
machine learning &

knowledge extraction

Article

Orientation-Encoding CNN for Point Cloud Classification
and Segmentation

Hongbin Lin 1,*, Wu Zheng 2 and Xiuping Peng 2

����������
�������

Citation: Lin, H.; Zheng, W.; Peng, X.

Orientation-Encoding CNN for Point

Cloud Classification and

Segmentation. Mach. Learn. Knowl.

Extr. 2021, 3, 601–614. https://

doi.org/10.3390/make3030031

Academic Editor:

Antonio Fernández-Caballero

Received: 2 June 2021

Accepted: 26 July 2021

Published: 2 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
2 School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China;

zweducn@163.com (W.Z.); pengxp@ysu.edu.cn (X.P.)
* Correspondence: honphin@ysu.edu.cn

Abstract: With the introduction of effective and general deep learning network frameworks, deep
learning based methods have achieved remarkable success in various visual tasks. However, there are
still tough challenges in applying them to convolutional neural networks due to the lack of a potential
rule structure of point clouds. Therefore, by taking the original point clouds as the input data, this
paper proposes an orientation-encoding (OE) convolutional module and designs a convolutional
neural network for effectively extracting local geometric features of point sets. By searching for the
same number of points in 8 directions and arranging them in order in 8 directions, the OE convolution
is then carried out according to the number of points in the direction, which realizes the effective
feature learning of the local structure of the point sets. Further experiments on diverse datasets show
that the proposed method has competitive performance on classification and segmentation tasks of
point sets.

Keywords: point clouds; orientation-encoding (OE) convolution; local geometric feature; classifica-
tion; segmentation

1. Introduction

At present, deep learning has achieved significantly success in image recognition tasks,
such as image classification [1–3] and semantic segmentation [4,5]. The rapid development
of two-dimensional data fields has promoted researchers’ interest in three-dimensional data
recognition and segmentation tasks. With the extensive application of 3D laser scanners
and 3D depth sensors, algorithms for the effective analysis of point cloud data are required
in terms of autonomous driving, robots, unmanned aerial vehicles, and virtual reality. It is
not always feasible to directly apply the two-dimensional image deep learning methods to
the three-dimensional data tasks, because in the three-dimensional scene composed of the
point cloud, these point set objects are disordered and scattered in the three-dimensional
space. It is also unreasonable to simply apply two-dimensional features to irregular point
clouds through convolution operators, because these operations are carried out on regular
grids. The methods of [6–8] try to address this problem by using three-dimensional
convolutional neural network voxelization scenarios. However, as the main challenges of
voxel representation are spatial sparsity and computational complexity, the researchers
in [9,10] try to use special methods (such as octree) to solve the sparsity problem, but it
takes a certain amount of time to convert the point cloud into voxels.

Because of the limitations of the various above explorations, the PointNet [11] struc-
ture directly uses the point cloud as the input data and then uses the T-net module to
convert the input point cloud to solve the problem of rotation invariance of the point cloud
object, combined with a Multi-Layer Perceptron (MLP) to extract the high-level semantic
information of the input data object, and finally max pooling to extract the global informa-
tion. The PointNet architecture solves the problem of point cloud disorder and produces a
general network architecture for directly processing the point cloud data. However, the

Mach. Learn. Knowl. Extr. 2021, 3, 601–614. https://doi.org/10.3390/make3030031 https://www.mdpi.com/journal/make

https://www.mdpi.com/journal/make
https://www.mdpi.com
https://doi.org/10.3390/make3030031
https://doi.org/10.3390/make3030031
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/make3030031
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make3030031?type=check_update&version=1

Mach. Learn. Knowl. Extr. 2021, 3 602

local geometric features of point cloud objects are not taken into account in the network
architecture when extracting high-level semantic information. Afterwards, PointNet++ [12]
downsamples the sample data by means of the Farthest Point Sampling (FPS) algorithm
and uses the ball query algorithm to search the samples for a set of adjacent points within
a certain range; then the original features of the combined point sets learn high-level se-
mantic features through convolution operations. The core idea is to propose a hierarchical
structure, which solves the defects of PointNet local feature extraction and further improves
the performance of the network.

PointNet [11] and PointNet++ [12] are the first deep network frameworks for point
set processing, and several studies have promoted this research direction by proposing
improvements in structure or composition [13,14]. Considering the relative layout of
adjacent points and their features, a new pooling strategy is combined to carry out spectral
convolution on local graphs [13]. SpiderCNN [14] proposes a convolution kernel with
parameterization by learning the weighting parameters from the features of the input
point sets. These methods attempt to enrich feature sets through original point cloud data
features to enhance the performance of point cloud classification and segmentation tasks.
However, these schemes still have problems such as insufficient extraction of local features
of the point cloud and poor universality and robustness of the network architecture; hence,
the 3D point cloud data task is still a long-term and challenging process.

In this paper, we propose a new orientation-encoding convolutional neural network
(OECNN) for the point cloud data. In order to overcome the problems of low accuracy and
poor robustness of the network architecture, we adopt a special convolution method and a
pooling strategy. Our main contributions in this paper are as follows:

• We propose a general network architecture for point cloud classification and segmen-
tation.

• The framework is simple and effective.
• The network has certain adaptability.
• Our OE convolution and pooling strategies are perceptive to local geometric features

of point sets.

2. Related Work
2.1. Point Cloud Classification and Segmentation

In the point cloud model, each sample is composed of point sets. Point cloud classifi-
cation can be stated as follows: Given a set of sample points in three-dimensional space,
we learn the high-level semantic feature information of samples through neural network
to match the sample label. Each sample matches the corresponding label, which is an
end-to-end supervised learning process. The point cloud segmentation task is a further
extension of the classification tasks, and its purpose is to match the category label of each
point in the sample. As we have entered the era of big data, deep learning has been widely
studied through the application of optimization algorithms in neural networks and various
tasks that take point clouds as the research object have attracted researchers’ attention.

2.2. Voxel Data

Voxel data is a regular data structure which is easy to process. VoxNet [7] and
NormalNet [15] apply 3D convolution to a voxelization of point clouds. However, there
are high computational and memory costs associated with using 3D convolution. A variety
of work [9,16] is devoted to exploring the sparsity of voxelized point clouds to improve
the efficiency of computing and memory. OctNet [9] uses the sparsity of the input data to
divide the space using a series of unbalanced octrees, and each leaf node in the octree stores
a pooled feature representation. This representation focuses on memory allocation and
computation in the relevant dense regions and enables deeper networks to handle higher
resolutions. The Sparse Submanifold CNN architecture [16] proposes sparse convolution
operations to deal with spatial sparse data more effectively and use them to construct

Mach. Learn. Knowl. Extr. 2021, 3 603

spatial sparse convolutional networks. In comparison, our OECNN is able to directly use
point clouds as input data and process very sparse data.

2.3. Spatial Domain

The GeodesicCNN [17] is a generalization of the convolution network paradigm to
non-Euclidean manifolds. Its construction is based on a local geodesic system consisting
of polar coordinates to extract “patches”, and the coefficients of the filters and linear
combination weights are optimization variables that are used to learn to minimize specific
cost functions.

An image is a function on regular grids F : R2. Let W be a (2m + 1)× (2m + 1) filter
matrix, where m is a positive integer. The convolution in classic CNNs is:

F ∗W(i, j) =
m

∑
s=−m

m

∑
t=−m

F(i− s, j− t)W(s, t) (1)

GeodesicCNN uses the patch operator D to map a point p and its neighbors, and then
applies Equation (1). The method learns the influence of patch operation in the local polar
coordinate system of point p. We offer an alternative viewpoint; instead of finding local
parametrizations of the manifold, we view it as an embedded Euclidean space in Rn and
design convolution methods. Our method is more efficient for point cloud processing in
the Euclidean space.

3. Method Design

We studied a series of different convolution operations [13,14,18] and pooling meth-
ods [14] for point cloud data. In PointSIFT [18], the authors proposed an operator with
orientation-encoding and scale perception. They search eight nearest points for each point
in eight directions and extract the features of point sets through three-layer convolution
(PointSIFT convolution will carry out three-layer convolution according to three directions,
xyz) and max pooling. However, when searching each nearest point, all the input points
need to be traversed. The system also has some limitations in that only the eight nearest
points can be searched for each point.

Unlike PointSIFT, in this paper, we proposed an orientation-encoding operator and
carry out effective convolution in each direction. We divide the spherical region in a certain
range into eight directions, search the same number of points in each direction for each
point, and sort the searched point sets according to the direction. After that, we extract the
corresponding features of point sets through a two-layer convolution operation (the OE
convolution is convolved by the number of points in each direction) and top-k pooling
strategy. The method in this paper can adjust the scale (such as radius and the number
of points) according to the features learned from convolutional blocks by orientation-
encoding, which has certain adaptability. Moreover, convincing experimental results have
been obtained on ModelNet40 and ShapeNet part datasets. PointSIFT convolution and OE
convolution are shown in Figure 1.

3.1. Orientation-Encoding (OE) Architecture

We present our OE convolution module in this section. In order to capture shape
patterns adaptively, we hope that shape information can be clearly encoded in different
directions. Hence, we propose a new orientation-encoding convolution for all point
operations. As illustrated in Figure 2a, PointSIFT can ideally search for the 8 nearest points
(red points) in 8 directions for each point in the cube. However, this search method has
a large fault tolerance and increases the computational complexity. Our OE search can
selectively search for the desired number of points in 8 directions of the spherical area,
with some flexibility, and better represents the surrounding point set features. Figure 2b
shows searching for 4 points in each of the 8 directions.

Mach. Learn. Knowl. Extr. 2021, 3 604

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 3

higher resolutions. The Sparse Submanifold CNN architecture [16] proposes sparse con-
volution operations to deal with spatial sparse data more effectively and use them to con-
struct spatial sparse convolutional networks. In comparison, our OECNN is able to di-
rectly use point clouds as input data and process very sparse data.

2.3. Spatial Domain
The GeodesicCNN [17] is a generalization of the convolution network paradigm to

non-Euclidean manifolds. Its construction is based on a local geodesic system consisting
of polar coordinates to extract “patches”, and the coefficients of the filters and linear com-
bination weights are optimization variables that are used to learn to minimize specific cost
functions.

An image is a function on regular grids ܨ ∶ ܴଶ. Let W be a (2݉ + 1) × (2݉ + 1)
filter matrix, where m is a positive integer. The convolution in classic CNNs is:

* (,) (,) (,)
m m

s m t m

F W i j F i s j t W s t
=− =−

= − −  (1)

GeodesicCNN uses the patch operator D to map a point p and its neighbors, and then
applies Equation (1). The method learns the influence of patch operation in the local polar
coordinate system of point p. We offer an alternative viewpoint; instead of finding local
parametrizations of the manifold, we view it as an embedded Euclidean space in ܴ௡ and
design convolution methods. Our method is more efficient for point cloud processing in
the Euclidean space.

3. Method Design
We studied a series of different convolution operations [13,14,18] and pooling meth-

ods [14] for point cloud data. In PointSIFT [18], the authors proposed an operator with
orientation-encoding and scale perception. They search eight nearest points for each point
in eight directions and extract the features of point sets through three-layer convolution
(PointSIFT convolution will carry out three-layer convolution according to three direc-
tions, xyz) and max pooling. However, when searching each nearest point, all the input
points need to be traversed. The system also has some limitations in that only the eight
nearest points can be searched for each point.

Unlike PointSIFT, in this paper, we proposed an orientation-encoding operator and
carry out effective convolution in each direction. We divide the spherical region in a cer-
tain range into eight directions, search the same number of points in each direction for
each point, and sort the searched point sets according to the direction. After that, we ex-
tract the corresponding features of point sets through a two-layer convolution operation
(the OE convolution is convolved by the number of points in each direction) and top-k
pooling strategy. The method in this paper can adjust the scale (such as radius and the
number of points) according to the features learned from convolutional blocks by orien-
tation-encoding, which has certain adaptability. Moreover, convincing experimental re-
sults have been obtained on ModelNet40 and ShapeNet part datasets. PointSIFT convolu-
tion and OE convolution are shown in Figure 1.

(a) PointSIFT convolution

y

z

x

x

y

z

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 4

(b) OE convolution

Figure 1. The comparison of PointSIFT and OE convolution.

3.1. Orientation-Encoding (OE) Architecture
We present our OE convolution module in this section. In order to capture shape

patterns adaptively, we hope that shape information can be clearly encoded in different
directions. Hence, we propose a new orientation-encoding convolution for all point oper-
ations. As illustrated in Figure 2a, PointSIFT can ideally search for the 8 nearest points
(red points) in 8 directions for each point in the cube. However, this search method has a
large fault tolerance and increases the computational complexity. Our OE search can se-
lectively search for the desired number of points in 8 directions of the spherical area, with
some flexibility, and better represents the surrounding point set features. Figure 2b shows
searching for 4 points in each of the 8 directions.

In three-dimensional space, with an input of n points with d dimension features, for
each point ݌଴ (with d dimensions), the 3D space is divided into 8 partitions with ݌଴ as
the center, indicating 8 directions. We define variables for each direction to store the index
of the points to be searched in each direction and define the corresponding indicators to
indicate the number of local points to be searched in each direction. In the spherical region
with radius r, we find m points for ݌଴ in each direction (let the number of local points
searched in the space of each point be M, m = M/8). m points represent local geometric
features in one direction.

(a) PointSIFT search (b) OE search

Figure 2. PointSIFT and OE search point methods.

Before the training, we rotate, jitter, and randomly select a fixed number of the sam-
ple data in each epoch; hence, the search of local points around the central point ݌଴ can
be regarded as a random process. When we have searched the corresponding number of
points within the radius r, then we do not need to search other points. In the process of
searching local points for each central point, the worst situation is to traverse all sample
points once. In PointSIFT, because the search objective is to find the nearest point in each
direction, all points in the sample need to be traversed eight times. Therefore, in theory,

Figure 1. The comparison of PointSIFT and OE convolution.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 4

(b) OE convolution

Figure 1. The comparison of PointSIFT and OE convolution.

3.1. Orientation-Encoding (OE) Architecture
We present our OE convolution module in this section. In order to capture shape

patterns adaptively, we hope that shape information can be clearly encoded in different
directions. Hence, we propose a new orientation-encoding convolution for all point oper-
ations. As illustrated in Figure 2a, PointSIFT can ideally search for the 8 nearest points
(red points) in 8 directions for each point in the cube. However, this search method has a
large fault tolerance and increases the computational complexity. Our OE search can se-
lectively search for the desired number of points in 8 directions of the spherical area, with
some flexibility, and better represents the surrounding point set features. Figure 2b shows
searching for 4 points in each of the 8 directions.

In three-dimensional space, with an input of n points with d dimension features, for
each point ݌଴ (with d dimensions), the 3D space is divided into 8 partitions with ݌଴ as
the center, indicating 8 directions. We define variables for each direction to store the index
of the points to be searched in each direction and define the corresponding indicators to
indicate the number of local points to be searched in each direction. In the spherical region
with radius r, we find m points for ݌଴ in each direction (let the number of local points
searched in the space of each point be M, m = M/8). m points represent local geometric
features in one direction.

(a) PointSIFT search (b) OE search

Figure 2. PointSIFT and OE search point methods.

Before the training, we rotate, jitter, and randomly select a fixed number of the sam-
ple data in each epoch; hence, the search of local points around the central point ݌଴ can
be regarded as a random process. When we have searched the corresponding number of
points within the radius r, then we do not need to search other points. In the process of
searching local points for each central point, the worst situation is to traverse all sample
points once. In PointSIFT, because the search objective is to find the nearest point in each
direction, all points in the sample need to be traversed eight times. Therefore, in theory,

Figure 2. PointSIFT and OE search point methods.

In three-dimensional space, with an input of n points with d dimension features, for
each point p0 (with d dimensions), the 3D space is divided into 8 partitions with p0 as the
center, indicating 8 directions. We define variables for each direction to store the index
of the points to be searched in each direction and define the corresponding indicators to
indicate the number of local points to be searched in each direction. In the spherical region
with radius r, we find m points for p0 in each direction (let the number of local points
searched in the space of each point be M, m = M/8). m points represent local geometric
features in one direction.

Before the training, we rotate, jitter, and randomly select a fixed number of the sample
data in each epoch; hence, the search of local points around the central point p0 can be
regarded as a random process. When we have searched the corresponding number of
points within the radius r, then we do not need to search other points. In the process of
searching local points for each central point, the worst situation is to traverse all sample
points once. In PointSIFT, because the search objective is to find the nearest point in each
direction, all points in the sample need to be traversed eight times. Therefore, in theory,
our method has a certain speed advantage and reduces the computational complexity.
We can adjust the search range according to the radius r, so as to better capture the local

Mach. Learn. Knowl. Extr. 2021, 3 605

information in each direction. In order to prevent not searching enough points in radius r,
we use the point p0 to initialize the required number of points (with d dimensions).

As shown in Figure 3, we propose the OE convolution module, which has two paths
to extract local high-dimensional semantic information for each point in the sample. On the
one hand, we first use OE search to find the local point sets and the corresponding features
for each point and store the corresponding information by increasing the one dimension. In
order to make the convolution orientation-aware, we conduct a two-layer convolution. The
first layer of convolution is performed according to the number of points in each direction
to obtain the remaining 8 points in 8 directions, with one point in each direction. The
second convolution convolves the remaining 8 points, and then reduces the dimensions
to obtain the corresponding point set features. We used the same output channel e for
two convolutions. At this point, each point has local high-dimensional semantic feature
information. On the other hand, we use the input point set features to directly perform the
convolution with the output channel e to obtain the high-dimensional semantic features
of each point. After that, we obtain richer local point set high-dimensional semantic
information by performing an addition operation.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 5

our method has a certain speed advantage and reduces the computational complexity. We
can adjust the search range according to the radius r, so as to better capture the local in-
formation in each direction. In order to prevent not searching enough points in radius r,
we use the point ݌଴ to initialize the required number of points (with d dimensions).

As shown in Figure 3, we propose the OE convolution module, which has two paths
to extract local high-dimensional semantic information for each point in the sample. On
the one hand, we first use OE search to find the local point sets and the corresponding
features for each point and store the corresponding information by increasing the one di-
mension. In order to make the convolution orientation-aware, we conduct a two-layer
convolution. The first layer of convolution is performed according to the number of points
in each direction to obtain the remaining 8 points in 8 directions, with one point in each
direction. The second convolution convolves the remaining 8 points, and then reduces the
dimensions to obtain the corresponding point set features. We used the same output chan-
nel e for two convolutions. At this point, each point has local high-dimensional semantic
feature information. On the other hand, we use the input point set features to directly
perform the convolution with the output channel e to obtain the high-dimensional seman-
tic features of each point. After that, we obtain richer local point set high-dimensional
semantic information by performing an addition operation.

Figure 3. OE convolution module.

We put the obtained feature of points into a tensor ܵ ∈ ܴ௡×ெ×ௗ. The two stages of
directional convolution are:

1 [(,)] n m e
m mS g Conv A S R × ×= ∈

1
2 8 8[(,)] n eS g Conv A S R × ×= ∈

(2)

where ܣ௠ and ଼ܣ represent the weight parameters to be optimized, ݒ݊݋ܥ௠ represents
the convolution of m points along each direction, ଼ݒ݊݋ܥ represents the convolution of the
remaining eight points in eight directions. In this paper, we set ݃[⋅] = After the convolution, each point is represented as a vector with e dimensions. This .[(⋅)݉ݎ݋݊_ℎܿݐܽܤ]ܷܮܴ݁
vector represents the shape pattern around ݌଴.

3.2. Multi-Scale Architecture
Using an OE convolution module as a basic unit, we are able to build a multi-scale

network structure. An OE convolution module can capture arbitrary scale information
from eight directions and select any number of points in each direction. If we stack several

n × M × d

n × 8 × e

n × e

Input feature
n × d

n × e

Output feature
n × e

O
rie

nt
at

io
n-

en
co

di
ng

Co

nv
ol

ut
io

na
l l

ay
er

s

add

Conv_layer

OE search

Figure 3. OE convolution module.

We put the obtained feature of points into a tensor S ∈ Rn×M×d. The two stages of
directional convolution are:

S1 = g[Convm(Am, S)] ∈ Rn×m×e

S2 = g[Conv8(A8, S)] ∈ Rn×1×e (2)

where Am and A8 represent the weight parameters to be optimized, Convm represents the
convolution of m points along each direction, Conv8 represents the convolution of the re-
maining eight points in eight directions. In this paper, we set g[·] = ReLU[Batch_norm(·)].
After the convolution, each point is represented as a vector with e dimensions. This vector
represents the shape pattern around p0.

Mach. Learn. Knowl. Extr. 2021, 3 606

3.2. Multi-Scale Architecture

Using an OE convolution module as a basic unit, we are able to build a multi-scale
network structure. An OE convolution module can capture arbitrary scale information
from eight directions and select any number of points in each direction. If we stack several
OE convolution modules to generate a deeper network structure, then the last layer can
observe a larger three-dimensional region, and different OE units can have different scales.
As illustrated in Figure 4, we can choose the appropriate scale and the number of points
according to the features of the network and strive to better optimize the performance of
the network. A simple but effective way to capture multi-scale patterns is to concatenate
the output of different stacked units as a shortcut.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 6

OE convolution modules to generate a deeper network structure, then the last layer can
observe a larger three-dimensional region, and different OE units can have different
scales. As illustrated in Figure 4, we can choose the appropriate scale and the number of
points according to the features of the network and strive to better optimize the perfor-
mance of the network. A simple but effective way to capture multi-scale patterns is to
concatenate the output of different stacked units as a shortcut.

x

y

z

Figure 4. Multi-scale selection.

For a layer of OE convolution module, searching for M local points for each point in
the sample can be regarded as a random process. When we stack OE convolution mod-
ules, if we use the same scale and search the same number of local points for each layer of
OE convolution module but with different numbers of output channels, the M points
searched by each layer of OE convolution module are the same. In this way, we can use
neural networks to learn different high-dimensional semantic information of the same lo-
cal point set in a certain range, and finally fuse the feature information by concatenation.
If we use different scales and different numbers of local search points in each layer of the
OE convolution module, then the M points in each layer of the OE convolution module
are different, which will lead to a different local scope and different local semantic feature
information collected by each layer of OE convolution module, which will generate infor-
mation redundancy. This is not conducive to the feature learning of the local range; hence,
we set the same scale and the same number of local points in each layer of the OE convo-
lution module to generate more representative local high-dimensional semantic infor-
mation for experiments. In the following sections, we also conducted comparative exper-
iments on multi-scale and fixed-scale structures.

3.3. Top-k Pooling vs. Max Pooling
Max pooling can be seen as a special type of top-k pooling. By applying max pooling,

we can extract global point cloud features. However, because it does not have certain
scalability and will lose data information, we adopt a selective top-k pooling strategy pro-
posed in SpiderCNN [14]. Both max pooling and top-k pooling use a simple symmetric
function to gather information from each point. Here, a symmetric function takes n vectors
as inputs and outputs a vector representing global point cloud information in a sample
which is invariant to the input order.

Our idea is to generate a function that can extract global features by applying a sym-
metric function in the feature space of a point set:

max 1 1 1 1 1({ ,..., }) ((),... ())pooling n nf x x h Conv x Conv x− −≈

_ 1 1 2 1 1({ ,..., }) ((),... ())top k pooling n nf x x h Conv x Conv x− −≈ (3)

where h is composed of a single variable function and max pooling (or a top-k pooling). f
is the corresponding sample features, and the number of features of ௧݂௢௣_௞ ௣௢௢௟௜௡௚ is k
times that of features of ୫݂ୟ୶ ௣௢௢௟௜௡௚. The value of k determines that top-k pooling has good

Figure 4. Multi-scale selection.

For a layer of OE convolution module, searching for M local points for each point
in the sample can be regarded as a random process. When we stack OE convolution
modules, if we use the same scale and search the same number of local points for each
layer of OE convolution module but with different numbers of output channels, the
M points searched by each layer of OE convolution module are the same. In this way,
we can use neural networks to learn different high-dimensional semantic information
of the same local point set in a certain range, and finally fuse the feature information by
concatenation. If we use different scales and different numbers of local search points in each
layer of the OE convolution module, then the M points in each layer of the OE convolution
module are different, which will lead to a different local scope and different local semantic
feature information collected by each layer of OE convolution module, which will generate
information redundancy. This is not conducive to the feature learning of the local range;
hence, we set the same scale and the same number of local points in each layer of the
OE convolution module to generate more representative local high-dimensional semantic
information for experiments. In the following sections, we also conducted comparative
experiments on multi-scale and fixed-scale structures.

3.3. Top-k Pooling vs. Max Pooling

Max pooling can be seen as a special type of top-k pooling. By applying max pooling,
we can extract global point cloud features. However, because it does not have certain
scalability and will lose data information, we adopt a selective top-k pooling strategy
proposed in SpiderCNN [14]. Both max pooling and top-k pooling use a simple symmetric
function to gather information from each point. Here, a symmetric function takes n vectors
as inputs and outputs a vector representing global point cloud information in a sample
which is invariant to the input order.

Mach. Learn. Knowl. Extr. 2021, 3 607

Our idea is to generate a function that can extract global features by applying a
symmetric function in the feature space of a point set:

fmax pooling({x1, . . . , xn−1}) ≈ h1(Conv(x1), . . . Conv(xn−1))
ftop_k pooling({x1, . . . , xn−1}) ≈ h2(Conv(x1), . . . Conv(xn−1))

(3)

where h is composed of a single variable function and max pooling (or a top-k pooling). f is
the corresponding sample features, and the number of features of ftop_k pooling is k times that
of features of fmaxpooling. The value of k determines that top-k pooling has good selectivity.
Through the collection of h, we can learn a number of features to capture different properties
of the set in different directions. Under the same experimental conditions, we compare
the two pooling methods on ModelNet40 [19]. The max pooling classification accuracy
is 92.2%, and the top-k pooling classification accuracy is 92.5% when the value of k is 2,
which reflects the advantages of top-k pooling in extracting global feature information. In
Figure 5, we use the 2 × 2 matrix to give the calculation process of max pooling and top-k
pooling and show the selectivity of top-k pooling.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 7

selectivity. Through the collection of h, we can learn a number of features to capture dif-
ferent properties of the set in different directions. Under the same experimental condi-
tions, we compare the two pooling methods on ModelNet40 [19]. The max pooling classi-
fication accuracy is 92.2%, and the top-k pooling classification accuracy is 92.5% when the
value of k is 2, which reflects the advantages of top-k pooling in extracting global feature
information. In Figure 5, we use the 2 × 2 matrix to give the calculation process of max
pooling and top-k pooling and show the selectivity of top-k pooling.

(a) Max pooling

(b) Top_1 pooling

(c) Top_2 pooling

Figure 5. Calculation process of max pooling and top-k pooling.

4. Experiment
4.1. Experimental Environment

We evaluated and analyzed the OE convolution (OEConv) module on the 3D point
clouds classification and segmentation. Through the 4-layer OE structure, we empirically
studied the key parameters and compare our model with the state-of-the-art methods. All
models were constructed with Tensorflow 1.5 on 1080Ti GPU and trained using the Adam
optimizer with a learning rate of 0.001. The same data augmentation strategy as for Point-
Net [11] was applied: the point cloud was randomly rotated along the up-axis and the
position of each point was jittered by a Gaussian noise with zero mean and 0.02 standard
deviation. The system used was Ubuntu 16.04. A dropout rate of 0.5 was used with the
fully connected layer. Batch normalization was used at the end of each OE convolution
module with the decay set to 0.5 or 0.7. On a GTX 1080Ti, the forward-time of a OEConv
layer (batch size 16) with in-channel 32 and out-channel 64 was 0.052s. For the 4-layer
OECNN (batch size 16), the total forward-pass time was 0.615s.

4.2. Classification on ModelNet40
ModelNet40 [19] contains 12,311 CAD models of 40 categories, sampled into point

clouds. We used the official split, with 9843 training and 2468 testing examples. Experi-
ments took the (x, y, z) coordinates and normal vectors of the 1024 points as the input for
OECNN on ModelNet40. Figure 6 illustrates the OECNN with 4 layers of OEConv, and
the number of output channels for each layer of convolution was 32, 64, 128, and 256,

2 6 31

4

1

6

1 2 6

3 5 3

5 12

6

6

5

5

Max
pooling

2 6 31

4

1

6

1 2 6

3 5 3

5 12

6

6

5

5

Top_1
pooling

2 6 31

4

1

6

1 2 6

3 5 3

5 12

Top_2
pooling 6 4 6 3

6 5 5 3

Figure 5. Calculation process of max pooling and top-k pooling.

4. Experiment
4.1. Experimental Environment

We evaluated and analyzed the OE convolution (OEConv) module on the 3D point
clouds classification and segmentation. Through the 4-layer OE structure, we empirically
studied the key parameters and compare our model with the state-of-the-art methods.
All models were constructed with Tensorflow 1.5 on 1080Ti GPU and trained using the
Adam optimizer with a learning rate of 0.001. The same data augmentation strategy as for
PointNet [11] was applied: the point cloud was randomly rotated along the up-axis and the

Mach. Learn. Knowl. Extr. 2021, 3 608

position of each point was jittered by a Gaussian noise with zero mean and 0.02 standard
deviation. The system used was Ubuntu 16.04. A dropout rate of 0.5 was used with the
fully connected layer. Batch normalization was used at the end of each OE convolution
module with the decay set to 0.5 or 0.7. On a GTX 1080Ti, the forward-time of a OEConv
layer (batch size 16) with in-channel 32 and out-channel 64 was 0.052 s. For the 4-layer
OECNN (batch size 16), the total forward-pass time was 0.615 s.

4.2. Classification on ModelNet40

ModelNet40 [19] contains 12,311 CAD models of 40 categories, sampled into point
clouds. We used the official split, with 9843 training and 2468 testing examples. Exper-
iments took the (x, y, z) coordinates and normal vectors of the 1024 points as the input
for OECNN on ModelNet40. Figure 6 illustrates the OECNN with 4 layers of OEConv,
and the number of output channels for each layer of convolution was 32, 64, 128, and
256, respectively. The ReLU activation function was used after convolution. The output
features of the four OEConvs were concatenated in the end. Top-k pooling of all the points
was used to extract global features. The experiments showed that a 1-layer OECNN with
a OEConv of 32 channels, 0.2 scale, and 16 the number of search points can achieve a
classification accuracy of 88.4%, and the performance of the OECNN improves with the
increasing number of layers of OEConv.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 8

respectively. The ReLU activation function was used after convolution. The output fea-
tures of the four OEConvs were concatenated in the end. Top-k pooling of all the points
was used to extract global features. The experiments showed that a 1-layer OECNN with
a OEConv of 32 channels, 0.2 scale, and 16 the number of search points can achieve a
classification accuracy of 88.4%, and the performance of the OECNN improves with the
increasing number of layers of OEConv.

n
×

m

n
×

32

64

n
×

64

n
×

12
8

128 256 n
×

25
6

32 CO
NC

A
TE

NA
TE

48
0

×
k

To
p_

k
po

ol
in

g
MLP
512
256
40

c

OEConv with
output channel c

n
×

48
0

n
×

40

Figure 6. The architecture of a 4-layer OECNN in ModelNet40 [19] classification.

We compare three key parameters (the number of search points, different scales, and
different values of k for top-k pooling) to improve the performance of the optimized net-
work by using the single variable principle. The results are summarized in Figure 7. We
saw that 16 is the optimal choice among 8, 16, 24, and 32 search points, and we chose a
scale of 0.2 with top-2 pooling to get an accuracy of 92.5%. Then we used a fixed-parameter
module to stack a 4-layer network structure, using top-4 pooling to get the best accuracy
of 92.7%. We use a 4-layer multi-scale structure with different key parameters, and the
classification accuracy is 92.6%. The result is slightly worse than for a 4-layer single-scale
network with fixed parameters. We suspect that it may be due to the insufficient local
features extracted from the multi-scale structure. To prevent overfitting, we apply the data
augmentation method DP (random input dropout) introduced in [12] during training. Ta-
ble 1 shows a comparison between OECNN and other models on ModelNet40. We also
added the convolution operator proposed by PointSIFT into the OECNN network for
comparison, and the result was only 90.3%. The 4-layer OECNN achieved an accuracy of
92.7%, which improves over the best reported result of models with 1024 input points. In
Figure 8, we give a visualization of the misclassified samples of the two categories. We

(a) The number of search points

(b) Different scales

91

91.5

92

92.5

93

8 16 24 32

92.0

92.5

92.1

92.3

A
cc

ur
ac

y%

91

91.5

92

92.5

93

0.1 0.2 0.3 0.4

91.3

92.5

92.0
91.7A

cc
ur

ac
y%

Figure 6. The architecture of a 4-layer OECNN in ModelNet40 [19] classification.

We compare three key parameters (the number of search points, different scales, and
different values of k for top-k pooling) to improve the performance of the optimized
network by using the single variable principle. The results are summarized in Figure 7. We
saw that 16 is the optimal choice among 8, 16, 24, and 32 search points, and we chose a
scale of 0.2 with top-2 pooling to get an accuracy of 92.5%. Then we used a fixed-parameter
module to stack a 4-layer network structure, using top-4 pooling to get the best accuracy
of 92.7%. We use a 4-layer multi-scale structure with different key parameters, and the
classification accuracy is 92.6%. The result is slightly worse than for a 4-layer single-scale
network with fixed parameters. We suspect that it may be due to the insufficient local
features extracted from the multi-scale structure. To prevent overfitting, we apply the
data augmentation method DP (random input dropout) introduced in [12] during training.
Table 1 shows a comparison between OECNN and other models on ModelNet40. We
also added the convolution operator proposed by PointSIFT into the OECNN network for
comparison, and the result was only 90.3%. The 4-layer OECNN achieved an accuracy of
92.7%, which improves over the best reported result of models with 1024 input points. In
Figure 8, we give a visualization of the misclassified samples of the two categories. We
find that the reason for the misclassification is that they all have similar 3D geometric
spatial features.

Mach. Learn. Knowl. Extr. 2021, 3 609

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 8

respectively. The ReLU activation function was used after convolution. The output fea-
tures of the four OEConvs were concatenated in the end. Top-k pooling of all the points
was used to extract global features. The experiments showed that a 1-layer OECNN with
a OEConv of 32 channels, 0.2 scale, and 16 the number of search points can achieve a
classification accuracy of 88.4%, and the performance of the OECNN improves with the
increasing number of layers of OEConv.

n
×

m

n
×

32

64

n
×

64

n
×

12
8

128 256 n
×

25
6

32 CO
NC

A
TE

NA
TE

48
0

×
k

To
p_

k
po

ol
in

g

MLP
512
256
40

c

OEConv with
output channel c

n
×

48
0

n
×

40

Figure 6. The architecture of a 4-layer OECNN in ModelNet40 [19] classification.

We compare three key parameters (the number of search points, different scales, and
different values of k for top-k pooling) to improve the performance of the optimized net-
work by using the single variable principle. The results are summarized in Figure 7. We
saw that 16 is the optimal choice among 8, 16, 24, and 32 search points, and we chose a
scale of 0.2 with top-2 pooling to get an accuracy of 92.5%. Then we used a fixed-parameter
module to stack a 4-layer network structure, using top-4 pooling to get the best accuracy
of 92.7%. We use a 4-layer multi-scale structure with different key parameters, and the
classification accuracy is 92.6%. The result is slightly worse than for a 4-layer single-scale
network with fixed parameters. We suspect that it may be due to the insufficient local
features extracted from the multi-scale structure. To prevent overfitting, we apply the data
augmentation method DP (random input dropout) introduced in [12] during training. Ta-
ble 1 shows a comparison between OECNN and other models on ModelNet40. We also
added the convolution operator proposed by PointSIFT into the OECNN network for
comparison, and the result was only 90.3%. The 4-layer OECNN achieved an accuracy of
92.7%, which improves over the best reported result of models with 1024 input points. In
Figure 8, we give a visualization of the misclassified samples of the two categories. We

(a) The number of search points

(b) Different scales

91

91.5

92

92.5

93

8 16 24 32

92.0

92.5

92.1

92.3

A
cc

ur
ac

y%

91

91.5

92

92.5

93

0.1 0.2 0.3 0.4

91.3

92.5

92.0
91.7A

cc
ur

ac
y%

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 9

(c) Different values of k for top-k pooling

Figure 7. The comparison of key parameters in classification.

(a) flower_pot (b) plant (c) cup (d) vase

Figure 8. The visualization of misclassified samples on ModelNet40 [19].

Table 1. Classification accuracy of OECNN and other models on ModelNet40 [19].

Method Points Accuracy (%)

PointNet [11] 1024 89.2

PointNet++ [12] 5000 91.9

SpecGCN [13] 2048 92.1

SpiderCNN [14] 1024 92.4

PointSIFT+OECNN [18] 1024 90.3

DeepSets [20] 5000 90.0

Kd-Network [21] 1024 90.6

Pointwise CNN [22] 1024 86.1

PointGrid [23] 1024 92.0

PointCNN [24] 1024 92.2

DGCNN [25] 1024 92.2

OECNN 1024 92.7

4.3. Segmentation on ShapeNet Parts

The ShapeNet Parts segmentation dataset [6] contains 16,881 shapes from 16 classes,

with the points of each sample labeled into one of 50 part types. We used the official train-

ing/testing split with 14,006 for training and 2847 for testing. The challenge of the task is

to assign a part label to each point in the test set. The mIoU (mean intersection over union)

as the evaluation metric is the average of all part categories. As shown in Figure 9, like

classification, we also compared three key parameters in the segmentation task. We used

an OECNN with one layer of OEConv (the output channel is 64) to explore the learning

situation of local features and compare the impact of different scales, the numbers of

search points, and the value of k for top-k pooling. We found that the best result was

85.01% using a radius of 0.2, 24 search points, and top_2 pooling. Then we used a radius

of 0.2, 24 search points, and top_2 pooling to stack an OEConv structure into a 4-layer

OECNN structure. The structure shown in Figure 10 was trained with a batch size of 16.

We used the point coordinates as the input and assumed that category labels were known.

The experimental results are summarized in Table 2. We see that the OECNN network

structure achieved competitive experimental results on the ShapeNet Parts dataset.

91

91.5

92

92.5

93

1 2 3 4

92.2

92.5

92.4

92.7

A
cc

u
ra

cy
%

Figure 7. The comparison of key parameters in classification.

Table 1. Classification accuracy of OECNN and other models on ModelNet40 [19].

Method Points Accuracy (%)

PointNet [11] 1024 89.2
PointNet++ [12] 5000 91.9
SpecGCN [13] 2048 92.1
SpiderCNN [14] 1024 92.4
PointSIFT+OECNN [18] 1024 90.3
DeepSets [20] 5000 90.0
Kd-Network [21] 1024 90.6
Pointwise CNN [22] 1024 86.1
PointGrid [23] 1024 92.0
PointCNN [24] 1024 92.2
DGCNN [25] 1024 92.2

OECNN 1024 92.7

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 9

(c) Different values of k for top-k pooling

Figure 7. The comparison of key parameters in classification.

(a) flower_pot (b) plant (c) cup (d) vase

Figure 8. The visualization of misclassified samples on ModelNet40 [19].

Table 1. Classification accuracy of OECNN and other models on ModelNet40 [19].

Method Points Accuracy (%)
PointNet [11] 1024 89.2
PointNet++ [12] 5000 91.9
SpecGCN [13] 2048 92.1
SpiderCNN [14] 1024 92.4
PointSIFT+OECNN [18] 1024 90.3
DeepSets [20] 5000 90.0
Kd-Network [21] 1024 90.6
Pointwise CNN [22] 1024 86.1
PointGrid [23] 1024 92.0
PointCNN [24] 1024 92.2
DGCNN [25] 1024 92.2
OECNN 1024 92.7

4.3. Segmentation on ShapeNet Parts
The ShapeNet Parts segmentation dataset [6] contains 16,881 shapes from 16 classes,

with the points of each sample labeled into one of 50 part types. We used the official train-
ing/testing split with 14,006 for training and 2847 for testing. The challenge of the task is
to assign a part label to each point in the test set. The mIoU (mean intersection over union)
as the evaluation metric is the average of all part categories. As shown in Figure 9, like
classification, we also compared three key parameters in the segmentation task. We used
an OECNN with one layer of OEConv (the output channel is 64) to explore the learning
situation of local features and compare the impact of different scales, the numbers of
search points, and the value of k for top-k pooling. We found that the best result was
85.01% using a radius of 0.2, 24 search points, and top_2 pooling. Then we used a radius
of 0.2, 24 search points, and top_2 pooling to stack an OEConv structure into a 4-layer
OECNN structure. The structure shown in Figure 10 was trained with a batch size of 16.
We used the point coordinates as the input and assumed that category labels were known.
The experimental results are summarized in Table 2. We see that the OECNN network
structure achieved competitive experimental results on the ShapeNet Parts dataset.

91

91.5

92

92.5

93

1 2 3 4

92.2

92.5

92.4

92.7

A
cc

ur
ac

y%

Figure 8. The visualization of misclassified samples on ModelNet40 [19].

Mach. Learn. Knowl. Extr. 2021, 3 610

4.3. Segmentation on ShapeNet Parts

The ShapeNet Parts segmentation dataset [6] contains 16,881 shapes from 16 classes,
with the points of each sample labeled into one of 50 part types. We used the official
training/testing split with 14,006 for training and 2847 for testing. The challenge of the
task is to assign a part label to each point in the test set. The mIoU (mean intersection
over union) as the evaluation metric is the average of all part categories. As shown in
Figure 9, like classification, we also compared three key parameters in the segmentation
task. We used an OECNN with one layer of OEConv (the output channel is 64) to explore
the learning situation of local features and compare the impact of different scales, the
numbers of search points, and the value of k for top-k pooling. We found that the best
result was 85.01% using a radius of 0.2, 24 search points, and top_2 pooling. Then we
used a radius of 0.2, 24 search points, and top_2 pooling to stack an OEConv structure
into a 4-layer OECNN structure. The structure shown in Figure 10 was trained with a
batch size of 16. We used the point coordinates as the input and assumed that category
labels were known. The experimental results are summarized in Table 2. We see that the
OECNN network structure achieved competitive experimental results on the ShapeNet
Parts dataset.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 10

In comparison to the other five methods in Table 2, our method has a mIoU of 85.5%
for all shapes on the ShapeNet dataset, and 10 categories of mIoU are superior to the other
methods. Further, we tested an implementation of our model with the operator proposed
for PointSIFT; its mIoU only reached 84.9%. Based on our analysis, we conclude that our
method is sensitive to local information with a similar spherical shape because our
OEConv module is able to capture local scale information in any spherical range.

(a) The number of search points

(b) Different scales

(c) Different values of k for top-k pooling

Figure 9. The comparison of key parameters in segmentation.

n ×
 m

n ×
 32

64

n ×
 64

n ×
 12

8

128 256

n ×
 25

6

32 CO
NC

AT
EN

AT
E

n ×
 96

0

To
p_

2 p
oo

lin
g MLP

256
256
128
50

n ×
 48

0

Categoty
label

n ×
 14

56

n ×
 50

CO
NC

AT
EN

AT
E

Figure 10. The architecture of OECNN in the ShapeNet Parts segmentation [6] task.

84.5

84.7

84.9

85.1

8 16 24 32

84.56

84.77

85.01
84.89

A
ll

Sh
ap

e
m

Io
U

%

84.5

84.7

84.9

85.1

0.1 0.2 0.3 0.4

84.73

85.01
84.88

84.73

A
ll

Sh
ap

e
m

Io
U

%

84.5

84.7

84.9

85.1

1 2 3 4

84.84

85.01

84.76 84.84

A
ll

Sh
ap

e
m

Io
U

%

Figure 9. The comparison of key parameters in segmentation.

In comparison to the other five methods in Table 2, our method has a mIoU of 85.5%
for all shapes on the ShapeNet dataset, and 10 categories of mIoU are superior to the other
methods. Further, we tested an implementation of our model with the operator proposed
for PointSIFT; its mIoU only reached 84.9%. Based on our analysis, we conclude that our
method is sensitive to local information with a similar spherical shape because our OEConv
module is able to capture local scale information in any spherical range.

Mach. Learn. Knowl. Extr. 2021, 3 611

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 10

In comparison to the other five methods in Table 2, our method has a mIoU of 85.5%
for all shapes on the ShapeNet dataset, and 10 categories of mIoU are superior to the other
methods. Further, we tested an implementation of our model with the operator proposed
for PointSIFT; its mIoU only reached 84.9%. Based on our analysis, we conclude that our
method is sensitive to local information with a similar spherical shape because our
OEConv module is able to capture local scale information in any spherical range.

(a) The number of search points

(b) Different scales

(c) Different values of k for top-k pooling

Figure 9. The comparison of key parameters in segmentation.

n ×
 m

n ×
 32

64
n ×

 64

n ×
 12

8

128 256

n ×
 25

6

32 CO
NC

AT
EN

AT
E

n ×
 96

0

To
p_

2 p
oo

lin
g MLP

256
256
128
50

n ×
 48

0

Categoty
label

n ×
 14

56

n ×
 50

CO
NC

AT
EN

AT
E

Figure 10. The architecture of OECNN in the ShapeNet Parts segmentation [6] task.

84.5

84.7

84.9

85.1

8 16 24 32

84.56

84.77

85.01
84.89

A
ll

Sh
ap

e
m

Io
U

%

84.5

84.7

84.9

85.1

0.1 0.2 0.3 0.4

84.73

85.01
84.88

84.73

A
ll

Sh
ap

e
m

Io
U

%

84.5

84.7

84.9

85.1

1 2 3 4

84.84

85.01

84.76 84.84

A
ll

Sh
ap

e
m

Io
U

%

Figure 10. The architecture of OECNN in the ShapeNet Parts segmentation [6] task.

Table 2. Segmentation results on the ShapeNet Parts dataset [6].

PointNet [11] PointNet++ [12] SSCN [26] SpiderCNN [14] PointSIFT+
OECNN [18] OECNN

aero 83.4 82.4 81.6 83.5 83.3 83.1
bag 78.7 79.0 81.7 81.0 79.9 79.6
cap 82.5 87.7 81.9 87.2 85.8 89.6
car 74.9 77.3 75.2 77.5 77.3 79.1

chair 89.6 90.8 90.2 90.7 90.2 90.8
ear phone 73.0 71.8 74.9 76.8 77.1 78.9

guitar 91.5 91.0 93.0 91.1 90.9 91.6
knife 85.9 85.9 86.1 87.3 87.2 87.5
lamp 80.8 83.7 84.7 83.3 82.7 83.7

laptop 95.3 95.3 95.6 95.8 95.6 96.0
motor 65.2 71.6 66.7 70.2 71.3 73.0
mug 93.0 94.1 92. 93.5 94.0 95.3
pistol 81.2 81.3 81.6 82.7 82.4 81.8

rocket board 57.9 58.7 60.6 59.7 59.6 62.7
skate 72.8 76.4 82.9 75.8 75.3 76.3
table 80.6 82.6 82.1 82.8 82.2 83.0

mIoU 83.7 85.1 84.7 85.3 84.9 85.5

We show the qualitative results of segmentation on the ShapeNet Part dataset in
Figure 11, where ground truth represents the visualization results made by real labels,
prediction is the result predicted by the network, and difference represents the misclassified
points (red points) between ground truth and prediction. Different colors (ground truth,
prediction) represent different part labels. We can see that the segmentation of some points
was not very good at the occlusion and the intersection of different parts. This may have
lost some effective points for local feature learning.

4.4. Robustness Test

In this section, we additionally tested and analyzed the robustness of the OECNN on
ModelNet40. We studied the effect of OECNN losing points. Following the settings for the
experiments in Section 4.2, we trained a 4-layer OECNN and SpiderCNN with 512, 256, 128,
64, and 32 points as the input data. As shown in Figure 12, as the number of input points
decreased, our classification accuracy on ModelNet40 decreased slightly until the number
of input points drops to 256. Our classification accuracy was 92.6% when the number of
input points was 512. When there were only 32 input points, our OECNN classification
accuracy was 87.9%, which was better than that of the SpiderCNN. The disadvantage of
our method is that we may not find the corresponding number of points in each direction
in a local range, although we use the center point for initialization. This is not conducive
to the semantic learning of local features but the comparison shows the effectiveness of
our method.

Mach. Learn. Knowl. Extr. 2021, 3 612

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 11

Table 2. Segmentation results on the ShapeNet Parts dataset [6].

 PointNet [11] PointNet++ [12] SSCN [26] SpiderCNN [14] PointSIFT+*/-
OECNN [18]

OECNN

aero 83.4 82.4 81.6 83.5 83.3 83.1
bag 78.7 79.0 81.7 81.0 79.9 79.6
cap 82.5 87.7 81.9 87.2 85.8 89.6
car 74.9 77.3 75.2 77.5 77.3 79.1

chair 89.6 90.8 90.2 90.7 90.2 90.8
ear phone 73.0 71.8 74.9 76.8 77.1 78.9

guitar 91.5 91.0 93.0 91.1 90.9 91.6
knife 85.9 85.9 86.1 87.3 87.2 87.5
lamp 80.8 83.7 84.7 83.3 82.7 83.7

laptop 95.3 95.3 95.6 95.8 95.6 96.0
motor 65.2 71.6 66.7 70.2 71.3 73.0
mug 93.0 94.1 92. 93.5 94.0 95.3
pistol 81.2 81.3 81.6 82.7 82.4 81.8

rocket board 57.9 58.7 60.6 59.7 59.6 62.7
skate 72.8 76.4 82.9 75.8 75.3 76.3
table 80.6 82.6 82.1 82.8 82.2 83.0
mIoU 83.7 85.1 84.7 85.3 84.9 85.5

We show the qualitative results of segmentation on the ShapeNet Part dataset in Fig-
ure 11, where ground truth represents the visualization results made by real labels, pre-
diction is the result predicted by the network, and difference represents the misclassified
points (red points) between ground truth and prediction. Different colors (ground truth,
prediction) represent different part labels. We can see that the segmentation of some
points was not very good at the occlusion and the intersection of different parts. This may
have lost some effective points for local feature learning.

Figure 11. Qualitative results of part segmentation.

4.4. Robustness Test
In this section, we additionally tested and analyzed the robustness of the OECNN on

ModelNet40. We studied the effect of OECNN losing points. Following the settings for
the experiments in Section 4.2, we trained a 4-layer OECNN and SpiderCNN with 512,
256, 128, 64, and 32 points as the input data. As shown in Figure 12, as the number of input

Figure 11. Qualitative results of part segmentation.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 12

points decreased, our classification accuracy on ModelNet40 decreased slightly until the
number of input points drops to 256. Our classification accuracy was 92.6% when the
number of input points was 512. When there were only 32 input points, our OECNN clas-
sification accuracy was 87.9%, which was better than that of the SpiderCNN. The disad-
vantage of our method is that we may not find the corresponding number of points in
each direction in a local range, although we use the center point for initialization. This is
not conducive to the semantic learning of local features but the comparison shows the
effectiveness of our method.

93

92

91

90

89

88

87
1024 512 128 64 32

Number of Points

256

A
cc

ur
ac

y%

SpiderCNN

OECNN

Figure 12. Classification accuracy of OECNN and SpiderCNN with different numbers of points as the input on Mod-
elNet40 [20].

4.5. Ablation Experiments
To verify the effectiveness of OEConv, in Table 3, we calculated the results of classi-

fication and segmentation when the points in 8 directions were all filled by the center
point ݌଴. With these comparisons, we conclude that OEConv, which randomly selects
points in 8 directions within a certain range, is key to the performance of OECNN.

Table 3. The selection of points in OEConv.

 Classification (Accuracy) Segmentation (mIoU)
OEConv (filled by ݌଴) 91.5% 84.5%

OEConv (random) 92.7% 85.5%

4.6. Time and Space Complexity Analysis
Table 4 summarizes space (number of parameters in the network) and time (floating-

point operations/sample, forward time) complexity of our classification OECNN. We also
compare OECNN to SpiderCNN and PointSIFT (put the convolution operator proposed
by PointSIFT into the OECNN) architectures in previous work. While SpiderCNN and
PointSIFT achieve high performance, OECNN is more efficient in computational cost
(measured by FLOPs/sample and forward time). Besides, OECNN is much more space-
efficient than SpiderCNN in terms of parameters in the network. In the future, we will
reduce the amount of network parameters and further study the features effectively.

Table 4. Time and space complexity of network architectures for 3D data classification.

Methods Parameters Forward Time FLOPs/Sample
SpiderCNN [14] 2.7 M 0.132 s 2041 M

PointSIFT+OECNN [18] 1.6 M 0.116 s 2109 M
OECNN 1.9 M 0.052 s 1425 M

Figure 12. Classification accuracy of OECNN and SpiderCNN with different numbers of points as the input on Model-
Net40 [20].

4.5. Ablation Experiments

To verify the effectiveness of OEConv, in Table 3, we calculated the results of classifi-
cation and segmentation when the points in 8 directions were all filled by the center point
p0. With these comparisons, we conclude that OEConv, which randomly selects points in
8 directions within a certain range, is key to the performance of OECNN.

Table 3. The selection of points in OEConv.

Classification (Accuracy) Segmentation (mIoU)

OEConv (filled by p0) 91.5% 84.5%

OEConv (random) 92.7% 85.5%

4.6. Time and Space Complexity Analysis

Table 4 summarizes space (number of parameters in the network) and time (floating-
point operations/sample, forward time) complexity of our classification OECNN. We also
compare OECNN to SpiderCNN and PointSIFT (put the convolution operator proposed
by PointSIFT into the OECNN) architectures in previous work. While SpiderCNN and
PointSIFT achieve high performance, OECNN is more efficient in computational cost
(measured by FLOPs/sample and forward time). Besides, OECNN is much more space-

Mach. Learn. Knowl. Extr. 2021, 3 613

efficient than SpiderCNN in terms of parameters in the network. In the future, we will
reduce the amount of network parameters and further study the features effectively.

Table 4. Time and space complexity of network architectures for 3D data classification.

Methods Parameters Forward Time FLOPs/Sample

SpiderCNN [14] 2.7 M 0.132 s 2041 M

PointSIFT+OECNN [18] 1.6 M 0.116 s 2109 M

OECNN 1.9 M 0.052 s 1425 M

5. Conclusions

In this paper, an orientation-encoding CNN is proposed, which improves the per-
formance of classification and segmentation for unorganized 3D point clouds. First, an
orientation-encoding module is used to search for points within a certain range of each
point. Subsequently, we convolve the corresponding point set features in several directions
to obtain more rich local features of each point. After that, top-k pooling is used to extract
the global point set features. OECNN was trained more efficiently with augmented datasets
using the proposed scheme. The experimental results show that the proposed method
generates a significantly higher classification accuracy (92.7%) on ModelNet40 and achieves
an mIoU of 85.5% on the ShapeNet Parts dataset.

Author Contributions: Conceptualization, H.L. and W.Z.; methodology, W.Z.; software, W.Z.; re-
sources, X.P.; writing—original draft preparation, W.Z.; writing—review and editing, H.L.; visualiza-
tion, W.Z.; supervision, X.P.; project administration, H.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by National Key R&D Program of China, grant number
2017YFB0306402, Natural Science Foundation of Hebei Province grant number E2020203188, Key
Foundation of Hebei Educational Committee grant number ZD2019039, and Young Talent Program
of Colleges in Hebei Province grant number BJ2018018.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to thank the anonymous reviewers for their detailed and
constructive comments which are very helpful to the improvement of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
2. Szegedy, C.; Liu, W.; Jia, Y.Q.; Sermanet, P.; Reed, S.; Aanguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA,
7–12 June 2015; pp. 1–9.

3. Huang, G.; Liu, Z.; Maaten, L.V.D.; Weinberger, K.Q. Densely Connected Convolutional Network. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.

4. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

5. Chen, L.C.; Papandreou, G.; Kokkinos, L.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep
Convolutional Nets, Atrous Convolution, Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848.
[CrossRef] [PubMed]

6. Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.G.; Tang, X.; Xiao, J.X. 3D ShapeNets: A deep representation for volumetric shapes.
In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June
2015; pp. 1912–1920.

http://doi.org/10.1145/3065386
http://doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186

Mach. Learn. Knowl. Extr. 2021, 3 614

7. Maturana, D.; Scherer, S. VoxNet: A 3D Convolutional Neural Network for real-time object recognition. In Proceedings of the
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October
2015; pp. 922–928.

8. Qi, C.R.; Su, H.; Niessner, M.; Dai, A.; Yan, M.; Guibas, L.J. Volumetric and Multi-View CNNs for Object Classification on 3D
Data. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recogniton (CVPR), Las Vegas, NV, USA,
27–30 June 2016; pp. 5648–5656.

9. Riegler, C.; Ulusoy, A.O.; Geiger, A. OctNet: Learning Deep 4D Representations at High Resolutions. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6620–6629.

10. Tatarchenko, M.; Dosovitskiy, A.; Brox, T. Octree Generating Networks: Efficient Convolutional Architectures for High-resolution
3D Outputs. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017;
pp. 2107–2115. [CrossRef]

11. Qi, C.R.; Su, H.; Kaichun, M.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 77–85.

12. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In Proceedings
of the Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017; pp. 5099–5108.

13. Wang, C.; Samari, B.; Siddiqi, K. Local Spectral Graph Convolution for Point Set Feature Learning. In Proceedings of the European
Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 56–71. [CrossRef]

14. Xu, Y.; Fan, T.; Xu, M.; Zeng, L.; Qiao, Y. SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional Filters. In
Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 90–105. [CrossRef]

15. Wang, C.; Cheng, M.; Sohel, F.; Bennamoun, M.; Li, J. NormalNet: A voxel-based CNN for 3D object classification and retrieval.
Neurocomputing 2019, 323, 139–147. [CrossRef]

16. Graham, B.; Engelcke, M.; Van Der Maaten, L. 3D Semantic Segmentation with Submanifold Sparse Convolutional Networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June
2018; pp. 9224–9232. [CrossRef]

17. Masci, J.; Boscaini, D.; Bronstein, M.M.; Vandergheynst, P. Geodesic Convolutional Neural Networks on Riemannian Manifolds. In
Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), Santiago, Chile, 7–13 December
2015; pp. 832–840.

18. Jiang, M.Y.; Wu, Y.; Zhao, T.; Zhao, Z.; Lu, C.W. PointSIFT: A SIFT-like Network Module for 3D Point Cloud Semantic Segmentation.
arXiv 2018, arXiv:1807.00652. Available online: https://arxiv.org/abs/1807.00652 (accessed on 28 July 2021).

19. Chang, A.X.; Funkhouser, T.; Guibas, L.; Hanrahan, P.; Huang, Q.X.; Li, Z.M.; Savarese, S.; Savva, M.; Song, S.; Su, H.; et al.
ShapeNet: An Information-Rich 3D Model Repository. arXiv 2015, arXiv:1512.03012. Available online: https://arxiv.org/abs/15
12.03012 (accessed on 28 July 2021).

20. Zaheer, M.; Kottur, S.; Ravanbakhsh, S.; Poczos, B.; Salakhutdinov, R.R.; Smola, A.J. Deep Sets. arXiv 2017, arXiv:1703.06114v3.
Available online: https://arxiv.org/abs/1703.06114v3 (accessed on 28 July 2021).

21. Klokov, R.; Lempitsky, V. Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models. In Proceedings of
the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 863–872. [CrossRef]

22. Hua, B.; Tran, M.; Yeung, S. Pointwise Convolutional Neural Networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 984–993.

23. Le, T.; Duan, Y. PointGrid: A Deep Network for 3D Shape Understanding. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 9204–9214.

24. Li, Y.Y.; Bu, R.; Sun, M.C.; Wu, W.; Di, X.H.; Chen, B.Q. PointCNN: Convolution On X-Transformed Points. Adv. Neural Inf.
Process. Syst. 2018, 31, 828–838.

25. Wang, Y.; Sun, Y.B.; Liu, Z.W.; Sarma, S.E.; Bronstein, M.M.; Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; et al. Dynamic
Graph CNN for Learning on Point Clouds. ACM Trans. Graph. 2019, 38, 1–12. [CrossRef]

26. Yi, L.; Su, H.; Guo, X.W.; Guibas, L. SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6584–6592.

http://doi.org/10.1109/iccv.2017.230
http://doi.org/10.1007/978-3-030-01225-0_4
http://doi.org/10.1007/978-3-030-01237-3_6
http://doi.org/10.1016/j.neucom.2018.09.075
http://doi.org/10.1109/cvpr.2018.00961
https://arxiv.org/abs/1807.00652
https://arxiv.org/abs/1512.03012
https://arxiv.org/abs/1512.03012
https://arxiv.org/abs/1703.06114v3
http://doi.org/10.1109/iccv.2017.99
http://doi.org/10.1145/3326362

	Introduction
	Related Work
	Point Cloud Classification and Segmentation
	Voxel Data
	Spatial Domain

	Method Design
	Orientation-Encoding (OE) Architecture
	Multi-Scale Architecture
	Top-k Pooling vs. Max Pooling

	Experiment
	Experimental Environment
	Classification on ModelNet40
	Segmentation on ShapeNet Parts
	Robustness Test
	Ablation Experiments
	Time and Space Complexity Analysis

	Conclusions
	References

