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Abstract: Identifying fake news on media has been an important issue. This is especially true
considering the wide spread of rumors on popular social networks such as Twitter. Various kinds of
techniques have been proposed for automatic rumor detection. In this work, we study the application
of graph neural networks for rumor classification at a lower level, instead of applying existing neural
network architectures to detect rumors. The responses to true rumors and false rumors display
distinct characteristics. This suggests that it is essential to capture such interactions in an effective
manner for a deep learning network to achieve better rumor detection performance. To this end
we present a simplified aggregation graph neural network architecture. Experiments on publicly
available Twitter datasets demonstrate that the proposed network has performance on a par with or
even better than that of state-of-the-art graph convolutional networks, while significantly reducing
the computational complexity.

Keywords: rumor detection; graph neural network; artificial intelligence

1. Introduction

A rumor involves the communication of information that has not been confirmed by a
reliable source [1]. While true rumors tell truth, false rumors are those which communicate
fabricated news, see Figure 1. Identifying false rumors has now become a major concern
for effective use of social media like Twitter and Instagram because of the popularity and
easy accessibility of these social media platforms. Rumors can propagate very fast and
might have big negative impacts on the society. However, it is a complicated matter to
identify rumours from massive amounts of online information. Therefore, it is necessary
and highly desirable to develop automatic approaches in order to detect rumors at an early
stage so as to mitigate their damages.

As suggested by Figure 1, different class of rumors and their responses usually display
different characteristics [2]. As a consequence, it is possible to extract features of some
sort from the posts and their responses for the purpose of classifying rumors. In fact,
early studies on automatic rumor detection mainly focused on designing effective features
from various information sources, including text content, publisher’s profiles, and propaga-
tion patterns [3,4]. However, these feature-based methods are extremely time-consuming,
biased, and labor-intensive. Furthermore, they are lack of robustness: if one or several types
of hand-crafted features are unavailable, inadequate or manipulated, the effectiveness of
these approaches will be affected.

Motivated by the success of deep learning, many recent studies apply various neural
networks for rumor detection. For example, recurrent neural network [5] is applied to
learn a representation of tweet text over the post time. The latest efforts focus on applying
graph learning techniques for rumor detection [6,7], due to the rapid development of
graph neural networks in recent years and the fact that posts on social media are naturally
structured as graphs.
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After having too
much fish, my

cat could not

&'\l‘ 3'/) walk last night!

How much fish? A hungry cat!

(a) A false rumor: the source post is actually false (b) A true rumor: the source post is actually true

Figure 1. Rumors and example responses.

In this work, we propose an efficient method of detecting rumors. The contribution of
the paper is as follows.

First, we propose a graph neural network architecture to capture the interaction
through a trainable aggregation layer. The efficiency and effectiveness are achieved through
a reduced convolution layer, called the aggregation layer in the rest of the paper. While a
conventional convolutional layer contains N? learnable parameters, where N is the dimen-
sion of the embedded features, the simplified aggregation layer has only two parameters.
Since N is usually something of the order of 100, we see that the proposed aggregation
layer significantly reduces the computation complexity of the training process, especially
considering the calculation of the gradients of the parameters of the embedding layer,
which is usually the first layer of the network, using the back propagation algorithm.

Second, we demonstrate that the performance of the proposed simplified network
architecture is on a par with or even better than the more complicated conventional graph
convolutional network.

The rest of the paper is organized in the following way: First, we review the related
rumor detection algorithms in Section 2. Then the proposed simple aggregation network
architecture is presented, along with the learning procedure. Next, we give experiment
results of applying the SAGNN architecture to two publicly available Twitter datasets.
Finally, some conclusions are drawn about the simple aggregation network and its possi-
ble applications

2. Related Work

Early rumor detection studies were based on hand-crafted features extracted from
text content, users’ profile and temporal information. For example, features based on the
text contents, users, topics and propagation patterns of messages were used to measure the
credibility of news on Twitter [2]. Temporal characteristics of the features were explored
in [3] to incorporate various social context information, based on the time series of rumor’s
life cycle. Another development was the propagation trees related methods which focus on
the differences in the characteristics of real and false information transmission. These in-
clude the kernel-based method [4] in which a propagation tree kernel was proposed to
capture high-order patterns differentiating different types of rumors by evaluating the
similarities between their propagation tree structures.

The performance of the algorithms based on these hand-crafted features or propaga-
tion characteristics are relatively low and sensible to noises. Also, it is labour intensive
and very time consuming to devise effective features by hand. See [4,8] for a more detailed
account of feature-based and propagation tree related methods.

To address the above difficulties, deep learning models are studied in recent years to
learn efficient features for classifying rumors in an automatic manner. Ma et al. [5] first
presented a recurrent neural networks (RNN) based model to learn text representations of
relevant posts over time. Later on, a recursive network architecture was proposed in [9].
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In their latest work [10], a GAN (Generative Adversarial Networks) based architecture
was proposed.

A parallel development is the CNN (Convolutional Neural Network) based methods.
Yu et al. [11] proposed a convolutional method for misinformation identification based
on CNNs , which can capture high-level interactions among significant features. A multi-
module model was proposed in [12] to capture the text and user characteristics of messages.
Liu et al. modelled the propagation path as multivariate time series, and applied both
recurrent and convolutional networks to capture the variations of user characteristics along
the propagation path [13].

A comparison study of deep learning rumor detection algorithms was con-
ducted in [14], in which the performances of ten different deep learning architectures,
including LSTM (Long Short Term Memory), GRU (Gated Recurrent Unit), were analysed
based on two text encoding schemes: word2vec and BERT (Bidirectional Encoder Repre-
sentations from Transformers). The results show that some architectures are more suitable
for some particular datasets, suggesting that the use of a combination of different models
would offer advantages in terms of the detection performance.

Another noticeable development is the attention related method. A global-local atten-
tion network was proposed in [8]. The local semantic and global structural information are
jointly encoded for better rumor detection performance. An ensemble neural architecture
was presented in [15], which incorporates word attention and context from the author to
enhance the classification performance.

For the graph based approach, Huang et al. [6] proposed a model based on graph
convolutional networks to capture user behaviour effectively for rumor detection. In order
to take the three aspects of rumor detection: contents, users, and propagation into con-
sideration, the model is composed of three modules: a user encoder, a propagation tree
encoder and an integrator that integrates the output of the two modules. A bidirectional
graph convolutional network architecture was proposed in [7], in which both the upward
propagation and downward propagation of information in a twitter tree were considered
to enhance the rumor detection performance.

Instead of applying existing deep learning architecture to detect rumors, we will study
the graph neural network for rumor detection at a lower level in this paper, and present a
novel architecture based on effective and efficient aggregation layers.

3. SAGNN: Simplified Aggregation Graph Neural Networks
3.1. Preliminary: Graph Convolutional Networks

Consider a network defined by a graph G = {V, £}. A classical graph convolutional
layer proposed in [16] is given by

Z=0c(A-X-W) @)
as shown in Figure 2, where
~ ~ 1 ~~ 1
A=D 2AD"2 (2)
with

where A € RIVI*VI is the adjacency matrix of the graph, and
d
p=| . )
)
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Figure 2. A classical graph convolutional network (GCN) convolution layer.

3.2. Motivation for SAGNN
Given a source tweet r, and the responses or retweets t, ..., ty, associated with r,

let us call (tz)f\iol the children of r. Then, the set of twitters/responses containing » and
its children, together with the children of its children and so on, form a tree rooted at r,
see Figure 1, with each node representing a post. Denote the set of nodes of the tree by V.

It has been noticed that the responses to true rumors and false ones display different
characteristics: when a post denies a false rumor, it tends to spark supportive or affirmative
replies confirming the denial; in contrast, denial to a true rumor tends to trigger question
or denial in its replies [9]. This is not surprising, since a true rumor tells truth (This might
sound a bit confusing), so it is more likely to get affirmative responses. On the contrary,
a false rumor communicate fabricated messages (Again, a bit confusing), and hence is more
likely to get negative responses, or to be questioned by its readers.This suggests that it
might be possible to distinguish true rumors from false ones by considering the interaction
between a tweet and its children. In fact, based on the above observation, Ma et al. [9]
proposed a recursive neural network for rumor representation learning and classification.
However, the recursive architecture is not quite efficient from a computational perspective.
For example, it does not easily lend itself to parallel implementation.

Recently, network representation learning has aroused a lot of research interest [17-19].
The problem of network representation is to extract features of networks, and embed the
features in a low dimensional Euclidean space. Graph neural networks (GNN) turn out
to be a powerful tool for this undertaking. In particular, graph convolutional network
(GCN) has been widely studied for network representation. Since the tree representing a
twitter and its responses is a particular case of networks, it is not surprising to find that
GCNs provide an efficient solution for rumor detection as well. See [6,7] for examples
of applying GCN to rumor detection. Compared to the recursive architecture proposed
in [9], the GCN approach is significantly more efficient. This is an important advantage for
practical applications, considering the large amount of information to be processed.

From the perspective of rumor detection, the operation of A - X in Equation (1) can
be thought of as calculating the interaction between a tweet and its children, as shown in
Figure 3. However, the A given by Equation (2) is fixed, thus a GCN might not be able to
capture the interactions in an optimal way.
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Figure 3. Aggregation operations performed by a GCN, in which the aggregation coefficients are
fixed in the training process.

To address the issue mentioned above, we propose a simplified graph neural network
architecture, using the inherent aggregation mechanism of the graph neural network to
calculate the interaction between a tweet and its children. The overall architecture is shown
in Figure 4.

— E — = [+udi+vA> ™

Aggregation

Output layer
layer ’

Embedding layer

Figure 4. Simplified aggregation graph convolutional network.

3.3. SAGNN Architecture

The proposed network contains an embedding layer, one or more aggregation layer
and an output layer. These layers are detailed as follows.

3.3.1. Embedding Layer

Let Ny be the size of the vocabulary containing all words in the considered twitters.

In our experiments, Ny = 5000. The task of the embedding layer is to convert the one-hot

encoding of the words in the tweets into vectors of a N-dimensional space. The embedding
layer can be represented as

Z=0(XE), ©)

where E € RNoXN g matrix, X = (xij) € RIVI*No are the one-hot encoding of the tweet
words, 0 is a nonlinear function, which is taken to be the ReLU function as usually done in
neural networks. N is a super-parameter, and is the dimension of output features from the
embedding layer.

3.3.2. Aggregation Layers

The heart of the network is the aggregation layers. The purpose of the aggregation
layers is to implement learnable aggregation operations so as to capture the interactions
between tweets and their children/parents in an optimal manner, as shown in Figure 5.
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Figure 5. Learnable Aggregation Operations: The Aggregation Coefficients u, v are Optimized in the Training Process.
Mathematically, the aggregation layer can be represented as
Yi=0((I4+u-A1+v-4A)-2), (7)

where Z is the output of the embedding layer or the previous aggregation layer.

Compared to the classical graph convolutional layer as shown in Figure 2 [16],
ourvsimplified aggregation layer does not contain the weight matrix W. This can also be
interpreted as fixing W to be an identity matrix, to put things in the framework of graph
convolutional networks. Moreover, in classical GNNS, A is defined by Equation 2, while in
our model, the matrix is given by

v

A=14u-A1+v-Ay, (8)

where A1 = (p;j) € RVIXVand A, = (cij) € RVIXIVI are the parent adjacency matrix and
the children adjacency matrix, respectively. More specifically,

1, if node j is the parent of node i,
pij = )
0, else;
and
i = {1, if node j is a child of node i, (10)
0, else.

While A in traditional GCN is fixed, the matrix A in our SAGNN contains two
learnable parameters u and v, to distinguish the interactions from a node to its children
and those from a node to its parent.

3.3.3. Output Layer

Y, = Mean(Y;), (11)
O = FC(Y,), 12)

where Y; € RIVIXN s the output of the last aggregation layer, Mean represents a mean
operation over the rows of Y7, and FC is a fully connected linear layer of neural network.

3.4. Learning Algorithm

As mentioned above, the SAGNN contains two learnable parameters 1 and v for each
aggregation layer. Furthermore, the embedding layer contains a matrix E, and the output
layer is a fully connected one, which is essentially a matrix. These constitute the learnable
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parameters of the SAGNN network. To determine these parameters, an optimization
procedure is applied on a properly chosen loss function.

Cross Entropy Loss Function

For classification problem, the cross entropy loss function is usually taken as the
optimization objective function. In other words, we try to minimize [20]

C
L(y) = = Y _yilog(§:), (13)

where C is the number of classes, ¥ = (i1, ..., Yc) is the label vector with the only nonzero
element being 1 at the i'th position if the sample is drawn from class i, 7 is the estimation
given by

7 = Softmax(0), (14)

where O is the output of the network shown in Figure 4.

4. Experiments
4.1. Datasets

The datasets used in the experiment are two publicly available datasets Twitterl5
and Twitter16 [4]. Each of the two datasets is divided into five subsets. More specifically,
Twitter15 is divided into five subsets denoted by Twitter150, ..., Twitter154 respectively,
with each subset further divided into a train dataset and a test dataset. Twitter16 is divided
in a similar manner. The dataset contains four classes of twitters: non-rumors, false rumors,
true rumors and unverified rumors.

4.2. Network Setup

We apply the SAGNN on datasets Twitter15 and Twitter16 to evaluate its performance.
A GCNII (Graph Convolutional Network via Initial residual and Identity mapping) net-
work [21] serves as the baseline to assess the proposed algorithm. In this experiment,
the SAGNN has two aggregation layers, unlike the one shown in Figure 4, in which
only a single aggregation layer is shown for clarity. Correspondingly, the GCNII has two
convolutional layers.

The input feature X is a |V| x Ny matrix, with |V| being the number of tweets in the
input tweet tree, Ny = 5000 the size of the vocabulary. Each row of X is the sum of the
one-hot encoding of all words in a tweet. The output of the network is a four-dimensional
vector given by Equation (12). By applying the Softmax function to the output vector, as
given by Equation (14), one can get a four-dimensional probability vector, with each of
its components representing the probability that the source tweet is a non-rumor, a false
rumors, a true rumor and an unverified rumor, respectively.

For the loss function, a square regularization term is added for both the SAGNN
network and the GCNII network. Meanwhile, dropout layers are applied to both networks
to overcome possible overfitting. The stochastic gradient algorithm is adopted in the
training process to find the values of the learnable parameters.

All of the calculation is performed on a laptop with an Intel i7 CPU and a Geforce 940 M
GPU, using the open source machine learning framework PyTorch. The implementation of the
GCNII network is based on the geometric deep learning extension library for PyTorch [22].

4.3. Results

The results for Twitterl5 and Twitterl6 are shown in Tables 1 and 2, respectively.
The Acc column gives the accurary for each subset, and is equal to the number of correct
predictions for the subset divided by the total number of samples in the subset. The F1
scores for each class of rumors: non-rumors, false rumors, true rumors and unverified
rumors are shown in the last four columns, respectively. Examining these results, we see
that the proposed SAGNN architecture and the more complicated GCNII give compara-
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ble results. For the whole dataset Twitter 15, which consists of dataset T150, ..., T154,
the SAGNN actually outperforms the GCNIIL On the other hand, for datasets T160 and
T162, the SAGNN gives lower Acc scores compared to those given by the GCNIL However,
the overall performance of the SAGNN is still better than the GCNII.

Moreover, it is interesting to note the evolution of the weights u and v during the
training process shown in Figures 6 and 7. It can been seen that these curves converge
with the training iterations. The variations of these weights show the same pattern for the
two distinct datasets, though having different values. This demonstrates that it is indeed
quite beneficial to learn the matrix A for better rumor detection performance, instead of
keeping them fixed as usually done in traditional GCNs. This might explain why the
simpler SAGNN network can compete the more complicated GCNII network.

Table 1. Results for dataset Twitter 15. NR: Non-Rumor; FR: False Rumor; TR: True Rumor; UR:
Unverified Rumor.

Dataset Method Acc H
NR FR TR UR
T150 SAGNN 0.857 0.851 0.892 0.867 0.826
GCNII 0.823 0.796 0.85 0.864 0.786
T151 SAGNN 0.845 0.844 0.857 0.895 0.784
GCNII 0.813 0.810 0.829 0.896 0.725
T152 SAGNN 0.796 0.846 0.817 0.810 0.706
GCNII 0.773 0.775 0.790 0.834 0.698
T153 SAGNN 0.792 0.75 0.790 0.907 0.718
GCNII 0.768 0.703 0.763 0.884 0.723
T154 SAGNN 0.802 0.8 0.771 0.824 0.813
GCNII 0.769 0.761 0.719 0.861 0.742

Table 2. Results for dataset Twitter 16. NR: Non-Rumor; FR: False Rumor; TR: True Rumor; UR:
Unverified Rumor.

Dataset Method Acc ik
NR FR TR UR
T160 SAGNN 0.764 0.526 0.783 0.877 0.791
GCNII 0.802 0.718 0.849 0.873 0.731
T161 SAGNN 0.869 0.769 0.881 0.974 0.846
GCNII 0.841 0.732 0.875 0.974 0.778
T162 SAGNN 0.816 0.817 0.836 0.919 0.698
GCNII 0.847 0.824 0.853 0.947 0.769
T163 SAGNN 0.726 0.636 0.737 0.867 0.7
GCNII 0.790 0.776 0.794 0.879 0.762
T164 SAGNN 0.802 0.769 0.771 0.9 0.8

GCNII 0.753 0.625 0.788 0.872 0.735
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Figure 6. Evolution of weights u and v of the two aggregation layers during the training process for
the dataset T153. Here, layers 1 and 2 refer to the first and second aggregation layer, respectively.
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Figure 7. Evolution of weights u and v of the two aggregation layers during the training process for
the dataset T160. Here, layer 1 and layer 2 refer to the first and second aggregation layer, respectively.

5. Conclusions

The observation that different types of rumours trigger different interactions between
source tweets and their responses suggests that it is possible to classify rumours by aggre-
gating the information around each tweet using graph neural networks. This motivates us
to present a simplified aggregation layer to boost rumor detection performance. The neural
network based on the proposed simplified aggregation layers gives comparable to or even
better results than the more complicated GCNII architecture, suggesting that the learnable
aggregation operation is beneficial to capture different characteristics of distinct rumours.
Besides its rumor detection effectiveness, the SAGNNSs has the advantage of significantly
reduced computational complexity: the aggregation layer contains only two learnable
parameters, in contrast to the usual convolutional layer of the conventional GCNs, in which
a weight matrix W of N? parameters are to be found during the training process, with N
being the dimension of the embedded feature vectors.
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Moreover, the proposed simple aggregation layers can be further applied in more
complicated architectures such as those proposed in [6,7], to implement efficient and more
powerful rumor detection systems.
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