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Abstract: This paper analyzes in detail how different loss functions influence the generalization
abilities of a deep learning-based next frame prediction model for traffic scenes. Our prediction
model is a convolutional long-short term memory (ConvLSTM) network that generates the pixel
values of the next frame after having observed the raw pixel values of a sequence of four past frames.
We trained the model with 21 combinations of seven loss terms using the Cityscapes Sequences
dataset and an identical hyper-parameter setting. The loss terms range from pixel-error based terms
to adversarial terms. To assess the generalization abilities of the resulting models, we generated
predictions up to 20 time-steps into the future for four datasets of increasing visual distance to the
training dataset—KITTI Tracking, BDD100K, UA-DETRAC, and KIT AIS Vehicles. All predicted
frames were evaluated quantitatively with both traditional pixel-based evaluation metrics, that is,
mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM),
and recent, more advanced, feature-based evaluation metrics, that is, Fréchet inception distance (FID),
and learned perceptual image patch similarity (LPIPS). The results show that solely by choosing a
different combination of losses, we can boost the prediction performance on new datasets by up to
55%, and by up to 50% for long-term predictions.

Keywords: traffic scene prediction; video prediction; generalization; convolutional LSTMs; recurrent
neural networks; machine learning

1. Introduction

The ability to predict possible future actions of traffic participants is essential for anticipatory
driving. As a human driver, we can make safe decisions in traffic because we automatically anticipate
events based on our experience. In autonomous driving scenarios, predictions of probable future
events can prove beneficial when used as additional inputs to the system. They can help to plan the
next action more efficiently and to make decisions more informedly.

One way of realizing this is to extract information from an automatically rendered future frame.
However, to extract information that can reliably support an autonomous driving system, the predicted
frames have to be of high and stable visual quality. Therefore, the underlying video prediction network
must constantly produce high-quality predictions, independent of variations in the input observations.
Because of the domain shift between datasets, this is hard to achieve in reality. Yu et al. [1], for example,
demonstrated that problem when they tested a semantic segmentation network that was trained on
the Cityscapes [2] training subset. It achieved good results on the Cityscapes test subset, but poor
results on the BDD100K [1] test subset. One solution to reduce the effects caused by the domain shift
between the training examples and the test data is to enforce the prediction network to learn generic
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representations of the appearance and motion of objects. An advantage of generic features is that
they can quickly be fine-tuned to new scene contents or tasks when used to initialize another network.
The learned features of an ideal network for video prediction match both of the following criteria.
First, they are generic enough to enable the model to generalize well over a variety of different scene
contents. Secondly, they produce high-quality predictions that preserve details of the observed input
scene across multiple prediction steps.

Simple prediction models are already capable of producing next frames of sufficient quality,
while still being lightweight and requiring little training time. However, these models often fail for
new datasets, and their long-term predictions are generally blurry. In this paper, the focus lies on
investigating to what extent it is possible to have both the advantages of such a lightweight model and
a good generalization performance. The idea is to find a loss function that enforces the model to learn
features that meet the criteria described earlier. Our model is a three-layer convolutional long-short
term memory (ConvLSTM) [3] network, which predicts the next frame based on four past frames.
We train the network using 21 different combinations of seven loss terms. The loss terms range from
terms that perform a pixel- or feature-based comparison to adversarial terms. To properly assess their
generalization abilities, we evaluate all models on four datasets of increasing visual distance to the
training data. Figure 1 shows exemplary next frame predictions for two of these datasets. Further,
we generate frames up to 20 time-steps ahead to evaluate the long-term prediction performance of the
models. To quantify the model performance, we calculate traditional pixel-based evaluation metrics,
as well as more advanced feature-based ones.

Figure 1. Exemplary results for the BDD100K [1] (left) and the UA-DETRAC [4] (right) datasets.
(a) Last observed input frame, (b) and (c): Next frame predictions by the L1+Perceptual (b) and the
generative adversarial network (GAN) loss model (c). The models were trained on Cityscapes using
the different loss combinations.

Our main contribution is the in-depth evaluation of the generalization abilities of a deep
learning-based next frame video prediction network. In particular, this work provides detailed
analyses of how different loss combinations influence the prediction quality. Based on these analyses,
we can draw informed conclusions about the learned representations of the network. Our experiments
show that an intelligently designed loss function is crucial as, it helps to stabilize the visual quality of
the predictions over a variety of datasets and to improve the training convergence. The best performing
loss combination can boost the prediction performance by 55% for the next frame predictions, and by
50% for the 10th frame predictions, in comparison to other loss combinations.

2. Related Work

The application of deep learning-based video prediction models for traffic scenes has become a
popular field of research, in the last years. After Ranzato et al. [5] first introduced a general baseline
for deep learning-based video prediction in 2014, many approaches explicitly started to focus on
predicting traffic scenes.
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The recurrent neural network [6-13] is a widely used network architecture in such models. Similar
to our approach, Lotter et al. [7], for example, generate the pixel values of the frame one time-step
ahead using long short-term memory (LSTM) [14] units.

Although a lot of effort has been put on this topic, generating plausible predictions of high
visual quality over a variety of datasets is still not solved, especially not for real-world scenarios.
The predictions often lack realism, particularly for distant future frames. The main problem of the
video prediction task is: the future is uncertain and the nature of the model output is multi-modal.

One approach to tackle this is to directly address the uncertainty of the prediction output.
Bhattacharyya et al. [15], for instance, recently proposed a novel Bayesian formulation, that jointly
captures the model and the observation uncertainty to anticipate future scene states. Another way
to address the uncertainty is to use a generative adversarial network (GAN) [16] as a framework for
training [17-21].

A second approach to handle the problem of implausible prediction outputs that lack realism is to
reduce the complexity of the problem. Many authors, for example, used data with lower-dimensional
image content, such as label images, instead of natural image scenes [12,15,22-25]. Others split the
problem into two problems, motion and content prediction, and learn separate representations for
the static and dynamic components. For training, these approaches either use a motion prior, such as
optical flow information [9,20,23,26-28], as a conditional input or use learned features to represent
pixel dynamics [29].

Our approach builds on the idea of utilizing the loss function to enforce the network to learn
feature representations that are more generic and less influenced by dataset-specific content. A loss
term that helps the network to map motion to learned object representations rather than solely to
individual pixel values could lead to a more realistic foreground and background separation. In this
paper, we evaluate the influence of different loss terms on the generalization abilities of a prediction
model. For traffic prediction models, it is common to train models on the KITTI [30] dataset and test
them on the Caltech Pedestrian [31] dataset, or vice-versa [20,29]. However, the domain shift between
these datasets is comparatively small. To our knowledge, Luc et al. [22] are the only other authors
who directly investigate the generalization abilities of their traffic scene prediction model. There are
detailed ablation studies of other authors that focus on the influence of the model complexity [11] or
the loss functions [19], but they only measure the in-domain performance of the models.

3. Methodology for Predicting the Next Frame of Traffic Scenes

We follow a purely data-driven approach to predict the next frame of traffic scenes, assuming
that additional input information or costly ground truth labels are not always available. Our approach
incorporates a generative model to assist in the development of model-inherent attention mechanisms.
This generative model, the prediction network, is based on a ConvLSTM architecture that is commonly
used in similar forms as a baseline network [6,7,13], which makes our results easy to transfer.
Its convolution operations function as a spatial and its LSTM units as a temporal attention mechanism.
During training, the model optimizes the 3726019 parameters of the prediction network by minimizing
the loss function. Our loss functions contain different combinations of non-adversarial and adversarial
loss terms. The non-adversarial loss terms are trained in a supervised setting by directly comparing the
ground truth frame and the predicted frame. The adversarial loss terms are trained in a self-supervised
setting, where a second network, the discriminator network, is used [16]. To efficiently demonstrate
the influence of each loss term, we built on low-level processing without costly upstream mechanisms.
Following, we describe the technical details of the next frame prediction model and the different
loss terms.
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3.1. Next Frame Prediction Model

3.1.1. Prediction Network

The resolution preserving three-layer ConvLSTM [3] network G, illustrated in Figure 2, is the
core network that generates the predictions. It sequentially processes the frames of an input sequence
z = (%t 4+1,...,%) and transforms them into the next future frame ¥ = G(z) = (%;41) of the
sequence. The parameter t;,, corresponds to the temporal depth of the input sequence. We use three
ConvLSTM layers with convolutional kernels of size 5 x 5, a stride of 1, zero-padding of 2, and feature
sizes of 128, 64, and 64. Additionally, we use one 2d convolutional layer with a kernel size of 1 x 1,
stride 1, and zero-padding of 0, to map from feature-space to RGB-space.
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Figure 2. Resolution preserving three-layer convolutional long-short term memory (ConvLSTM) next
frame prediction network.

3.1.2. Discriminator Network

When using an adversarial loss term to train the prediction model we utilize a second network,
the discriminator network D. For D, we adopt the structure of the discriminator network of Aigner and
Korner [18] for resolutions of 128 x 128 px, without progressive growing. As an input, D alternately
receives x = (x;_y_41,...,%r11) frames from the training set, representing the ground truth sequence,
and X = (z,G(z)) = (¥4—t, 1, - - -, X+1). The latter sequence consists of the input and output frames
of G. D outputs a score s = D(x) or § = D(X), respectively. This score ranks the given input as either
being real or fake. The labels for real sequences are set to I,,;; = 1 and the labels for fake sequences
to l;eq1 = 0. We use weight scaling in G and in D to stabilize the training, as originally proposed by
Karras et al. [32].

3.2. Loss Terms

The following paragraphs describe the individual terms of our training losses briefly. When
combining different loss terms in one loss function, we multiplied each loss term by a loss-specific
weight factor Ap,ss. For simplicity, we refer to the ground truth frame x;; as x and the predicted
frame X; 1 as x.

3.2.1. L1 Loss

This loss measures the mean absolute error (MAE) between the elements of the ground truth and
the predicted frame. It is defined as

L1 e .
Lpa(x, %) = — Yo lxij— Xijl, 1)
mn =

1
i=0

where 1 and m are the width and height of the frames.
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3.2.2. L2 Loss

The L2 loss measures the mean squared error (MSE) between each element of the ground truth
and the predicted frame. It is defined as

m

1 m-ln-
Lip(x,X) = m—ZZx” xl]. 2)

3.2.3. BCE Loss

This loss measures the binary cross-entropy (BCE) between the ground truth and the predicted
frame. It is defined as

Lpce(x, X) = — Zfi log(x;) + (1 —x;)log(1 — x;), 3)

where x takes its values in {0,1} and X in [0, 1].

3.2.4. Perceptual Loss

The perceptual loss [33] measures the L2 difference between the feature maps of the ground
truth and the predicted frame of a specific layer from the VGG-19 [34] network, pre-trained on
ImageNet [35]. Contrary to the L1 and L2 losses, which directly measure the image differences in
pixel-space, the perceptual loss measures the differences in feature-space. It is defined as

Wi Hy

Y. Z Pt (X)rs — i (X)rs], 4)

kI p=1s=

LPerc (x x Wk ;

where ¢y ; is the feature map obtained before the k-th max-pooling layer and after the I-th convolutional
layer of the pre-trained VGG-19 network. Wy ; and Hy; are the width and height dimensions of the
feature maps.

3.2.5. GDL Loss

The image gradient difference loss (GDL) [36] computes the differences between the image
gradients of the ground truth and the predicted frame. The GDL loss is given by

Lepr(x, X) Zsz] xXiovy] — % — Tioa ]|

5)
~ 4
+ “xi,j—l =X — X1 — xz]H oL,

where 1 < agpr, € N.

3.2.6. GAN Loss

This loss term is the standard loss function of the GAN [16]. It is based on the
Jenson-Shannon-divergence between the distributions of the ground truth frames and the predicted
frames. The loss function to train D is

LEan (%, %) = Lpce(D(x),1) + Lpce(D(%),0) (6)

and the loss function to train G is

L& 4n(%) = Lpce(D(%),1). ?)
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3.2.7. WGAN-gp Loss with Epsilon Penalty

This loss consists of the Wasserstein GAN with gradient penalty (WGAN-gp) [37] loss and an
epsilon penalty [32] term that prevents the loss from drifting. It is based on measuring the Wasserstein
distance between the distributions of the ground truth frames and the predicted frames. The WGAN-gp
loss with epsilon penalty for optimizing D is defined as

WRoav-g(x % = E [DE] - E D)
®)
E D@2 —1)*]+¢ E 2,
+Agp B [(I95DE)l2 =1+ E, D(x)

As described by Gulrajani et al. [37], P, is the data distribution, P¢ is the model distribution, implicitly
defined by ¥ = G(z), X ~ p(X), ¢ is the epsilon-penalty coefficient, and A is the gradient-penalty
coefficient. P; is implicitly defined, sampling uniformly along straight lines between pairs of points
sampled from the data distribution P, and the G distribution P¢. The WGAN-gp loss for optimizing G

is defined as

LI(/SVGANfgp(§) =—-_E [D(%)} 9
x~Py
The penalty coefficients of the WGAN-gp loss with epsilon-penalty are A¢, = 10 and ¢ = 0.001,
as proposed by Karras et al. [32].

4. Experiments and Evaluation

To analyze the influence of each loss term on the model performance, we conducted experiments
on 5 different datasets and trained our model on 21 different loss combinations. The next subsections
contain details about the training settings, the datasets, and the analyses of the quantitative and
qualitative results.

4.1. Training Settings

We trained the model described in Section 3.1 using the 21 losses listed in Table 1. To weight the
loss terms in a combined loss function, we set Agpr = 0.0001 and Apeyceptar = 0.01. The other weight
factors were set to 1. When combining the perceptual loss term solely with the GDL term, we set
Acpr = 0.01 and Apereepruar = 1. These values were heuristically chosen to balance the individual
loss terms at a similar range. For the GDL loss, we set agp; = 1, when combining it with an L1
term, and agpr = 2, when combining it with an L2 loss term. To train the networks with adversarial
loss terms, we applied weight scaling in G and D, as described by Karras et al. [32]. All 21 different
prediction models were trained to predict the next frame after receiving four past frames as an input.
We trained each model on the full Cityscapes Sequences [2] dataset with a batch size of 4 and a fixed
random seed. As an optimization algorithm, we used the Adam optimizer [38] with 1 = 0.0 and
B2 = 0.99. The initial learning rate was [ = 0.001. Every 10th epoch, we decayed the learning rate by a
heuristically set factor of 0.87. In total, all networks trained for 30 Epochs. Intermediate states were
saved every 5th epoch for evaluation purposes. We trained the networks on an Asus GeForce RTX
2080 Ti GPU with 11 GB of RAM, except for most of the networks with a GAN loss term, which we
trained on an NVIDIA Titan X Pascal with 12 GB of RAM. The code was implemented in PyTorch.
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Table 1. Loss combinations for training.

Non-Adversarial Adversarial

L1 GAN

L2 WGAN-gp-eps

BCE GAN+L1

Perceptual GAN+L1+GDL
L1+GDL GAN+L1+GDL+Perceputal
L1+Perceptual GAN+L1+Perceptual
L1+GDL+Perceptual GAN+GDL

L2+GDL GAN-+Perceptual
L2+Perceptual GAN-+Perceptual+GDL
L2+GDL+Perceptual WGAN-gp-eps+L1
Perceptual+GDL

4.2. Datasets

We conducted experiments on five different datasets. For training, we used the full Cityscapes
Sequences [2] dataset. For testing, we used four other datasets with an increasing domain shift to
the training dataset—KITTI Tracking [30], BDD100K [1], UA-DETRAC [4], and KIT AIS Vehicles [39].
We chose these test datasets to investigate to what extent each model can generalize to new scenes.
All frames for training and testing were retrieved by first center cropping and then resizing them
bilinearly from their original resolution to a resolution of 128 x 128 px. Figure 3 shows example images
from every dataset. The following paragraphs describe the datasets and the specifications of our
customized subsets that we used to calculate and compare the evaluation metrics.

Figure 3. Image examples from all five datasets. (a): Cityscapes, (b): KITTI Tracking, (c): BDD100K,
(d): UA-DETRAC, (e): KIT AIS Vehicles.

4.2.1. Cityscapes

The Cityscapes Sequences dataset consists of 5000 videos, that is, 2975 for training, 500 for
validation, and 1525 for testing. These 8-bit color videos were recorded with a frame rate of 17 fps and
an original resolution of 2048 x 1024 px in 50 different cities, primarily in Germany. The videos mainly
show urban street scenes and a few different highway scenarios in similar weather and time conditions,
that is, sunny, partly cloudy, and cloudy during daytime in spring, summer, and fall. All videos are
30 frames long. We used the full 5000 videos of the dataset for training. Since we trained our networks
to predict the next frame based on four past frames, we had 30,000 training sequences in total.
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4.2.2. Kitti Tracking

The KITTI Tracking sequences are recorded in Karlsruhe, Germany. The dataset contains
21 training and 29 testing videos, all of a varying sequence length and with an original resolution
of 1392 x 512 px. The videos were captured at a frame rate of 10 fps, which results in higher motion
differences in-between frames compared to our training examples. Otherwise, the displayed scenes are
similar to those of Cityscapes but more evenly distributed between rural, urban street, and highway
scenarios. The weather and time conditions match those of Cityscapes. For testing, we used the test
split as provided by Geiger et al. [30]. To calculate the evaluation metrics and for comparison with
the other datasets, we built a subset of 100 sequences using 24 frame-long snippets that were evenly
distributed across the test sequences.

4.2.3. Bdd100k

The complete BDD100K dataset consists of 100,000 videos with an original resolution of
720 x 1280 px. All videos are 40 seconds long and captured at 30 fps in either New York, Berkeley, San
Francisco, or the Bay Area. The test subset of 20,000 videos, provided by Yu et al. [1], contains 20 splits
with 1000 videos each. For testing and evaluating, we took the first split of this test set. To roughly
match the Cityscapes frame rate, we sub-sampled it to 15 fps. We then used the first 24 frames of every
10th sequence of the resulting split to build a customized test set of 100 sequences. The BDD100K
videos were recorded under six different weather conditions, that is, clear, partly cloudy, overcast,
rainy, snowy, and foggy, and during three different daytimes, that is, day, night, and dusk/dawn.
This means the BDD100K scenes display completely different locations and a greater variety of weather
and lighting conditions compared to the Cityscapes scenes.

4.2 4. Ua-Detrac

The full UA-DETRAC dataset consists of 100 videos, 60 for training, and 40 for testing, all of a
varying sequence length and an original resolution of 960 x 540 px. The videos were captured at a
frame rate of 25 fps at 24 different static locations in Beijing and Tianjin, China. The recorded scenes
contain surveillance views of residential roads, highways, tunnels, gas stations, and a parking lot
during day-time, night-time, and different weather conditions. As a result, the UA-DETRAC videos
not only show different scene contents, compared to the training examples, but they also have different
viewing angles and do not display any ego-motion. Additionally, the lower UA-DETRAC frame rate
causes smaller differences in object motion in-between frames. To test and evaluate our models, we
built a customized subset of 100 evenly distributed sequences of length 24 frames from the original
test split.

4.2.5. KIT AIS Vehicles

The KIT AIS Vehicles dataset [39] consists of a single training split, which contains 9 sequences
of aerial images with varying sequence lengths. The videos display different highway, crossroads,
and street scenarios. All sequences are of varying original frame resolutions, captured at 2 fps from
varying heights above the ground during similar weather and time conditions. In comparison to
Cityscapes, this is the most challenging dataset. The viewing angle, the object motions, and the scene
contents differ completely. We used the whole dataset, as provided by Schmidt [39], for testing. Due to
insufficient sequence lengths, we predicted 10 future frames based on four input frames for this dataset.
This resulted in a customized subset of 24 sequences for evaluation.
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4.3. Evaluation Metrics

To quantitatively rate the performance of video prediction models, there is no consistent
evaluation scheme. Traditionally, pixel value-based image comparison metrics, such as the mean
squared error (MSE), the peak signal-to-noise ratio (PSNR), and the structural similarity index
(SSIM) [40] are used by most authors. Although these metrics are very common for comparing video
prediction approaches, there is one big problem. The values of these metrics often do not correlate
well with the human perception of visual image quality. To assess this problem, we calculate two,
more recent, evaluation metrics, the Fréchet inception distance (FID) [41], and the learned perceptual
image patch similarity (LPIPS) [42] in addition to the MSE, the PSNR, and the SSIM. These metrics
have shown to better correlate with human judgments about visual image quality. In contrast to
the traditional metrics, which directly compare the pixel values of two images, the FID and the
LPIPS values measure the distance between two images not in pixel-space, but feature-space. Their
values are obtained based on the feature activations of one or more layers of a second, pre-trained,
neural network. To calculate the FID and LPIPS values, we followed the procedures described by
Heusel et al. [41] and Zhang et al. [42]. For the FID metric, we used an InceptionV3 [43] network,
pre-trained on ImageNet [35]. For the LPIPS metric, we used the pre-trained network provided by
Zhang et al. [42].

4.4. Qualitative and Quantitative Analyses

To properly assess the generalization abilities of a prediction model, it is important to evaluate its
capability to generalize both to new datasets and a higher number of prediction steps. Therefore, we
generated long-term predictions for four test datasets with every model. During testing, we let the
models predict 20 future frames for the KITTI Tracking, the BDD100K, and the UA-DETRAC dataset
and 10 future frames for the KIT AIS Vehicles dataset, because of insufficient sequence lengths in the
dataset. To generate the long-term predictions, each predicted next frame of the model was recursively
fed back in as an input. This means the long-term predictions during test time were based on only four
real observations. Figure 4 shows the qualitative results of these predictions by three selected models
of different loss combinations for all four datasets. The qualitative results of all loss combinations can
be found in Appendix B. Additional videos and images are included in the Supplementary Materials.

For the quantitative evaluation of the models, we calculated the metrics described in Section 4.3.
To calculate these quantitative measures, if not otherwise stated, we used our customized subsets,
as described in Section 4.2. They each contain 100 sequences of length 24 frames, except for KIT-AIS
Vehicles, where only 24 sequences of length 14 frames were available. Figure 5 visualizes the LPIPS
distance values per predicted frame for every model and dataset. This provides an overview of how
the different loss combinations perform quantitatively in comparison. The visualizations of the MSE,
PSNR, SSIM, and FID values are included in Appendix A. Table 2 lists the SSIM values for all models
and all intermediate model states at every fifth training epoch exemplary for the KITTI Tracking
dataset. This table gives an impression on how the different loss combinations influence the training
convergence of the models.
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Figure 4. Qualitative test results of three selected models for all evaluation datasets. To generate these
images, we used the models that were trained on Cityscapes for 20 epochs. The models were trained
to predict the next frame based on four past frames. The qualitative results of all loss combinations
can be found in Appendix B. The videos for this figure are included in the supplementary material.
(The images are best viewed on screen.)
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Figure 5. Mean learned perceptual image patch similarity (LPIPS) values per predicted frame for
all evaluation datasets. (Small values are better.) To obtain these values, we used the models that
were trained on Cityscapes for 20 epochs. The models were trained to predict the next frame based
on four past frames. The results for the non-adversarial and the adversarial loss combinations are
visualized separately for each dataset. The visualizations of the mean squared error (MSE), peak
signal-to-noise ratio (PSNR), structural similarity index (SSIM), and Fréchet inception distance (FID)
values are included in Appendix A and in the supplementary material.
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Table 2. Mean SSIM values for the next/10th frame prediction of the KITTI Tracking dataset. (Best
results are bold, higher is better.) The values are obtained using the models that were trained for 5, 10,
15, 20, 25, and 30 epochs on the Cityscapes dataset. All models were trained to predict the next frame
based on four past frames. More detailed lists for every evaluation dataset, including the MSE, PSNR,
LPIPS, and FID values, are added in the supplementary material.

Epoch 5 Epoch 10 Epoch 15 Epoch 20 Epoch 25 Epoch 30
L1 0.8143/0.3897 0.8204/0.2976 0.8211/0.3315 0.8282/0.3864 0.8288/0.3946  0.8268/0.3670
L2 0.7931/0.2552  0.8079/0.3033 0.8063/0.2982 0.8105/0.3050 0.8114/0.2986  0.7984/0.2996
BCE 0.3224/0.0109 0.3277/0.0084 0.3253/0.0057 0.3242/0.0045 0.3297/0.0015 0.3272/0.0040
Perc. 0.7800/0.2629  0.8058/0.3310 0.7989/0.2699  0.8087/0.3049 0.7945/0.2133  0.8080/0.2965
L1+GDL 0.8095/0.3614 0.8125/0.3451 0.8150/0.3820 0.8189/0.4070 0.8110/0.3832  0.8209/0.4035
L1+Perc. 0.8119/0.3268 0.8147/0.3232  0.8241/0.3735 0.8210/0.3891 0.8242/0.3854  0.8254/0.3846
L1+GDL+Perc. 0.8152/0.3733 0.8194/0.3892 0.8235/0.3901 0.8265/0.4097 0.8263/0.2975 0.8272/0.4089
1L2+GDL 0.7995/0.2888 0.7974/0.2320 0.8057/0.2851 0.8024/0.2899  0.8024/0.2969  0.7944/0.2574
L2+Perc. 0.8113/0.3320 0.8197/0.3357 0.8153/0.3344 0.8191/0.3243 0.8190/0.3586  0.8213/0.3090
L2+GDL+Perc. 0.8130/0.3039  0.8156/0.3034 0.8224/0.3202 0.8213/0.3362 0.8212/0.2906  0.8225/0.3550
Perc.+GDL 0.7990/0.2800 0.8109/0.2939 0.8156/0.2985 0.8163/0.3397 0.8152/0.3383  0.8155/0.2975
GAN 0.5099/0.1001 0.6407/0.0093 0.6809/0.0742 0.7114/0.0883 0.7193/0.1297  0.6871/0.0542
WGAN-gp-eps 0.7163/0.1872  0.7478/0.1379  0.7623/0.1668 0.7670/0.1458 0.7705/0.1709  0.7637/0.0925
GAN+L1 0.6320/0.0164 0.5876/0.0628 0.6558/0.0457 0.6198/0.0421 0.6523/0.0658 0.6731/0.0654
GAN+L1+GDL 0.6526/0.0906  0.6567/0.0154 0.6827/0.0726  0.7084/0.0712 0.7152/0.1204 0.7097/0.0528
GAN+L1+GDL+P.  0.6420/0.0648 0.5969/0.0091 0.6865/0.0951 0.7018/0.0931 0.7149/0.1242  0.7166/0.0838
GAN+L1+Perc. 0.6359/0.0861 0.6666/0.0328 0.6737/0.0548 0.5713/0.0467 0.7164/0.1027 0.7118/0.0981
GAN+GDL 0.6648/0.0849  0.6278/0.0208 0.6794/0.0799 0.6268/0.0563 0.6379/0.1025 0.6458/0.0931
GAN+Perc. 0.5963/0.0662 0.6753/0.0589 0.6760/0.0394 0.7012/0.1012 0.7141/0.0916  0.7245/0.3907
GAN+Perc.+GDL 0.6318/0.0640 0.6735/0.0586 0.6189/0.0630 0.7051/0.1209 0.7144/0.0842  0.7199/0.1032
WGAN-gp-eps+L1  0.7168/0.1428 0.7471/0.1397 0.7610/0.1700  0.7688/0.2097  0.7650/0.1482  0.7711/0.1521

5. Discussion and Conclusions

In this paper, we have shown that an intelligently designed loss function is essential for a
prediction model to generate plausible next frames of traffic scenes. An optimal choice of the training
loss leads to both good test performance and high generalization abilities of the model. We provided
qualitative and quantitative evaluations on the influence of the individual loss terms. These evaluations
strongly suggest that the combination of loss terms is particularly important for enabling the network
to learn generic representations of object motion and appearance.

For our experiments, we used a ConvLSTM video prediction network that was trained on the
Cityscapes dataset to predict the next frame after observing a sequence of four frames. In total, we
trained 21 different combinations of seven individual loss terms. To draw informed conclusions about
the generalization capabilities, we tested the resulting models on four different datasets of increasing
visual distance to the training dataset. During testing, we generated long-term predictions for every
dataset. After evaluating the predictions qualitatively, we could see great performance differences
between the different loss combinations, especially when inspecting the long-term prediction results.
The best performing model was the model that was trained on a combination of the perceptual and
the L1 loss term. This model preserved object-specific features such as color and detailed content
of the input scene across multiple prediction steps for all datasets. Models that were solely trained
with a per-pixel error loss or an adversarial loss often averaged out such features, leading to a
quick loss of detail after a few prediction steps. These predictions, therefore, tended to get blurry
earlier. The predictions of the best performing model, on the other hand, remained sharp for a higher
number of prediction steps. Additionally, the best performing model was able to identify moving
objects and correctly propagate motion patterns across several time-steps. Interestingly, this was
even the case for the KIT AIS Dataset, although it was recorded at a completely different frame rate
and from a different viewing angle than the training data. For the quantitative evaluation of the
models, we calculated three traditional pixel-based image comparison metrics, the MSE, the PSNR,
and the SSIM. In addition to those metrics, we calculated two more advanced feature-based image
comparison metrics, the FID, and the LPIPS. These feature-based evaluation metrics confirmed our
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visual impression of the qualitative results. The best performing loss combination generated next
frame predictions up to 55% better and 10th frame predictions up to 50% better compared to the
predictions of models trained with other loss combinations. These numbers were obtained from the
LPIPS values.

Our experiments verify that an intelligent combination of loss terms is essential. It enables
even a very lightweight model to reliably produce high-quality predictions over a variety of datasets.
The evaluations suggest that the well-performing loss functions, in contrast to the other ones, helped
the model to learn generic representations of the appearance and motion of objects and how to
propagate these features correctly across time.
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Appendix A. Extended Quantitative Results

The figures in the following paragraphs display the mean quantitative evaluation values per
predicted frame for all four test datasets. To obtain these values, we used the models that were trained
on Cityscapes for 20 epochs. All models were trained to predict the next frame based on four past
frames. The results for the non-adversarial and the adversarial loss combinations are visualized
separately for each dataset.

Appendix A.1. KITTI Tracking Dataset
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Figure A1. Mean values per predicted frame for the KITTI Tracking evaluation dataset. (MSE and FID:
smaller values are better, PSNR and SSIM: larger values are better).
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Appendix A.2. BDD100K Dataset
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Figure A2. Mean values per predicted frame for the BDD100K evaluation dataset. (MSE and FID:
smaller values are better, PSNR and SSIM: larger values are better).

Appendix A.3. UA-DETRAC Dataset
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Figure A3. Mean values per predicted frame for the UA-DETRAC evaluation dataset. (MSE and FID:
smaller values are better, PSNR and SSIM: larger values are better).
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Figure A4. Mean values per predicted frame for the KIT AIS Vehicles dataset. (MSE and FID: smaller

values are better, PSNR and SSIM: larger values are better).

Appendix B. Extended Qualitative Results

Appendix B.1. KITTI Tracking Dataset
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Figure A5. Qualitative results for the KITTI Tracking test split. To generate these images, we used the

models that were trained on Cityscapes for 20 epochs. The models were trained to predict the next

frame based on four past frames. All images are included in the supplementary material. (The images

are best viewed on screen).
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Appendix B.2. BDD100K Dataset
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Figure A6. Qualitative results for the BDD100K test split. To generate these images, we used the
models that were trained on Cityscapes for 20 epochs. The models were trained to predict the next
frame based on four past frames. All images are included in the supplementary material. (The images

are best viewed on screen).



Mach. Learn. Knowl. Extr. 2020, 2 94

Appendix B.3. UA-DETRAC Dataset

i Hﬁ ‘?4

ground truth L1 L1+Perceptual  LI+GDL  L1+Perc.+GDL L2 L2+Perceptual ~ L2+GDL ~ L2+Perc.+GDL BCE Perceptual ~ Percept.+GDL

input sequence predictions

input sequence

predictions

ground truth GAN GAN+L1 GAN+LI1+ GAN+L1+ GAN+L1 +  GAN+GDL GAN+ GAN+GDL+  WGAN-gp ~ WGAN-gp+
Perceptual GDL Perc.+GDL Perceptual Perceptual L1

input sequence predictions

ground truth Ll+Perceptual L1+GDL  Ll1+Perc.+GDL BCE Perceptual ~ Percept.+GDL

input sequence predictions

A . [y Z. = - ¢
ground truth GAN GAN+LI GAN+L1+ GAN+L1+  GAN+L1+  GAN+GDL GAN+ GAN+GDL+  WGAN-gp ~ WGAN-gp+
Perceptual GDL Perc.+GDL Perceptual Perceptual L1

Figure A7. Qualitative results for the UA-DETRAC test split. To generate these images, we used the
models that were trained on Cityscapes for 20 epochs. The models were trained to predict the next
frame based on four past frames. All images are included in the supplementary material. (The images
are best viewed on screen).
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Figure A8. Qualitative results for the KIT AIS Vehicles test split. To generate these images, we used the
models that were trained on Cityscapes for 20 epochs. The models were trained to predict the next
frame based on four past frames. All images are included in the supplementary material. (The images
are best viewed on screen).
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