
machine learning &

knowledge extraction

Article

Deep Learning Based Object Recognition Using
Physically-Realistic Synthetic Depth Scenes

Daulet Baimukashev , Alikhan Zhilisbayev, Askat Kuzdeuov , Artemiy Oleinikov,
Denis Fadeyev, Zhanat Makhataeva and Huseyin Atakan Varol *

Department of Robotics, Nazarbayev University, 53 Kabanbay batyr Ave., Astana Z05H0P9, Kazakhstan
* Correspondence: ahvarol@nu.edu.kz; Tel.: +7-7172-706561

Received: 29 March 2019; Accepted: 4 August 2019; Published: 6 August 2019
����������
�������

Abstract: Recognizing objects and estimating their poses have a wide range of application in robotics.
For instance, to grasp objects, robots need the position and orientation of objects in 3D. The task
becomes challenging in a cluttered environment with different types of objects. A popular approach
to tackle this problem is to utilize a deep neural network for object recognition. However, deep
learning-based object detection in cluttered environments requires a substantial amount of data.
Collection of these data requires time and extensive human labor for manual labeling. In this study,
our objective was the development and validation of a deep object recognition framework using
a synthetic depth image dataset. We synthetically generated a depth image dataset of 22 objects
randomly placed in a 0.5 m × 0.5 m × 0.1 m box, and automatically labeled all objects with an
occlusion rate below 70%. Faster Region Convolutional Neural Network (R-CNN) architecture was
adopted for training using a dataset of 800,000 synthetic depth images, and its performance was tested
on a real-world depth image dataset consisting of 2000 samples. Deep object recognizer has 40.96%
detection accuracy on the real depth images and 93.5% on the synthetic depth images. Training the
deep learning model with noise-added synthetic images improves the recognition accuracy for real
images to 46.3%. The object detection framework can be trained on synthetically generated depth
data, and then employed for object recognition on the real depth data in a cluttered environment.
Synthetic depth data-based deep object detection has the potential to substantially decrease the time
and human effort required for the extensive data collection and labeling.

Keywords: machine learning; convolutional neural networks; deep learning; object recognition;
synthetic data generation; big data; physics engine

1. Introduction

Robust object detection and recognition are fundamental aspects of grasping, robot manipulation,
human-robot interaction and augmented reality. However, cluttered environments, occlusion between
objects, lighting conditions and small deformable objects remain as challenges. Furthermore, objects
may appear in different scale and forms depending on the camera viewpoint and calibration. Therefore,
accurate scene understanding including object detection and pixel-wise semantic segmentation is
crucial for practical interaction with real-world objects.

The goal of the Amazon Picking Challenge 2017 was to construct a robotic system which can
pick items from a warehouse shelf and place them into a box. Teams utilized a wide range of sensors,
perception and motion planning algorithms [1]. The first step in this pick-and-place task was the
detection and recognition of the objects. Most teams used deep learning (DL) to tackle this problem [2].

In contrast with conventional machine learning, in DL, the features are not engineered but
are implicitly learned from data [3]. The most popular object recognition architecture is the
Convolutional Neural Networks (CNNs) thanks to their high performance in problems with

Mach. Learn. Knowl. Extr. 2019, 1, 883–903; doi:10.3390/make1030051 www.mdpi.com/journal/make

http://www.mdpi.com/journal/make
http://www.mdpi.com
https://orcid.org/0000-0002-1432-8205
https://orcid.org/0000-0001-6169-8252
https://orcid.org/0000-0002-4042-425X
http://www.mdpi.com/2504-4990/1/3/51?type=check_update&version=1
http://dx.doi.org/10.3390/make1030051
http://www.mdpi.com/journal/make


Mach. Learn. Knowl. Extr. 2019, 1 884

multimodal high-dimensional data [3]. For example, CNNs were used to estimate object poses
in an RGB-D scene in order to represent them as 3D models [4]. Researchers used deep CNNs for object
recognition on images lacking low-level cues, such as realistic object texture, pose, or background [5].
Girshick et al. combined CNN features to generate object proposals, extract CNN feature maps,
and perform classification via support vector machines [6]. You Only Look Once (YOLO) attempts to
solve the regression problems using a single neural network for object detection [7]. Liu’s Single Shot
MultiBox Detector (SSD) model also solves the regression problem but uses a feature extractor to get
high-level image features. This framework does not utilize pixel and feature re-sampling and does
not require bounding box proposals, leading to significant improvements in the speed of detection [8].
Faster Region-CNN (R-CNN), the state-of-the-art in object recognition, uses both feature extractor and
region proposals [9].

In general, CNNs require a huge amount of labeled data for training. For instance, researchers
classified 1.2 million high-resolution images of the ImageNet LSVRC-2010 dataset into 1000 classes
using CNNs [10]. Apart from the ImageNet (15 million manually labeled high-resolution images),
there are other notable datasets such as NORB, CIFAR-10, Caltech-101, Caltech-256, COCO and
PASCAL VOC. With an increasing need for large training datasets, collection and labeling of the data
(human-intensive activities) are emerging as major bottlenecks.

Synthetic data generation was introduced to address this issue [5,11,12]. Carlucci et al. presented
the VANDAL dataset with 4.5 million synthetic depth images [11]. They used this dataset for
the extraction and analysis of depth-specific features. In [5], the authors used synthetic data to
investigate the dependency between the presence and absence of low-level cues and the corresponding
performance of the CNNs. The main challenge in using a synthetic dataset is the difference between the
virtual training dataset and real testing images. For instance, to get desirable results for CNNs training
with synthetic RGB-D data, lighting conditions in a virtual environment should be taken into account
using physical simulation [13]. The synthetic dataset should be as similar as possible to the real-world
conditions. To address this issue, Ben et al. introduced the concept of domain adaptation [14] and
outlined the factors affecting the performance of a classifier trained on one distribution and tested
on another. Gupta et al. further investigated the domain adaption concept in feed-forward neural
networks [15]. The authors of [16] used the synthetic images to fine-tune the pre-trained models on
real images dataset by freezing the weights of the feature extractor. However, because of the difference
between RGB and depth images, these pre-trained models are not suitable to use for object recognition
with depth image [17], therefore we have trained the DL model with generated synthetic images
from scratch.

There are various synthetic data generation techniques. Synthetic data were utilized for studying
the effects of natural cues (e.g., object texture, color, 3D pose, and background) on the image classifier
performance in [5]. Two sets of synthetic images were generated: (1) grayscale images; and (2) images
with simulated real texture and realistic background. The detection accuracies on the simulated real
texture and grayscale images were 46% and 33%, respectively [5]. Another study dealing with the effect
of factors such as position, scale, pose, and illumination on the object recognition was presented in [18].
The authors hypothesized that the advances in computer graphics might positively affect the quality
of synthetic data, such that synthetically generated photographs will almost be indistinguishable
from the real-world ones. The authors of [19] used RGB rendering of the 3D CAD models of the
objects and created synthetic images with automatic labeling. The main limitation of these studies
is the computation time for rendering real-textured RGB images. In [20,21], the cropped images of
the objects from publicly available datasets were added to the real background images with different
environments. However, this approach does not deal with the case of the object occlusions and is
limited by the variety of the existing set of images.

RGB images are characterized by multicolor textures while the depth images provide geometric
shape information. Recent works demonstrated that higher performance could be achieved if the
networks are trained both on the RGB and depth data [22–24]. However, we are not aware of previous



Mach. Learn. Knowl. Extr. 2019, 1 885

works attempting to use only synthetically generated depth data to train a depth-specific DL network
for object detection.

Depth images are acquired using time-of-flight and structured light-based sensors. These have
been employed for various applications such as real-time mapping, real-time tracking and the 3D
representation of the indoor scenes [25,26]. Shotton et al. presented depth sensing based real-time
human pose recognition [27]. In [28], depth sensing was utilized for localization and navigation
of mobile robots. Regarding autonomous robots, Maier et al. [29] described depth-sensing-based
real-time navigation and collision detection in 3D environments. Saudabayev et al. utilized depth
sensors for the locomotion strategy selection [30]. Recently, depth cameras have been successfully
utilized in the various prosthetic applications. For example, Massalin et al. [31] presented a depth
sensing based intent recognition system for lower limb prostheses. Researchers also expect widespread
use of multimodal data including depth sensing for upper limb prosthetics [32].

Physical simulators (e.g., Gazebo, Darwin2K, OpenSim, Open Dynamics Engine and Blender)
significantly contribute to mobile and autonomous robotics. Although Gazebo is known for its
capability to simulate advanced sensors [33], depth sensing was only added recently [34]. BlenSor,
an extension of the Blender software, is capable of simulating depth sensors with arbitrary resolution.
The output images can be used by many algorithms that work on 2.5D data.

With the ability to generate realistic depth images, researchers started employing these synthetic
images to improve object recognition performance [5,18,35,36]. As the general principle, researchers
used features obtained from synthetically generated depth images in addition to color image features
for training DL networks. A data labeling framework based on synthetically generated depth images
was presented in [37].

In this work, we present our framework for synthetic depth image generation including bounding
box assignment for objects in cluttered scenes. We used a modified version of Faster R-CNN as our DL
model. Our main contributions can be summarized as:

• developing a method of generating physically realistic synthetic depth data with automated
labeling including bounding box refinement;

• sdapting Faster R-CNN architecture designed for training on 8-bit three-channel RGB images to
16-bit one-channel depth images and training it from scratch; and

• demonstrating that an object detector trained only on synthetic depth images is capable of
detecting real-world depth images with high accuracy.

The rest of the paper is organized as follows. We provide a high-level description of our
depth-image-based object recognition framework in Section 2. Synthetic dataset generation is detailed in
Section 3. We describe our deep learning model for the object recognition task in Section 4. Experiment
and accuracy evaluation metric are presented in Section 5. Results are presented and discussed in Section 6.
Finally, Section 7 concludes the paper and highlights our future research directions.

2. Depth-Image-Based Object Detection

Our object detection framework is shown in Figure 1. The figure is divided into two sections
illustrating the flow within the real and virtual environments. As a first step, a set of objects is chosen
for the recognition task and placed into a box in the real environment. Color and depth images
of these objects are acquired using an RGB-D camera attached to the end-effector of an industrial
robot. Subsequently, in the virtual world, computer-aided drawing (CAD) models of these objects
are generated.

To create realistic scenes for our synthetic depth images, we utilize a simulator with an integrated
physics engine. Specifically, a set of objects fall from a certain height into the box creating realistic and
cluttered scenes. The parameters and the pose of the cameras in the real world and in the simulated
environment are calibrated as close as possible such that the difference between the acquired and
synthesized images is minimized. The bounding boxes of the synthetic objects are automatically



Mach. Learn. Knowl. Extr. 2019, 1 886

generated, and object occlusion is taken into account for dataset refinement. Objects with a high
occlusion rate are excluded from the dataset. The resultant synthetic depth images are used to train a
DL network.

The performance of the deep object recognizer was benchmarked by collecting a real depth image
dataset of objects in a box. The objects in each depth image were manually labeled and their bounding
boxes specified. These depth images were low-pass filtered for denoising during preprocessing before
feeding them to the object recognizer.

Figure 1. Block diagram of the depth-image-based object detection.

3. Dataset Generation

3.1. Real-World Dataset Generation

For our object recognition task, we selected objects (see Figure 2), which can be easily found
and can fit into a regular delivery box with 0.5 m × 0.5 m × 0.1 m dimensions. To benchmark our
object recognition framework, we generated a test dataset of real depth images. We conducted twenty
experiments. During each experiment, 100 real-world depth and corresponding RGB images were
acquired from different viewpoints using an RGB-D camera (SoftKinetic (Brussels, Belgium) DS325),
which was attached to the end-effector of an industrial robot (Staubli (Pfäffikon, Switzerland) TX90XL).
The robot followed a spiral trajectory, as shown in Figure 3, with the depth camera always pointing to
the center of the box. Then, 16-bit depth images with 640× 480 resolution were acquired at 30 frames
per second (see Figure 4a). The number of objects, their positions and orientations inside the box were
set randomly for each experiment. Consequently, 2000 real-world depth images were labeled manually
using the software LabelImg. RGB images were utilized to simplify manual labeling. Pixel values in
our depth images represent the distance from the camera to the objects in mm. Depth pixel values
are saturated if the distance to an object is more than 1 m or less than 0.1 m (i.e., sensing range of the
depth camera is between 0.1 m and 1 m).



Mach. Learn. Knowl. Extr. 2019, 1 887

Figure 2. Twenty-two objects chosen for the recognition task: (1) Container_Big; (2) Yogurt_Bottle;
(3) Printed_3D_Part; (4) Thermos; (5) Football; (6) Milk_Box; (7) Spherical_Ball; (8) Container_Small;
(9) Ceramic_Mug; (10) Torus_Toy; (11) Wheel; (12) Cube; (13) Cable_Reel; (14) Tin_Can; (15) Glue_Stick;
(16) Paper_Cup; (17) Lego_Brick; (18) Cream_Tube; (19) Deodorant_Bottle; (20) Ointment_Tube;
(21) Lint_Roller; and (22) Modem.

Figure 3. Different RGB-D camera poses for real-world dataset generation.

Real-world depth images are noisy compared to our synthetic depth images. Thus, preprocessing
of the real-world depth images is a necessary first step. Various filtering techniques are presented in
the literature for depth images. Zhang et al. proposed asymmetric Gaussian filters to smooth abrupt
changes in the object boundaries of depth images [38]. Averaging filters were utilized in [39,40]. In [41],
a wavelet filter was applied to reduce the noisy features in the depth images. The application of the
median filter for depth image preprocessing was presented in [42,43].



Mach. Learn. Knowl. Extr. 2019, 1 888

After experimenting with infinite impulse response, Gaussian, bilateral and median filters, we
decided to use the median filter for its performance and computational efficiency. The median filter is a
nonlinear spatial filter which finds the median of a neighborhood centered about a pixel (see Figure 4).

Figure 4. Raw depth image (a,b) and depth image median filtered with 9× 9 kernel size (c,d). 2D
figures (upper row) show the depth as grayscale intensity. 3D figures (bottom row) show the depth as
z-axis value.

3.2. Synthetic Dataset Generation

We used Solidworks CAD software in order to create the 3D models of 22 objects replicating the
shape and size of the original objects as much as possible. Standard Triangle Language (STL) files
were generated from these 3D models using Blender (Amsterdam, Netherlands), an open-source 3D
computer graphics software. Since Blender uses its own metric, all generated STL files were scaled
such that one Blender unit (1 BU) corresponds to 0.1 m. Depth rendering capability of Blender was
utilized to create the synthetic depth scenes. The Blender camera parameters were changed to match
the real-world depth camera. The real-world and synthetic scenes have a similar camera position and
orientation (see Figure 3). Similar to the real-world experiment, a virtual box was created for object
placement. Our strategy for synthetic depth data generation consisted of three steps:

1. Synthesis of a realistic scene (i.e., the box with objects)
2. Generation of depth and object silhouette images
3. Generation of bounding boxes and occlusion refinement



Mach. Learn. Knowl. Extr. 2019, 1 889

3.2.1. Cluttered Scene Synthesis

We first imported the 3D model of the main box into the Blender as a rigid body. We chose the
bounding box type as “mesh”, which allows the simulator to use the original shape of the object for
physical simulation. Since the box is concave, the use of the other option (i.e., convex hull) would
result in a rectangular prism not suitable for the task.

To create a physically-realistic box scene with multiple objects inside, we simulated the fall of
these objects from a certain height into the box. Twenty-two objects were chosen with replacement
from the original list of objects (i.e., some of the objects might be chosen more than once, and some of
the objects might not be present in a scene.). These objects were randomly placed in a larger virtual
box such that none of them intersect with another (see Figure 5). Then, they were released from their
initial positions and fell into the box creating a realistic scene. A video provided as Supplementary
Material shows the fall of the objects into the box.

In Blender, the process of saving information of a physical simulation is called “baking”. Baking of
the objects for one physical simulation took between 2 and 15 s during which positions and orientations
of each object were calculated for 250 frames (roughly corresponding to 8 s in simulation time). In most
cases, this duration sufficed for objects to fall down and become stationary which was verified by
visually monitoring the animation. However, some objects were still moving after landing on the
surface due to properties such as friction, bounciness, damping, and collision margins. Therefore, we
stopped the physical simulation after 250 frames to ensure the objects are stationary. Afterward, we
started the rendering process, which takes around 0.5–0.8 s for each image. Parameters of both Blender
and real-world cameras were 640× 480 resolution, 16-bit depth levels, near clipping distance of 0.1 m,
far clipping distance of 1 m and horizontal field of view of 74 degrees. The rendering consisted of the
following steps:

1. Set the camera pose for the frame i.
2. Render the depth image for the frame i.
3. Generate n black and white (BW) object shape silhouettes for n objects within each frame i.

Figure 5. Objects falling through the funnel into the main box during physical simulation to create a
physically-realistic cluttered depth scene.

3.2.2. Generation of Depth and Object Silhouette Images

Once the physical simulation was completed, we generated two sets of images for 100 camera
poses: (1) depth images; and (2) BW silhouette images. The silhouette images were used to detect
the occlusions of the objects. To simplify the rendering process of the BW images, black diffuse
material was assigned to an object while all other objects and the background were set to white. Thus,
the output image consisted of only black pixels for the object seen from a specific camera pose and
white elsewhere. To reduce the computation time, the resolution of these images was set to 20% of
the original value (i.e., 128× 96 pixels). Each object silhouette was saved as a bitmap format file with



Mach. Learn. Knowl. Extr. 2019, 1 890

the filename consisting of the object name and the distance from the camera to the object center of
mass. This process was repeated n times for n objects present in the scene. For each scene, there are
100 · n BW images containing information about object shapes for each 100 camera poses. In addition,
for each scene, a text file with object pose information was created. It took between 0.2 and 0.5 s to
generate the silhouette images for each scene.

3.2.3. Generation of Bounding Boxes and Occlusion Refinement

We considered an object as occluded if more than 70% of it was covered by other objects,
including the main box walls. These occluded objects were not considered for object detection training.
Axis-aligned bounding boxes were generated for each object, and the corresponding occlusion rate was
calculated automatically using the silhouette images. Specifically, the bounding boxes were generated
using Matlab R2017a from the silhouette images (see Figure 6). There were two cases when an object
was not visible and should not be used for training a machine learning model:

1. More than 70% of the object is occluded.
2. The object is fully or mostly out of the camera’s view.

In the first case, to find the occluded objects, we used the following method. We sorted the BW
silhouette images from nearest to the camera to farthest. As shown in Figure 6, the binary intersection
between two consequent layers was found and recorded as the part of Layer 2 (farther object) occluded
by Layer 1 (nearest objects). The percentage of the occluded area was computed. Afterward, the first
layer was replaced by the union of Layers 1 and 2, and the same operation was repeated. Thus, the area
of intersection of two layers showed the occlusion of the object on Layer 2 by an object or a set of
objects on Layer 1. Using the aforementioned approach, the objects with more than 70% occlusion
were found and removed from the text file containing the class labels for machine learning.

In Figure 6, the white rectangle on the bottom of the black and white image (new object silhouette)
in Iteration 1 is the box wall. The green color indicates which part of the object is occluded. In Iteration 2,
the object is fully occluded by nearest objects (i.e., main box wall). In Iteration 3, less than 28% is
occluded. The main advantage of this method is that the exact shape of the object is used to compute
the occlusion rate instead of using a rectangular bounding box.

In the second case, an object is fully or mostly out of the camera field of view. We handled this by
excluding the objects whose bounding box is too small. Specifically, we determined the width, height
and area thresholds for the bounding boxes of each object to exclude them from the list of visible
objects. Objects whose bounding box dimensions were lower than the determined thresholds were
considered as being not visible.



Mach. Learn. Knowl. Extr. 2019, 1 891

Figure 6. Visualization of multiple mask layers used for occlusion estimation. Green region illustrates
the part of the object occluded by the nearer objects.

3.3. Comparison of Synthetic and Real-World Depth Images

We generated the real-world dataset using the depth camera and smoothed using the median
filter. Synthetic depth images were generated using the Blender software. To analyze the difference



Mach. Learn. Knowl. Extr. 2019, 1 892

between synthetically generated and median filtered real-world depth images, we conducted the
following experiment. An object was placed at the center of the box and depth images were acquired
from a vertical distance of 50 cm. Similarly, the depth image of the object was generated synthetically
by using the same camera parameters and pose (see Figure 7). To evaluate the pixel by pixel matching
of these depth images, the root-mean-square errors (RMSEs) of the corresponding pixel values were
found. The RMSE value for the milk box is 16 mm, and for the spherical ball is 21 mm.

Figure 7. 3D comparison of the real and synthetic images.

3.4. Generation of Noise-Added Depth Images

Most time-of-flight depth cameras suffer from random noise and bias. In our case, acquired real
depth images also contain noise. On the other hand, synthetic images were generated without noise.
One strategy to make the object detector robust against noise is to add similar noise to the synthetic
depth images and train the network with these noisy images. Therefore, it is important to characterize
the noise in real depth images. To investigate the noise properties, we acquired the depth image of the
milk box and generated the synthetic depth image using the same camera pose, as shown in Figure 8.
Then, we experimented by adding different types of noise such as Gaussian, salt and pepper, Poisson,
and speckle noise to the synthetic image. Noise parameters such as mean, variance and density were
found empirically because of the lack of a noiseless real-world depth image which could serve as
ground truth. To analyze the noise-added synthetic images, we calculated the root-mean-squared error
(RMSE) between the real and noise added synthetic images in the 2D frequency magnitude spectrums.
In addition, we visualized the 2D Fourier transform and 3D plot of the real, synthetic and noise added
synthetic images, as shown in Figure 8. After testing all mentioned noises, we found that the minimum
RMSE was obtained for the speckle noise added image (Figure 8). In addition, the similarity between
the real image and speckle noise-added synthetic image can be observed qualitatively in the frequency



Mach. Learn. Knowl. Extr. 2019, 1 893

domain or in 3D plots (see Figure 8). Finally, 400,000 synthetic images with added speckle noise
were generated. The variance of the speckle noise was randomly distributed between 0.001 and 0.002,
and the standard deviation of the Gaussian filter was 0.9.

Figure 8. Figures of the real, synthetic and different types of noise-added synthetic images in 2D,
Fourier domain and 3D.



Mach. Learn. Knowl. Extr. 2019, 1 894

4. Deep Learning Model

4.1. Meta-Architectures: SSD, Faster R-CNN, and YOLO

Three notable DL meta-architectures developed for object recognition are SSD [8], Faster
R-CNN [44] and YOLO [7]. SSD and Faster R-CNN use feature extractors as a base network for
acquiring the dominant image features, while YOLO utilizes the single unified neural network for
object detection. SSD takes the feature map from the feature extractor and adds multiple feature
layers of different sizes. For each cell of these feature layers of size M × N × D, the anchor boxes
of different scale and size are used to match them to ground truth boxes. For predicting the class
scores and offsets of the anchor boxes, kernels of size 3× 3× D are used. All predictions are then
sorted using non-maximum suppression, which excludes the predictions with low probability scores.
Since SSD does not require region proposals, it is computationally efficient and faster than other
architectures. However, SSD has lower accuracy because it reshapes the input to the fixed size of
300× 300 or 600× 600 resolution, which hinders the processing of large resolution images compared
to other architectures as Faster R-CNN [44].

YOLO represents a single unified network for object detection. For YOLO, the image is first
divided into N × N grid cells and then passed to the deep convolutional network, consisting of 24
convolutional layers and two fully connected layers. The outputs are sorted using non-maximum
suppression. The limitations to its performance are related to the fact that for each cell in the grid only
two bounding boxes are predicted. YOLO has difficulty in detecting small objects and objects that are
close to each other [7]. Therefore, in a cluttered environment where many objects are occluded by each
other, YOLO will have low performance.

In contrast to SSD and YOLO, Faster R-CNN uses the concept of region proposals, which are
generated using the convolutional neural network called Region Proposal Network (RPN). RPN uses
the sliding window with different anchor boxes over the feature map for computing the overlap of
these anchors with the bounding boxes of objects (i.e., the ground truth). The number of the generated
proposals is N = x · y · l/s, where x and y are the feature map size, l is the number of different anchor
sizes, and s is the size of the stride. These proposals are sorted based on the prediction probability
score. They are then used to crop the regions from the feature map, which are passed to the evaluation
network for object classification and bounding box regression [9].

4.2. Feature Extractors

There is a number of feature extractor techniques, among which most popular are MobileNet,
Resnet, and Inception [44]. MobileNeT uses the depth-wise separable convolutions, which are obtained
by applying separate filters to each input channel (depth-wise convolution), and combining them
with point-wise (1× 1) convolution. In contrast, standard convolution applies one filter across all
input channels [45]. The MobileNet architecture consists of 28 depth-wise and point-wise convolution
layers, followed by average pooling and fully connected layers. Then, the Softmax layer is employed
for classification. Even though deep neural networks usually have better performance with the
increasing number of layers, there exists a degradation problem when the accuracy saturates and
eventually decreases as the number of layers increases. To address this issue, residual networks
(Resnet) implement identity mapping between the layers, which help to improve learning from the
previous layers [46]. These residual connections are stacked together to form the Resnet network.
Its implementations include Resnet-50, Resnet-101, and Resnet-152, having 50, 101, and 152 layers,
respectively. The inception models are formed from the inception modules, which are generated
by first computing 1× 1, 3× 3, and 5× 5 max pooling convolutions and combining their different
variations together before progressing to the next layer [47]. Recently, the inception modules were
integrated with the residual connections by Szegedy et al. [47].

The performance of different DL models consisting of the described meta-architectures and
feature extractors were analyzed in [44]. There is a trade-off between speed and accuracy of DL models.



Mach. Learn. Knowl. Extr. 2019, 1 895

The fastest model was SSD with MobileNet, having the testing dataset mean average precision (mAP)
of 18.8%, while most accurate was Faster R-CNN with Inception Resnet V2 feature extractor having
35.6% mAP. As we were mainly interested in the accuracy, we chose the latter for training.

We used a workstation (Intel Xeon E5-2620 CPU, 16 GB RAM) with a graphics accelerator
(NVIDIA GeForce GTX 1080) to train our object recognition model using our synthetic dataset.
The TensorFlow API for object detection has implementations of various feature extractors and
meta-architectures. In addition, there are many pre-trained models on popular image datasets such
as COCO, Kitti and Open Images [44]. However, all object detection models and checkpoints are
implemented for 8-bit RGB images. Therefore, we modified the Faster R-CNN Inception Resnet V2
feature extractor to work for single-channel 16-bit depth images.

5. Experiments

We used two synthetic datasets for training the DL models. The first one consists of 800,000 clean
synthetic depth images, and the second one consists of 400,000 clean synthetic and 400,000 noise-added
synthetic depth images. Both models were trained from scratch using the initial learning rate of 0.01,
decreasing 10 times at every epoch. In total, the models were trained for 4 epochs. The momentum was
set to 0.9, and the batch size was set to 6 due to memory limitation. The number of region proposals
was 300 and the output stride of 16 was chosen. The DL models were then tested on both synthetic
and real depth images. The first testing dataset consists of 20,000 clean synthetic images (not included
in the training dataset), while the second testing dataset consists of 2000 real-world depth images.

Accuracy Evaluation

To benchmark the accuracy of our model, we used the intersection over union (IoU) metric [48].
Based on this metric, as shown in Figure 9, we considered a prediction as correct if the overlap ratio
of the ground truth bounding box (solid red) and predicted one of the object (dashed blue) is more
than the threshold value of 0.5. For example, the bounding box overlap ratios for the “Milk Box” and
“Football” exceed 0.5 and these predictions are regarded as true positives (TP). In contrast, the overlap
ratio for the “Container” is less than 0.5, and “3D Part” is predicted as “Milk Box”, so both are regarded
as false positives (FP). In addition, the model prediction misses the “Cube” object which exists in the
ground truth. Therefore, the “Cube” is counted as a false negative (FN).

Figure 9. Illustration of the IoU metric.

Following these rules, we computed the accuracy of model predictions using the procedure
presented in Algorithm 1. P is an output of our DL model for a testing image. It contains n predicted



Mach. Learn. Knowl. Extr. 2019, 1 896

objects and their corresponding bounding boxes. GT is a ground truth information which contains
m objects and their corresponding bounding boxes obtained from the real-world testing images via
manual labeling. Initial values of TP, FP, and FN were zero. Then, the predicted object names were
compared with the object names in GT, and if the object existed in GT, the IoU score of their bounding
boxes was calculated. If the IoU passed the threshold, TP was incremented by one. FP was obtained
via subtracting TP from the number of objects in the GT image while FN was extracted via subtracting
TP from the number of predicted objects. Afterward, we calculated the accuracy for one image as
TP/(TP + FP + FN). The average accuracy for the whole testing dataset was computed by finding the
mean of the obtained accuracies for each image.

Algorithm 1 Accuracy evaluation routine.

1: procedure METRIC(P, GT)
2: TP← 0
3: FP← 0
4: FN ← 0
5: for i← 1, n do
6: for j← 1, m do
7: if compareObjNames(P(i), GT(j)) then
8: IoU ← bounding box(P(i) ∩ GT(j))
9: if IoU ≥ 0.5 then

10: TP← TP + 1
11: end if
12: end if
13: end for
14: end for
15: FP← m− TP
16: FN ← n− TP
17: accuracy← TP÷ (TP +FP +FN)
18: end procedure

6. Results and Discussion

The deep object recognizer trained on synthetic clean images has 93.5% accuracy for synthetic
testing and 40.96% for real-world testing datasets. Training with synthetic noise-added images
improved the recognition accuracy to 96.1% and 46.3% for synthetic and real-world datasets,
respectively, as presented in Table 1. The recognition accuracy per class (i.e., the ratio of correctly
recognized objects to the total number of their appearance in the dataset) is presented in Table 2.
In Table 2, we can see that recognition accuracy for real depth images increased for 14 out of 22 classes
(shaded with green) after training with the noise-added dataset. However, we can also see a significant
difference between the testing accuracies on the synthetic and real-world images. In addition, it can be
noted that the recognition accuracy varies greatly for different object categories. Occlusion and different
object properties such as size, shape similarity, and low/high reflectivity affect recognition accuracy.

Table 1. Object recognition performance comparison of DL models.

Models Testing Set

Synthetic Clean Images Real-World Images

Model 1 (trained with synthetic clean images) 93.5% 40.96%
Model 2 (trained with synthetic noise-added images) 96.1% 46.3

For isolating the effects of the occlusion, the experiment for object recognition was conducted in
an ideal environment. Specifically, each object was placed inside the box one by one and 100 images
were taken from different camera poses. The classification results are summarized in Table 3 as a
confusion matrix. The average recognition accuracy in the clean and unoccluded environment is 77%,
which is significantly higher compared to the case with occlusion.



Mach. Learn. Knowl. Extr. 2019, 1 897

Table 2. Average object recognition accuracy (%) per class. Recognition accuracy after training with
noise-added images increases in 14 out of 22 objects (green shaded cells). Dark and reflective objects
are shaded with cyan. Small objects are shaded with red.

Model 1 Model 2

Objects
Testing Set:
Synthetic
Clean Images

Testing Set:
Real-World
Images

Testing Set:
Synthetic
Clean Images

Testing Set:
Real-World
Images

Football 99.98 91.37 99.93 97.86
Milk_Box 96.36 90.06 97.44 93.52
Printed_3D_Part 98.54 76.85 98.58 88.89
Thermos 97.53 80.12 96.60 78.84
Spherical_Ball 99.67 77.87 99.58 77.67
Container_Big 97.83 65.12 98.24 75.48
Modem 96.96 71.58 97.68 67.77
Container_Small 96.73 63.35 97.83 61.10
Cable_Reel 98.69 54.63 98.29 56.63
Ceramic_Mug 96.33 51.23 96.89 55.75
Paper_Cup 98.33 41.88 98.62 54.86
Cube 95.60 43.84 95.78 54.20
Tin_Can 94.48 38.47 96.28 41.57
Cream_Tube 91.34 24.88 94.57 36.50
Lego_Brick 84.53 45.38 89.01 31.06
Lint_Roller 92.06 18.71 91.62 27.22
Ointment_Tube 85.26 28.48 84.06 24.09
Torus_Toy 96.67 21.82 96.74 20.10
Deodorant_Bottle 95.52 48.91 95.43 20.09
Yogurt_Bottle 95.72 11.30 96.79 19.94
Glue_Stick 88.90 12.52 88.09 19.73
Wheel 98.72 10.32 98.47 13.44

In Table 3, we can see that detection scores are high (above 85%) both for large objects (e.g., football,
milk box, spherical ball, printed 3D part, paper cup, and cable reel) and small objects such as Lego
brick, cube, ointment tube, and torus toy. However, other objects (e.g., cream tube, ceramic mug,
small and big container) have lower accuracy due to shape similarity. The misclassifications of the
objects due to shape similarity effects are illustrated in Figure 10. In the first row of Figure 10, the big
container has a similar shape to the milk box. Therefore, DL model recognizes both of them as milk
box. Similarly, in the second row, a small container is not correctly recognized as its shape is similar to
that of a 3D printed part. In addition, ceramic mug, shown in the third row, is detected incorrectly as a
paper cup, and it can be seen that their shapes are very similar from the specific perspective.

In addition, we can see that objects such as the wheel, yogurt bottle, lint roller, and tin can have low
detection score because these objects have low or high reflectivity. Figure 11 shows real-world depth
images containing reflective and black objects. The red circle in the first row and the red rectangles in
the second and third rows in Figure 11 point out black objects (wheel, the dark side of the modem and
lint roller), while the red circle in the fourth row points out a reflective object (tin can). Depending on
the distance, the dark objects may seem to be farther away or closer because of non-linearities in the
phase shift estimation [49]. Surface plots for objects before and after median filtering are presented in
the first and second columns of Figure 11, respectively. The third column shows the corresponding
original intensity plots. It can be seen that the dark and reflective objects have a substantial amount
of white pixels at the maximum intensity value of 65,535. This means that depth information for the
objects is not valid and cannot provide discriminative information for object recognition. This problem
cannot be alleviated using median filter due to the large size of the saturated zones.



Mach. Learn. Knowl. Extr. 2019, 1 898

Table 3. Confusion matrix for object recognition for a single unoccluded object in the box. Correct
recognitions are shaded with green. Dark and reflective objects are shaded with cyan. Small objects are
shaded with red.

Predicted Classes

Fo
ot

ba
ll

M
il

k_
B

ox

Pr
in

te
d_

3D
_P

ar
t

T
he

rm
os

Sp
he

ri
ca

l_
B

al
l

C
on

ta
in

er
_B

ig

M
od

em

C
on

ta
in

er
_S

m
al

l

C
ab

le
_R

ee
l

C
er

am
ic

_M
ug

Pa
pe

r_
C

up

C
ub

e

Ti
n_

C
an

C
re

am
_T

ub
e

Le
go

_B
ri

ck

Li
nt

_R
ol

le
r

O
in

tm
en

t_
Tu

be

To
ru

s_
To

y

D
eo

do
ra

nt
_B

ot
tl

e

Yo
gu

rt
_B

ot
tl

e

G
lu

e_
St

ic
k

W
he

el

Football 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Milk_Box 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Printed_3D_Part 0 0 93 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Thermos 0 6 0 78 0 0 8 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0
Spherical_Ball 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Container_Big 0 12 0 0 0 82 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Modem 0 0 4 0 0 0 83 0 0 5 0 0 0 0 8 0 0 0 0 0 0 0
Container_Small 0 0 23 0 0 0 1 76 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cable_Reel 0 0 0 0 0 0 0 0 88 0 0 6 2 0 4 0 0 0 0 0 0 0
Ceramic_Mug 0 0 0 0 0 0 0 0 0 83 17 0 0 0 0 0 0 0 0 0 0 0
Paper_Cup 0 0 4 0 0 0 0 2 0 0 90 0 0 4 0 0 0 0 0 0 0 0
Cube 0 0 0 0 0 0 0 0 0 0 0 94 0 0 6 0 0 0 0 0 0 0
Tin_Can 0 0 0 0 0 0 0 0 0 14 0 8 68 0 10 0 0 0 0 0 0 0
Cream_Tube 0 0 2 0 0 0 0 0 0 0 10 0 0 75 0 0 13 0 0 0 0 0
Lego_Brick 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0
Lint_Roller 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 6 0 0 0 62 0
Ointment_Tube 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 87 0 0 0 13 0
Torus_Toy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0
Deodorant_Bottle 0 0 0 16 0 0 0 0 0 0 0 0 0 13 7 6 5 0 41 12 0 0
Yogurt_Bottle 0 0 0 8 0 0 0 0 0 0 0 0 0 10 16 8 12 0 0 46 0 0
Glue_Stick 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 12 27 0 0 0 57 0

A
ct

ua
lc

la
ss

es

Wheel 0 0 8 0 0 0 6 0 0 30 0 0 0 0 24 0 10 0 0 0 0 22

Figure 10. Visualization of the misclassification due to shape similarity: (a) the Container_Big is
misclassified as a Milk_Box; (b) the Container_Small is misclassified as a Printed_3D_Part; and (c) the
Ceramic_Mug is misclassified as a Paper_Cup.



Mach. Learn. Knowl. Extr. 2019, 1 899

Figure 11. Reflective and black objects.

We can state that, in the ideal case, the main reason for misclassifications is the shape similarity.
However, the objects with low or high reflectivity decrease the depth measurement quality and result
in lower recognition accuracies. In general, both small and large objects not having these effects
(i.e., shape similarity and low or high reflectivity) have higher recognition accuracies. If objects are
placed in a cluttered environment, the performance of DL model recognition declines.

After analyzing the effects of the different object properties, we need to consider the effect of the
occlusion. The occlusion effects influence the recognition slightly for the large objects which do not
have shape similarities with other objects. For example, Table 2 shows that the detection scores for
objects such as football, milk box, printed 3D part, spherical ball are high even with part of these objects
occluded. However, the effect of the occlusion is detrimental for small objects, for which recognition
accuracy decreases to less than 30%, while in the unoccluded environment small objects had a high
accuracy of above 85%.

The advantages of our approach compared to the previous works are the following. The previous
approaches of object recognition mainly use the RGB images [8,50–52]. However, generating large-scale
dataset is costly as it requires the manualy labeling of millions of images. To tackle this issue, there
have been some approaches of generating the synthetic RGB images, which mainly employed the
following methods: cropping object images from available datasets and placing them on top of the
random backgrounds [20,21] or RGB rendering of 3D CAD models with texture, color and visual
information [5,19]. The mean average precision (mAP) of the object recognition is 24% for 55 object
classes in [19] and 46% for 31 object classes in [5] compared to an average precision of 46.3% for 22 object
classes in our work. These approaches have the following limitations. The former one is limited by the
existing set of objects and is not robust to object recognition in cluttered and occluded environments



Mach. Learn. Knowl. Extr. 2019, 1 900

(see Section 3.1 in [20]). The weakness of the latter one is related to the fact that object recognition with
RGB images is vulnerable to the effects of the light, illumination and textual information. Therefore, it
is challenging to create a dataset which takes all of these variations into account.

In addition, rendering of the depth images takes less time compared to the rendering of the RGB
images. In our work, rendering of one depth image took around 0.8 s, while, in [53], rendering time of
one high-quality RGB image was on average 14 s.

Thirdly, previous works related to object detection using depth images [17,54] have considered
only a limited set of object types for testing: eight objects in [17] and six objects in [54]. The object
detection accuracies of these approaches are 84.94% and 83% (mAP), respectively. However, these
works also lack the analysis of the object recognizer performance in the case of the high or low
reflectivity objects and objects with similar shapes or small sizes which can significantly influence
the recognition accuracy. On the other hand, our work provides an extended analysis of the object
recognition framework and effects of the different object properties such as size, shape similarity,
and high/low reflectivity. In addition, our framework works in real-time (6 fps) using the depth camera
even in a dark environment, which is the main weakness of the approaches based on RGB camera.

Our object recognition framework utilizing synthetic depth images and automatic labeling has
some further limitations. In particular, we designed our detection system for 22 objects. Therefore, if the
object set were changed, the model would need to be trained from scratch with a newly synthesized
dataset. Another limitation is the resolution of the depth camera. The average noise of our depth
camera was around 0.7 cm, which deteriorated the detection performance of small objects. We expect
this problem to lessen due to the introduction of new depth cameras with better characteristics.

7. Conclusions

In this work, we present a DL-based object recognition framework using synthetic depth images.
The models trained on clean and noise-added synthetic images were tested for object recognition of
real-world depth images. The results of object recognition can be influenced by the effects of occlusion
and other object properties. In an uncluttered environment, DL models trained with the synthetically
generated depth data provide high accuracy for large and small objects. Shape similarity and high or
low reflectivity of objects deteriorate the detection accuracy, with the latter having a more significant
effect. The occlusion effect decreases object recognition accuracy significantly for small objects and
objects having the shape similarities to other objects. The objects having low or high reflectivity are
not suitable for object detection using the time-of-flight depth cameras, because depth information
is not valid for object recognition. Our future work will entail the extension of the object set, use of
different depth cameras and DL architectures. Our final aim is to utilize our framework in real-time
object manipulation with an industrial robot.

Supplementary Materials: The following are available online at http://www.mdpi.com/2504-4990/1/3/51/s1,
Video S1: Deep Learning Based Object Recognition Using Physically-Realistic Synthetic Depth Scenes.

Author Contributions: Conceptualization, H.A.V.; Data creation, A.O., D.F., Z.M. and A.K.; Project administration,
H.A.V.; Software, D.B., A.Z. and A.K.; Supervision, H.A.V.; Writing—original draft, D.B., A.K. and Z.M.; and
Writing—review and editing, D.B. and H.A.V.

Funding: This work was supported by the grant “Methods for Safe Human Robot Interaction with VIA Robots”
from the Ministry of Education and Science of the Republic of Kazakhstan and by the Nazarbayev University
Faculty Development Program grant “Hardware and Software Based Methods for Safe Human-Robot Interaction
with Variable Impedance Robots”.

Conflicts of Interest: The authors declare no conflict of interest.

http://www.mdpi.com/2504-4990/1/3/51/s1


Mach. Learn. Knowl. Extr. 2019, 1 901

References

1. Correll, N.; Bekris, K.E.; Berenson, D.; Brock, O.; Causo, A.; Hauser, K.; Okada, K.; Rodriguez, A.;
Romano, J.M.; Wurman, P.R. Analysis and Observations From the First Amazon Picking Challenge.
IEEE Trans. Autom. Sci. Eng. 2018, 15, 172–188. [CrossRef]

2. Li, W.; Luo, Y.; Wang, P.; Qin, Z.; Zhou, H.; Qiao, H. Recent advances on application of deep learning for
recovering object pose. In Proceedings of the IEEE International Conference on Robotics and Biomimetics
(ROBIO), Qingdao, China, 3–7 December 2016; pp. 1273–1280. [CrossRef]

3. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
4. Gupta, S.; Arbeláez, P.; Girshick, R.; Malik, J. Aligning 3D models to RGB-D images of cluttered scenes.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 4731–4740. [CrossRef]

5. Peng, X.; Sun, B.; Ali, K.; Saenko, K. Learning deep object detectors from 3D models. In Proceedings of the
IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1278–1286.

6. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and
semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 580–587.

7. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection.
In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA,
27–30 June 2016; pp. 779–788.

8. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox
detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands,
8–16 October 2016; pp. 21–37.

9. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal
networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 1137–1149. [CrossRef] [PubMed]

10. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural
networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA,
3–6 December 2012; pp. 1097–1105.

11. Carlucci, F.M.; Russo, P.; Caputo, B. A deep representation for depth images from synthetic data.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Singapore,
29 May–3 June 2017; pp. 1362–1369.

12. Zhang, Y.; Song, S.; Yumer, E.; Savva, M.; Lee, J.Y.; Jin, H.; Funkhouser, T. Physically-based rendering for
indoor scene understanding using convolutional neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5057–5065.

13. Mitash, C.; Bekris, K.E.; Boularias, A. A self-supervised learning system for object detection using physics
simulation and multi-view pose estimation. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 545–551.

14. Ben-David, S.; Blitzer, J.; Crammer, K.; Pereira, F. Analysis of representations for domain adaptation.
In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada,
3–6 December 2007; pp. 137–144.

15. Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; Marchand, M.; Lempitsky, V.
Domain-adversarial training of neural networks. J. Mach. Learn. Res. 2016, 17, 1–35.

16. Hinterstoisser, S.; Lepetit, V.; Wohlhart, P.; Konolige, K. On Pre-trained Image Features and Synthetic Images
for Deep Learning. In Proceedings of the ECCV Workshops, Munich, Germany, 8–14 September 2018;
pp. 682–697.

17. Mithun, N.C.; Munir, S.; Guo, K.; Shelton, C. ODDS: Real-Time Object Detection Using Depth Sensors on
Embedded GPUs. In Proceedings of the 2018 17th ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN), Porto, Portugal, 11–13 April 2018; pp. 230–241. [CrossRef]

18. Pinto, N.; Barhomi, Y.; Cox, D.D.; DiCarlo, J.J. Comparing state-of-the-art visual features on invariant object
recognition tasks. In Proceedings of the IEEE Workshop on Applications of Computer Vision (WACV), Kona,
HI, USA, 5–7 January 2011; pp. 463–470.

19. Rajpura, P.S.; Hegde, R.S.; Bojinov, H. Object Detection Using Deep CNNs Trained on Synthetic Images.
arXiv 2017, arXiv:1706.06782.

http://dx.doi.org/10.1109/TASE.2016.2600527
http://dx.doi.org/10.1109/ROBIO.2016.7866501
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1109/CVPR.2015.7299105
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1109/IPSN.2018.00051


Mach. Learn. Knowl. Extr. 2019, 1 902

20. Georgakis, G.; Mousavian, A.; Berg, A.C.; Kosecka, J. Synthesizing Training Data for Object Detection in
Indoor Scenes. arXiv 2017, arXiv:1702.07836.

21. Dwibedi, D.; Misra, I.; Hebert, M. Cut, Paste and Learn: Surprisingly Easy Synthesis for Instance
Detection. In Proceedings of the IEEE International Conference on Computer Vision 2017, Venice, Italy,
22–29 October 2017.

22. Lai, K.; Bo, L.; Ren, X.; Fox, D. A large-scale hierarchical multi-view RGB-D object dataset. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011;
pp. 1817–1824.

23. Socher, R.; Huval, B.; Bath, B.; Manning, C.D.; Ng, A.Y. Convolutional-recursive deep learning for 3D object
classification. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV,
USA, 3–6 December 2012; pp. 656–664.

24. Schwarz, M.; Milan, A.; Periyasamy, A.S.; Behnke, S. RGB-D object detection and semantic segmentation for
autonomous manipulation in clutter. Int. J. Robot. Res. 2018, 37, 437–451. [CrossRef]

25. Newcombe, R.A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Kim, D.; Davison, A.J.; Kohi, P.; Shotton, J.; Hodges, S.;
Fitzgibbon, A. KinectFusion: Real-time dense surface mapping and tracking. In Proceedings of the IEEE
International Symposium on Mixed and Augmented Reality (ISMAR), Basel, Switzerland, 26–29 October
2011; pp. 127–136.

26. Izadi, S.; Kim, D.; Hilliges, O.; Molyneaux, D.; Newcombe, R.; Kohli, P.; Shotton, J.; Hodges, S.; Freeman, D.;
Davison, A.; et al. KinectFusion: Real-time 3D reconstruction and interaction using a moving depth camera.
In Proceedings of the ACM Symposium on User Interface Software and Technology, Santa Barbara, CA,
USA, 16–19 October 2011; pp. 559–568.

27. Shotton, J.; Fitzgibbon, A.; Cook, M.; Sharp, T.; Finocchio, M.; Moore, R.; Kipman, A.; Blake, A. Real-time
human pose recognition in parts from single depth images. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Washington, DC, USA, 20–25 June 2011; pp. 1297–1304.

28. Biswas, J.; Veloso, M. Depth camera based indoor mobile robot localization and navigation. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA), St Paul, MN, USA, 14–18 May 2012;
pp. 1697–1702.

29. Maier, D.; Hornung, A.; Bennewitz, M. Real-time navigation in 3D environments based on depth camera
data. In Proceedings of the IEEE-RAS International Conference on Humanoid Robots, Osaka, Japan,
29 November–1 December 2012; pp. 692–697.

30. Saudabayev, A.; Kungozhin, F.; Nurseitov, D.; Varol, H.A. Locomotion strategy selection for a hybrid mobile
robot using time of flight depth sensor. J. Sens. 2015, 2015, 425732. [CrossRef]

31. Massalin, Y.; Abdrakhmanova, M.; Varol, H.A. User-Independent Intent Recognition for Lower Limb
Prostheses Using Depth Sensing. IEEE Trans. Biomed. Eng. 2018, 65, 1759–1770. [PubMed]

32. Saudabayev, A.; Rysbek, Z.; Khassenova, R.; Varol, H.A. Human grasping database for activities of daily
living with depth, color and kinematic data streams. Sci. Data 2018, 5, 180101. [CrossRef] [PubMed]

33. Koenig, N.P.; Howard, A. Design and use paradigms for Gazebo, an open-source multi-robot simulator.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Sendai, Japan, 28 September–2 October 2004; Volume 4, pp. 2149–2154.

34. Gschwandtner, M.; Kwitt, R.; Uhl, A.; Pree, W. BlenSor: Blender Sensor Simulation Toolbox. In Proceedings of
the International Symposium on Visual Computing, Las Vegas, NV, USA, 26–28 September 2011; pp. 199–208.

35. Liebelt, J.; Schmid, C. Multi-view object class detection with a 3D geometric model. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA,
13–18 June 2010; pp. 1688–1695.

36. Gupta, A.; Vedaldi, A.; Zisserman, A. Synthetic data for text localisation in natural images. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA,
27–30 June 2016; pp. 2315–2324.

37. Wanner, S.; Goldluecke, B. Globally consistent depth labeling of 4D light fields. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 18–20 June 2012;
pp. 41–48.

38. Zhang, L.; Tam, W.J. Stereoscopic image generation based on depth images for 3D TV. IEEE Trans. Broadcast.
2005, 51, 191–199. [CrossRef]

http://dx.doi.org/10.1177/0278364917713117
http://dx.doi.org/10.1155/2015/425732
http://www.ncbi.nlm.nih.gov/pubmed/29989950
http://dx.doi.org/10.1038/sdata.2018.101
http://www.ncbi.nlm.nih.gov/pubmed/29809171
http://dx.doi.org/10.1109/TBC.2005.846190


Mach. Learn. Knowl. Extr. 2019, 1 903

39. Cheng, C.M.; Lin, S.J.; Lai, S.H.; Yang, J.C. Improved novel view synthesis from depth image with large
baseline. In Proceedings of the International Conference on Pattern Recognition (ICPR), Tampa, FL, USA,
8–11 December 2008; pp. 1–4.

40. Park, Y.K.; Jung, K.; Oh, Y.; Lee, S.; Kim, J.K.; Lee, G.; Lee, H.; Yun, K.; Hur, N.; Kim, J. Depth-image-based
rendering for 3DTV service over T-DMB. Signal Process. Image Commun. 2009, 24, 122–136. [CrossRef]

41. Forster, B.; Van De Ville, D.; Berent, J.; Sage, D.; Unser, M. Complex wavelets for extended depth-of-field:
A new method for the fusion of multichannel microscopy images. Microsc. Res. Tech. 2004, 65, 33–42.
[CrossRef] [PubMed]

42. Weiss, B. Fast median and bilateral filtering. ACM Trans. Graph. (TOG) 2006, 25, 519–526. [CrossRef]
43. Ibarra-Castanedo, C.; Gonzalez, D.; Klein, M.; Pilla, M.; Vallerand, S.; Maldague, X. Infrared image processing

and data analysis. Infrared Phys. Technol. 2004, 46, 75–83. [CrossRef]
44. Huang, J.; Rathod, V.; Sun, C.; Zhu, M.; Balan, A.K.; Fathi, A.; Fischer, I.; Wojna, Z.; Song, Y.;

Guadarrama, S.; et al. Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,
USA, 20–25 June 2017; pp. 3296–3297.

45. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017,
arXiv:1704.04861.

46. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016;
pp. 770–778. [CrossRef]

47. Szegedy, C.; Ioffe, S.; Vanhoucke, V. Inception-v4, Inception-ResNet and the Impact of Residual Connections
on Learning. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA,
4–9 February 2017.

48. Everingham, M.; Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC)
Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [CrossRef]

49. Falie, D.; Buzuloiu, V. Noise Characteristics of 3D Time-of-Flight Cameras. In Proceedings of the International
Symposium on Signals, Circuits and Systems, Iasi, Romania, 13–14 July 2007; Volume 1, pp. 1–4.

50. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural
Networks. Neural Inf. Process. Syst. 2012, 25. [CrossRef]

51. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [CrossRef]

52. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal
networks. In Advances in Neural Information Processing Systems, Proceedings of the 29th Annual Conference on
Neural Information Processing Systems 2015, Montreal, QC, Canada, 7–12 December 2015; Neural Information
Processing Systems Foundation, Inc. (NIPS): La Jolla, CA, USA; pp. 91–99.

53. McCormac, J.; Handa, A.; Leutenegger, S.; Davison, A.J. SceneNet RGB-D: Can 5M Synthetic Images Beat
Generic ImageNet Pre-training on Indoor Segmentation? In Proceedings of the 2017 IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2697–2706.

54. Eitel, A.; Springenberg, J.T.; Spinello, L.; Riedmiller, M.; Burgard, W. Multimodal deep learning for robust
RGB-D object recognition. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 681–687. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.image.2008.10.008
http://dx.doi.org/10.1002/jemt.20092
http://www.ncbi.nlm.nih.gov/pubmed/15570586
http://dx.doi.org/10.1145/1141911.1141918
http://dx.doi.org/10.1016/j.infrared.2004.03.011
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1109/IROS.2015.7353446
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Depth-Image-Based Object Detection
	Dataset Generation
	Real-World Dataset Generation
	Synthetic Dataset Generation
	Cluttered Scene Synthesis
	Generation of Depth and Object Silhouette Images
	Generation of Bounding Boxes and Occlusion Refinement

	Comparison of Synthetic and Real-World Depth Images
	Generation of Noise-Added Depth Images

	Deep Learning Model
	Meta-Architectures: SSD, Faster R-CNN, and YOLO
	Feature Extractors

	Experiments
	Results and Discussion
	Conclusions
	References

