on a different random sample of student datapoints labelled by the teacher ensemble. Each
random sample was privatized by Trusted Curator B with noise from a Laplace distribution
Lap(1/ρ). Both the student and teachers were assumed to have had access to a labelled
validation dataset, which was used only to evaluate performance and privacy loss metrics
in the context of this work. In a real world scenario, such validation data may not be
available. However, it did not pose any drawback to the applicability of this approach.

4.1. Cardiopathy Classification

In this experiment we analyzed the case of cardiopathy classification based on elec-
trocardiogram (ECG) data. The ECG dataset contained 109,446 beats [23] extracted from
signals in the MIT–BIH Arrhythmia Database [24]. The sampling frequency of each beat
was 125 Hz, and they were categorized into five classes.
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For simplicity, we used a multi-layer perceptron architecture both for the teacher and
student models, see Figure 7. The number of teachers in the ensemble for this example was
200. Every teacher was trained with 5000 datapoints. The validation dataset contained 500
samples. For the student, 900 datapoints were used for training and 100 for validation.

Figure 7. Neural network architecture used for teachers and student in the ECG example.

First, we analyzed the performance of the teacher ensemble on the 900 student queries
for different values of the student privacy paramenter ρ. Figure 8 presents the accuracy
of the ensemble before adding noise in the teacher aggregator; that is, the arg max in
Equation (5) was computed using unperturbed label counts. The experimental results
showed that this ensemble has a mild accuracy decay of 4–5% with respect to unperturbed
data. Furthermore, Figure 9 depicted the accuracy on the same queries but after privatizing
through the Laplace aggregator. Here, the accuracy obtained after applying the PATE
aggregation exhibited an expected larger gap in the case of perturbed data, but it was
consistently around 10–12% across all values of ρ. These experiments were aligned with
the argument that ensembles are robust to perturbations in input data.

Second, we looked at student accuracy and privacy loss. In Figure 10, the accuracy
observed in the validation set for different ρ values is plotted. As can be seen, despite the
loss in accuracy of the teacher ensemble, the median student accuracy for all cases was not
significantly smaller (7–8%) than the one observed in the case of no noise. In particular, it
came closer to the latter for larger values of ρ (i.e., less noise).

In Figure 11 the data-dependent privacy loss ε∗dep for different ρ values was compared

with the data-independent privacy loss, and a confidence parameter δ = 10−6 was used.
The computed data-independent privacy loss is ε∗ind = 20.2696, represented by the dashed
red line.

Figure 8. Ensemble accuracy evaluated on student data by privacy parameter ρ in ECG dataset.
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Figure 9. PATE accuracy evaluated on student data by privacy parameter ρ in ECG dataset.

Figure 10. Validation accuracy by student privacy parameter ρ in ECG dataset.

Figure 11. Privacy loss by student privacy parameter ρ in ECG dataset.
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As Figure 11 shows, ε∗dep presents more variability when the student does not privatize
its data. Table 1 shows that the worst case interquartile range (IQR) for the student with
privatized data was 0.32 for ρ = 0.1 (the largest perturbation), while the no-noise example
presented a very large IQR of 13.12. At the same time, the median ε∗dep for every ρ different
to the no-noise version was larger than three times the median of the no-noise case.

Table 1. Median and IQR of data-dependent privacy loss for student privacy parameter ρ.

ρ ε∗dep Median ε∗dep IQR

0.1 20.36 0.32
0.3 20.41 0.00
0.5 20.41 0.032
0.7 20.41 0.00
0.9 20.41 0.00
1 20.41 0.00043

no noise 5.96 13.15

4.2. Malicious Web Request Detection

To classify web requests, a dataset of 651,602 labeled requests was assembled from
several public datasets, namely, Malicious-URLs [25], PKDD [26], and CSIC 2010 [27].
To merge the datasets, only the URL of each web request was used. To construct a feature
vector to train the networks, each URL was tokenized in unigrams following a bag-of-
words approach. For each URL, the values of the unigrams were computed using term
frequency–inverse document frequency (TF–IDF) [28]. Each URL was represented by an
l1-normalized vector composed of the 500 most frequent tokens across the entire dataset.

An ensemble of 250 teacher models was trained to generate labels for the student
training samples using the Laplace aggregation mechanism. Every teacher was trained with
930 datapoints and the validation dataset contained 500 samples. Given the unbalanced
distribution of the training set where 95% of samples were not malicious, a threshold of
0.5 to split the model’s output between positive and negative samples might have yielded
poor accuracy results. Therefore, the receiver operating characteristic curve was calculated
for a subset of samples, and the threshold that maximized the difference between the true
positive and false positive rates was picked as the best one. Every teacher used 800 samples
to calculate the best threshold for considering the classifier’s output as a positive prediction.
For the student, random samples of 1000 datapoints were used for training and 200 for
calculating the optimal threshold. For validation, 5000 datapoints were used.

A simple, fully connected neural network architecture with a single real-valued output
(see Figure 12) was used for both the teacher and student models.

Figure 12. Neural network architecture used for teachers and student in Web Request example.
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The data dependent privacy loss of the teacher ensemble is computed for every case as
described in Section 3 for δ = 10−5. The data independent privacy loss ε∗ind of the teacher
ensemble computed using WolframAlpha resulted in a value of 20.1743.

As presented in Figures 13 and 14, the median of both the TPR and TNR performance
metrics was similar for all values of ρ with relatively low dispersion in most cases. This
showed that the predictive capacity of a student that privatized its data was close to the
one observed for student models trained with non-privatized data; that is, the experiments
showed that privatizing student data led to no significant loss in predictive value.

Figure 13. Validation TPR by student privacy parameter ρ in Web Requests dataset.

Figure 14. Validation TNR by student privacy parameter ρ in Web Requests dataset.

On the other hand, Figure 15 presents data-dependent privacy loss for the different
values of ρ. The dashed red line represents the data-independent privacy loss ε∗ind. As can
be seen, the data-dependent privacy loss ε∗dep in some cases turned out to be higher than
for the experiment where noise was not applied to student data. In one case, it happened
to be even higher than for the data-independent privacy loss ε∗ind.
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Figure 15. Privacy loss by student privacy parameter ρ in Web Requests dataset.

5. Conclusions

This paper exploredthe problem of using the PATE in more realistic scenarios where
students were not allowed, or willing, to share private data with the teacher ensemble.

To cope with this constraint, we introduced a trusted curator that implemented a local
DP model that added noise to student data before it was sent to the teacher ensemble. This
approach was implemented and evaluated in case studies security and health. The experi-
mental setup consisted of training students for several values of privacy parameters and
measuring model predictive capacity and the data dependent privacy loss of the teacher
ensemble.

The key result of this work is that the introduction of controlled noise, to ensure DP
in student data, yielded no important reductions in predictive model performance com-
pared with using unperturbed (non privatized) student data. This provided experimental
evidence that using the PATE while preserving students’ privacy is feasible.

Tangentially, those experiments helped uncover some features of data-dependent
privacy loss proposed in [18] that, to the best of our knowledge, had not been reported.
In short, data-dependent privacy loss may be subject to high variance, as shown in the
ECG case study with unperturbed data, and it may be very sensitive to noise in data, as
observed in both case studies, which could be the subject of further research.
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