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Abstract: Lattice structures are becoming an increasingly attractive design approach for the most
diverse engineering applications. This increase in popularity is mainly due to their high specific
strength and stiffness, considerable heat dissipation, and relatively light weight, among many other
advantages. Additive manufacturing techniques have made it possible to achieve greater flexibility
and resolution, enabling more complex and better-performing lattice structures. Unrestricted material
unit cell designs are often associated with high computational power and connectivity problems,
and highly restricted lattice unit cell designs may not reach the optimal desired properties despite
their lower computational cost. This work focuses on increasing the flexibility of a restricted unit cell
design while achieving a lower computational cost. It is based on a two-scale concurrent optimization
of the lattice structure, which involves simultaneously optimizing the topology at both the macro-
and micro-scales to achieve an optimal topology. To ensure a continuous optimization approach,
surrogate models are used to define material and geometrical properties. The elasticity tensors
for a lattice unit cell are obtained using an energy-based homogenization method combined with
voxelization. A multi-variable parameterization of the material unit cell is defined to allow for the
synthesis of functionally graded lattice structures.

Keywords: multi-scale optimization; multi-material optimization; lattice structure; topology optimization;
voxelization; energy-based homogenization

1. Introduction

Engineers across a variety of industries, including aerospace, automotive, and biomed-
ical, have long sought lightweight yet high-efficiency structures, such as those with high
stiffness, high specific strength, or good heat dissipation properties [1,2]. One approach
to achieving these properties is through numerical topology optimization, which gained
widespread attention following the publication of the seminal work by Bendsøe and Kikuchi
in 1988 [3].

It is important to investigate the potential benefits and drawbacks of using different
geometries at the micro-scale and evaluate the applicability of the methodology as proposed
by Wang et al. [4]. In order to minimize computational complexity and reduce processing
time, a voxelization method is suggested as a viable alternative to a highly discretized
conformal mesh for constructing the continuous surrogate model that represents the graded
evolution of the unit cells.

A lattice structure consists of an arrangement of struts or faces connected by nodes,
which when assembled builds up to a geometry within a determined unit cell. Connecting
these unit cells results in a complete lattice structure. Lattice structures are comparable to
other materials, such as foam or honeycomb types of material. The research community has
disseminated works which indicate that lattice structures have better mechanical properties
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in compression and shear compared to foams and honeycombs [5–7]. The enhanced
mechanical properties are mainly due to the fact that lattice structures can be tailor-made
for each desired application. The unit cells or the struts/faces within the unit cell can
have different design variables assigned to them, enabling numerous combinations of the
geometry in use and optimization of them to satisfy specific requirements.

Topology optimization is a process used to find the optimal material distribution that
satisfies one or more objective functions while adhering to a set of constraints and boundary
conditions. The design domain is discretized into several finite elements in a finite element
approach and the material distribution is controlled and described by one or more design
variables, where the simplest case assumes the density of the finite element to be the only
design variable.

Topology optimization can achieve optimal structures by considering geometric pat-
terns that transform spatially over the defined design domain and through multiple length-
scales. When a single scale is considered for optimization, it is classified as mono-scale,
while when more than one scale is considered it is categorized as multi-scale. Multi-scale
approaches can optimize both material micro-structure and structural macro-scale concur-
rently, providing better results than approaches performed separately and/or successively.

Homogenization theories form the basis of multi-scale approaches, allowing for the
computation of effective material properties by considering the material to be made up of
repeating patterns of similar unit cells. The review paper by Wu et al. [8] categorizes unit
cell topology design approaches into five major categories. The more flexible the design is,
the more problems may arise concerning connectivity, integrity, and manufacturing issues.

Multi-scale optimization has been the focus of many research works, including those
that employ a single-design variable parameterization. Wang et al. [9] and Watts et al. [10]
successfully employed surrogate models to represent the elasticity tensor characterizing the
material properties in 2D and 3D unit cell optimizations, respectively. Ypsilantis et al. [11]
extended this approach to multimaterial 3D optimization of the micro-scale. Nguyen
and Choi explored the effect of increasing design flexibility by optimizing the unit cell
build orientation and addressing the concept of equivalent unit cells for conformal lattice
designs [12].

In more recent works, multi-variable multi-scale optimization has also been studied.
Imediegwu et al. [13] analyzed a multi-variable parameterization of the unit cell using
7 design variables, which has been expanded to 10 design variables in a recent work by the
same group [14]. However, the high number of design variables in such models leads to
highly complex computational models that may require a dynamic database that updates
during the optimization process to reduce computational effort and time.

A previous work by Costa et al. [15] presented a method that enabled (in short) the
discretization of unit cell geometries at the micro-scale and the study of its mechanical
capabilities at a macro-scale level. Taking the aforementioned works into consideration,
the present work focuses on the discretizion and study of different geometries, while also
presenting four distinct case studies from the literature to be used in the macro-scale part
of the process.

2. Theoretical Background
2.1. Topology Optimization

Topology optimization (TO) is a process that aims to find the optimal distribution of
one or more materials within a given design domain while considering a set of constraints,
such as volume fraction. An optimization problem can be formulated to minimize the
compliance of a material subject to a volume constraint, which can be represented by
Equation (1).

In this equation, c refers to compliance, |Ω|(ρ) represents the volume of material, U
is the displacement vector, and F is the global force vector [16].
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Find : ρ = {ρ1, . . . , ρN},

Minimize : c(ρ) = UT KU =
N

∑
e=1

uT
e keue,

subject to : |Ω|(ρ)/|Ω| ≤ Λ,

: KU = F,

: 0 ≤ ρe ≤ 1, e = 1, . . . , N.

(1)

The element stiffness matrix, ke, can be obtained by using the elasticity tensor, D,
which can be determined for isotropic materials.

ke =
∫

Ωe
BT DB dΩe. (2)

To compute the strain-displacement matrix, B, an isoparametric finite element for-
mulation is used, where the physical coordinate system is transformed into a reference
coordinate system centered in the element.

The expression in Equation (2) can be reformulated in terms of natural coordinates,
as shown in Equation (3), where |J| denotes the determinant of the Jacobian matrix. To
accurately calculate the element stiffness matrix, the computation of matrices B and J is
critical. Gao et al. [17] explain the process for calculating these matrices in detail. Gaussian
quadrature can be used to evaluate the integral in Equation (3), and it is considered more
effective than the Newton–Cotes quadrature because it optimizes the position and weights
of the sampling points at which the integral is evaluated.

ke =
∫ 1

−1

∫ 1

−1

∫ 1

−1
BT DB|J| dξdηdζ (3)

2.1.1. Sensitivity Analysis

To solve a topology optimization problem, it is necessary to perform a sensitivity anal-
ysis, which involves calculating the derivatives of both the objective function, c(ρ), and the
volume constraint, |Ω|(ρ) (as defined in Equation (1)), with respect to the design variables.

By representing the global stiffness matrix as a sum of N element stiffness matrices,
kG

e , the formulation can be written in the global reference frame (Equation (4)), where ue is
the element vector of nodal displacements.

tialc(ρ)
tialρe

= −ue(ρ)
T
(

tial
tialρe

ke(ρe)

)
ue(ρ) (4)

The derivative of the volume constraint, |Ω|(ρ), with respect to the density variable
is given by Equation (5).

tial|Ω|(ρ)
tialρe

= |Ωe| (5)

2.1.2. Filtering

Filtering techniques are commonly employed in the topology optimization (TO) pro-
cess to mitigate numerical issues, such as checkerboard patterns and mesh dependency.
Mesh-independent filtering methods are the most widely used despite other potential
solutions, such as perimeter and global gradient control [18].

The modified element density, xe, is based on a neighboring region of that element,
determined by the filter radius, rmin [19]. The density of the finite element, e, is computed
using Equation (6), where Ne represents the set of neighboring elements to which the
distance from centre to centre of the elements, ∆(e, i), is smaller than the filter radius
dimension, and Hei is a weight factor defined in Equation (7) [16].
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x̃e =
1

∑
i∈Ne

Hei
∑

i∈Ne

Heixi (6)

Hei = max(0, rmin − ∆(e, i)) (7)

However, the application of a density filter results in the loss of physical meaning for
the original densities, xi, and the solution must rely on filtered densities. This approach

produces filtered sensitivities,
(

t̃ialψ
tialxe

)
, which can be mathematically expressed using

Equation (8). A small value is incorporated into the equation to avoid division by zero
when the element densities ρe are zero.

t̃ialψ
tialxe

=
1

max(γ, xe) ∑
i∈Ne

Hei
∑

i∈Ne

Heixi
tialc
tialxi

(8)

2.2. Material Homogenization

To simulate the mechanical behavior of a lattice material, a homogenization technique
may be employed. This approach enables the determination of the effective elastic prop-
erties of a material, assuming two conditions hold: first, the macro-scale characteristics
are much greater than the micro-scale dimensions (large separation of scales), and sec-
ond, the micro-structure exhibits a periodic distribution on the macro-scale, composed of
periodically repeating unit cells [20].

One can use a finite element approach which solves the equations using the fi-
nite element method. The periodic unit cell can be divided into N finite elements to
write Equation (9). Superscript i pertains to the six independent test strains in a 3D sce-
nario, while subscript e denotes the element domain. Be represents the element strain-
displacement matrix and De is the elasticity tensor for the typically isotropic material that
makes up the corresponding finite element.

Kχi = f i, i = 1, . . . , 6 (9)

K =
N

∑
e=1

∫
Ve

BT
e DeBe dVe (10)

f i =
N

∑
e=1

∫
Ve

BT
e Deϵ0(i) dVe (11)

Once the solution for the displacement field, χi, is established, the term χi
e can be

determined, and this can be achieved by solving Equation (9).

DH
ij =

1
|V|

N

∑
e=1

(
uA(i)

e

)T
keuA(j)

e (12)

If the unit cell is subjected to an imposed strain field, ϵ0
ij, the displacement field can be

expressed, as shown in Equation (13) [21,22]. The fluctuation field term corresponds to a
deviation from the linear displacement field that arises due to the heterogeneous structure
of the composites.

For a continuous physical body assumption to be valid, two continuity conditions
must be met at the boundaries of the repeating unit cells. The first condition is that the
displacements must be continuous and the unit cell boundaries cannot overlap or separate
from others of adjoined unit cells. Equation (13) ensures this condition.

χi = ϵ0
ijyj + χ∗

i (13)
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The second condition is that the traction distributions at the opposite parallel bound-
aries of a periodic unit cell must be the same. To address this, Equation (13) can be
transformed into a set of explicit expressions that consider the displacements on pairs
of parallel opposite surfaces of the unit cell. Equations (14) and (15) provide the general
formulation for the displacements on a pair of parallel opposite surfaces, with the super-
scripts k+ and k− denoting the opposite parallel surfaces perpendicular to the kth = 1, 2, 3
principal direction (i.e., X, Y, or Z axis).

χk+
i = ϵ0

ijy
k+
j + χ∗

i (14)

χk−
i = ϵ0

ijy
k−
j + χ∗

i (15)

To eliminate the fluctuation term, χ∗
i , Equation (15) can be subtracted from Equation (14),

resulting in Equation (16).
Even though Equation (16) guarantees the first continuity condition, known as the trac-

tion continuity, where the normal and shear stresses must be equal at parallel boundaries,
it may not always be met. However, for a displacement-based finite element,

χk+
i − χk−

i = ϵ0
ij(y

k+
j − yk−

j ) = ϵ0
ij∆yk

j . (16)

2.3. Lattice Structures

Depending on their individual properties, lattice structures can be categorized into
two groups: stretch-dominated and bending-dominated lattices.

The choice between these two types of lattices depends on the application’s primary
objective. In stretch-dominated lattices, M ≥ 0, external loads are balanced by axial tension
and compression in struts, meaning that no bending occurs at nodes, while in bending-
dominated lattices there are too few struts to balance the external forces without balancing
the moments induced at the nodes, causing bending stresses to develop in struts [23,24].

M = s − 3 × j + 6. (17)

The Maxwell number measures the stiffness of the lattice structure by taking into
account the number of struts, s, and joints, j, that make up the unique geometry of the unit
cell (Equation (17)).

2.4. Sensitivity Analysis

In order for the optimizer to update the design variables and achieve convergence
for the final solution, it requires access to the derivatives of both the objective function
and the volume constraints with respect to those design variables. These sensitivities
are crucial for the optimizer to make informed decisions about how to adjust the design
variables. Specifically, the sensitivities regarding the objective function can be expressed in
mathematical terms to provide a more precise understanding of the relationship between
the design variables and the objective function, as expressed in Equation (18):

tialc(X)

tialρ̃e
= −ue(X)T

(
tialke(ρ̃e, x̃mate)

tialρ̃e

)
ue(X). (18)

3. Methodology
3.1. Surrogate Model

The first step involves building a sampling-point database that includes various
combinations of design variables, lattice branch radius, and the resulting homogenized
elasticity tensor for each combination. The second step involves connecting all sampling
points to create the continuous surrogate model, which requires selecting a suitable method
to fit the data into a continuous model using regression analysis.
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A voxel-based model is chosen to generate the discretization of the micro-scale. The
unit cube geometry is divided into structured hexahedral finite elements with eight nodes
per element, resulting in a highly regular mesh. This choice is based on the fact that the
voxel-based discretization eases the definition of periodic boundary conditions that are
pivotal to the adopted homogenization method [13].

To address this issue, Imediegwu et al. [13] proposed a scheme that considers the
linear dependency between the material assigned to each voxel and the number of nodes
inside the domain delimited by the lattice structure. If this distance is less than or equal to
the radius, the node is considered active and counts to set the density to the elements that
share it. If it is more than the radius, the node is considered inactive. Research papers such
as [10,12,25] are examples of how voxelization has been used to compute effective material
properties for different lattice structures.

3.1.1. Unit Cell Parameterization

The two-variable parameterization of the unit cell is accomplished using the relative
density and aspect ratio as design variables. The relative density represents the percentage
of solid material volume in each unit cell and is defined in Equation (19). The aspect ratio,
ρext, is defined as a ratio between the volume of external lattice branches, Vext, and the total
lattice material volume, Vstrut, as presented in Equation (20).

ρ =
Vstrut

Vuc
(19)

ρext =
Vext

Vstrut
(20)

Overall, the two-variable parameterization approach follows the rationale presented by
Wang et al. [4], with only the variable names changing. The approach enables the concurrent
optimization of both the macro- and micro-scale in a multi-scale topology optimization.

3.1.2. Unit Cell Geometries

The geometries used at a micro-scale level in each unit cell play a fundamental part
when compiling and creating the study cases in the TO process, in the later stages of the
work. As stated previously, six geometries are to be presented and studied at both micro-
and macro-scale.

In the literature [5,26–28], there might be specific titles for such geometries/branches
presented next, although (and to better identify the final geometry combination) in the
context of this work these were the titles given. Each geometry is identified as the arbitrary
name of the outer branches plus arbitrary name of the inner branches.

The geometry in Figure 1 has a Maxwell number of−12 and is therefore bending-dominated.

(a) (b) (c)

Figure 1. Cross + Diamond geometry. (a) ρext = 0. (b) ρext = 0.5. (c) ρext = 1.

The geometry in Figure 2 has a Maxwell number of −1 and is bending-dominated.
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(a) (b) (c)

Figure 2. Cube + Inner Diagonal Cross geometry. (a) ρext = 0. (b) ρext = 0.5. (c) ρext = 1.

The geometry in Figure 3 has a Maxwell number of −1 and is bending-dominated.

(a) (b) (c)

Figure 3. Diagonal Cross + Diamond geometry. (a) ρext = 0. (b) ρext = 0.5. (c) ρext = 1.

The geometry in Figure 4 has a Maxwell number of 0; therefore, it is stretch-dominated.

(a) (b) (c)

Figure 4. Diagonal Cross + Inner Cage geometry. (a) ρext = 0. (b) ρext = 0.5. (c) ρext = 1.

The geometry illustrated in Figure 5 has a Maxwell number is −9, meaning this
geometry is bending-dominated.

(a) (b) (c)

Figure 5. Diagonal Cross + Inner cross geometry. (a) ρext = 0. (b) ρext = 0.5. (c) ρext = 1.

Lastly, the geometry in Figure 6 has a Maxwell number of −13; this geometry is
bending-dominated.
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(a) (b) (c)

Figure 6. Diagonal Cross + Inner Diagonal Cross geometry. (a) ρext = 0. (b) ρext = 0.5. (c) ρext = 1.

3.1.3. Sampling Point Database

The assembling of a complete database is a crucial step in the development of a
surrogate model. In this case, the range of relative densities of the sampling points varies
from 0 to 1, initially with steps of 0.025 up to rel. density of 0.1, then steps of 0.1 until
the value of 0.9 is reached, and finally steps of 0.025 until a value of 1 of relative density.
The aspect ratio varies from 0 to 1 as well, with a constant step interval of 0.1. Thus, the
database has a total of 165 sampling points that each have a unique combination of the
two design variables, relative density and aspect ratio, leading to different lattice branch
diameters for each sampling point. Once the sampling-point database script has collected
all the required data, the points are connected together during the data-fitting process.

3.1.4. Regression Model

This approach aims to connect all the sampling points and can be visualized in a
three-dimensional graph as a surface, considering a two-design variable parameterization
of the lattice material unit cell. One of the simplest ways to perform regression analysis is
by using polynomial regression. The least squares method (LSM) is a popular approach that
follows the concept of parameterized interpolation for lattice material (PILM) introduced
in [4]. To reduce the relative error between the sampling data and the regression model, the
percentage robust least squares method was chosen.

D = DH(ρ, ρext) (21)

Using the PILM model, it is possible to represent each of the independent elements of
the elasticity tensor (6 for the general anisotropic case and only 3 if the unit cell displays
cubic symmetry) as a polynomial function of the design variables.

Dij = a0 + a1ρext + a2ρ+

+ a3ρ2
ext + a4ρextρ + a5ρ2+

+ a6ρ3
ext + a7ρ2

extρ + a8ρextρ
2 + a9ρ3+

+ a10ρ4
ext + a11ρ3

extρ + a12ρ2
extρ

2 + a13ρextρ
3 + a14ρ4+

+ a15ρ5
ext + a16ρ4

extρ + a17ρ3
extρ

2 + a18ρ2
extρ

3 + a19ρextρ
4 + a20ρ5+

+ a21ρ6
ext + a22ρ5

extρ + a23ρ4
extρ

2 + a24ρ3
extρ

3 + a25ρ2
extρ

4 + a26ρextρ
5 + a27ρ6+

+ a28ρ7
ext + a29ρ6

extρ + a30ρ5
extρ

2 + a31ρ4
extρ

3 + a32ρ3
extρ

4 + a33ρ2
extρ

5 + a34ρ1
extρ

6+

+ a35ρ7

(22)

By using the polynomial function displayed in Equation (22) to represent the inde-
pendent elements of the elasticity tensor, the surrogate model can be built by expressing
the elasticity tensor of the anisotropic lattice material as being a function of the defined
design variables. This allows for an immediate representation of the relationship between
the design variables and the material properties of the lattice.
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3.2. Multi-Material TO

A modified version of the SIMP method has been developed by Venugopal et al. [29],
which connects it with a surrogate model describing the elasticity tensor of each finite
element based on its density value.

The product of a SIMP-based equation (defining which material is being allocated)
with the surrogate model’s equation results in an equation that translates the stiffness
matrix of element e (ke). The material variable is denoted as x̃mat and the density variable
as ρ̃, with the tilt indicating that these variables are filtered. Assuming a material with a
Young’s modulus of unity, we can express the element stiffness matrix as k0; q represents a
penalization factor.

ke(ρ̃e, x̃mate) =
[

E1(1 − x̃mate)
q + E2 x̃q

mate

]
k0

e (ρ̃e) (23)

The equations for the volume constraints are presented in Equation (24) (representing
the volume constraint of material 1) and Equation (25) (representing the volume constraint
of material 2). Here, |Ωe| represents the element volume, |Ω| represents the design space
volume, and the volume fraction of material i is denoted as Λ. As a result, the volume
constraints are dependent on both design variables.

G1(ρ̃e, x̃mate) =
N

∑
e=1

|Ωe|ρ̃e(1 − x̃mate)− Λ1|Ω| ≤ 0 (24)

G2(ρ̃e, x̃mate) =
N

∑
e=1

|Ωe|ρ̃e(x̃mate)− Λ2|Ω| ≤ 0 (25)

To minimize the compliance objective functional, the formulation of the multi-material
multi-scale TO problem is used:

Find : X = {ρ1, . . . , ρN ; ρext1 , . . . , ρextN ; xmat1 , . . . , xmatN},

Minimize : c(X̃) = UTKU =
N

∑
e=1

uT
e keue,

subject to :
N

∑
e=1

|Ωe|ρ̃e(1 − x̃mate)− Λ1|Ω| ≤ 0,

:
N

∑
e=1

|Ωe|ρ̃e(x̃mate)− Λ2|Ω| ≤ 0,

: KU = F,

: 0 ≤ ρmin ≤ ρe ≤ ρmax ≤ 1, e = 1, . . . , N,

: 0 ≤ xmate ≤ 1, e = 1, . . . , N,

: 0 ≤ ρexte ≤ 1, e = 1, . . . , N.

(26)

Furthermore, and considering that for the multi-material multi-scale TO three design
variables (in this case) are needed, we are able to write the elasticity tensor, D, as it is
presented in Equation (27). The term D0(ρ̃ext, ρ̃) represents the surrogate model created for
the unit cell’s geometry to be considered for a unitary Young’s modulus.

D(x̃mat, ρ̃ext, ρ̃) = [E1(1 − x̃mat)
q + E2 x̃q

mat]D
0(ρ̃ext, ρ̃) (27)

Sensitivity Analysis

The sensitivity analysis to be performed shares an identical path to the one presented
previously in Section 2.4, although now a third design variable has to be taken into con-
sideration: the aspect ratio, ρext. As stated, Equations (28) and (29) express the additional
derivatives of the volume constraints with regards to ρext, to properly conclude this step.



J. Compos. Sci. 2024, 8, 124 10 of 28

tialG1(x̃mat, ρ̃ext, ρ̃)

tialρ̃ext
= 0 (28)

tialG2(x̃mat, ρ̃ext, ρ̃)

tialρ̃ext
= 0 (29)

Additionally, the volume constraint’s sensitivities are as presented in the follow-
ing equations:

tialG1(ρ̃e, x̃mate)

tialρ̃e
= (1 − x̃mate)|Ωe|, (30)

tialG2(ρ̃e, x̃mate)

tialρ̃e
= x̃mate |Ωe|. (31)

4. Results

In this chapter, the six geometries presented in Section 3.1.2 will be used in four case
studies. This totals 24 case studies. The surrogate models created for the tensor elements
(D11, D12, D44) of each geometry are illustrated in 3D graphics, showing the relative density
(ρ) and the aspect ratio (ρext) design variables.

4.1. Multi-Material Multi-Scale TO

For all topology optimization case studies, the value of the force applied was of 60 kN.
The overall volume fraction is also common to all cases and it was set at 50% of the total
design-domain volume, 25% being allocated to material 1 and the other 25% to material 2.
Both design variable intervals were set between [0, 1].

For this work, material 1 was set with a Young’s modulus of E1 = 145 MPa and
material 2 was set with a Young modulus of E2 = 210 MPa.

4.1.1. Cantilever Case Study

All the TO results of the six geometries for the Cantilever case study are presented.
This structure is fully constrained at one end (to the left of the figure) and free to move at
the opposite end (to the right of the figure). It has a 12 × 12 finite element-sized square
section with 30 unit cells of length.

The Cantilever case study (Figure 7a) starts as a solid bar with a square section. One
end of the bar is fully constrained, with neither linear nor rotational degrees of freedom,
whereas the other end is free to translate and rotate. A vertical force, pointing downwards,
is applied to the middle of the horizontal bottom edge of the free end of the bar. These
properties should translate to a TO result that is symmetric in relation to a plane parallel
to xy.

The renders of the following results of this case study are presented in Figures A1–A6.
Figures 8a, 9a, 10a, 11a, 12a and 13a illustrate the density as well as the material distri-

bution within the volume domain. On the constrained area (to the left of the illustration),
there is a significant concentration of material 2 at the top and the bottom faces along
the whole width of the structure. The material tends to shape similarly to a nozzle when
we move away from the constraint end towards the free end and culminates on the area
where the force is applied. Towards the free end of the cantilever structure, material 1 was
allocated (less stiff) near the area where the force is applied. The qualitative density as well
as the material distribution is identical to all geometries in this case study.
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(a) (b)

(c) (d)
Figure 7. Case studies [30]. (a) Cantilever case study. (b) Messerchimitt–Bolkow–Blohm (MBB) case
study. (c) Hook case study. (d) Wheel case study.

(a) (b) (c)
Figure 8. Cantilever case study: Cross + Diamond geometry. (a) Relative density distribution—
material 1 in blue, material 2 in red. (b) Aspect ratio distribution. (c) Render: Cross + Diamond
geometry applied to the Cantilever case study.

(a) (b) (c)
Figure 9. Cantilever case study: Cube + Inner diagonal cross geometry. (a) Relative density
distribution—material 1 in blue, material 2 in red. (b) Aspect ratio distribution. (c) Render: Cube +
Inner diagonal cross geometry applied to the Cantilever case study.
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(a) (b) (c)
Figure 10. Cantilever case study: Diagonal cross + Diamond geometry. (a) Relative density
distribution—material 1 in blue, material 2 in red. (b) Aspect ratio distribution. (c) Render: Di-
agonal cross + Diamond geometry applied to the Cantilever case study.

(a) (b) (c)
Figure 11. Cantilever case study: Diagonal cross + Inner cage geometry. (a) Relative density
distribution—material 1 in blue, material 2 in red. (b) Aspect ratio distribution. (c) Render: Diagonal
cross + Inner cage geometry applied to the Cantilever case study.

(a) (b) (c)
Figure 12. Cantilever case study: Diagonal cross + Inner cross geometry. (a) Relative density
distribution—material 1 in blue, material 2 in red. (b) Aspect ratio distribution. (c) Render: Diagonal
cross + Inner cross geometry applied to the Cantilever case study.

(a) (b) (c)

Figure 13. Cantilever case study: Diagonal cross + Inner diagonal cross geometry. (a) Relative density
distribution—material 1 in blue, material 2 in red. (b) Aspect ratio distribution. (c) Render: Diagonal
cross + Inner diagonal cross geometry applied to the Cantilever case study.

4.1.2. Messerchimitt–Bolkow–Blohm (MBB) Case Study

The renders of the following results of this case study are presented in Figures A7–A12.
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In this case study (Figure 7b), a solid bar with a square section is horizontally supported
in the four bottom edges of the solid. On these four points, the structure is fully constrained,
meaning there is no linear or rotational movement. A downwards vertical force is applied
to the centre of the upper face of the bar. This case study can perhaps be regarded as a
bridge, and the TO should result in a final structure that is symmetrical to a plane parallel
to xy as well as to yz.

From the figures that illustrate the density distribution within the design domain
(Figures 14a, 15a, 16a, 17a, 18a and 19a), we can observe that there is a distribution of
material 2 (in red) in the shape of an arc, connecting the constrained elements, on the bottom
face, to the middle of the top face of the structure. This arc-shaped density distribution of
material 2 (stiffer material) is identical (from a qualitative point of view) in all the MBB case
studies of the different geometries.

The material and density distribution of material 1 (in blue) in the structure, on the
other hand, presents slight differences in term of “filling” the inner part of the arc previously
described with material 2, which is worth highlighting.

(a) (b) (c)
Figure 14. MBB case study: Cross + Diamond geometry. (a) Relative density distribution—material
1 in blue, material 2 in red. (b) Aspect ratio distribution. (c) Render: Cross + Diamond geometry
applied to the MBB case study.

(a) (b) (c)
Figure 15. MBB case study: Cube + Inner diagonal cross geometry. (a) Relative density distribution—
material 1 in blue, material 2 in red. (b) Aspect ratio distribution. (c) Render: Cube + Inner diagonal
cross geometry applied to the MBB case study.

(a) (b) (c)
Figure 16. MBB case study: Diagonal cross + Diamond geometry. (a) Relative density distribution—
material 1 in blue, material 2 in red. (b) Aspect ratio distribution. (c) Render: Diagonal cross +
Diamond geometry applied to the MBB case study.
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(a) (b) (c)
Figure 17. MBB case study: Diagonal cross + Inner cage geometry. (a) Relative density distribution—
material 1 in blue, material 2 in red. (b) Aspect ratio distribution. (c) Render: Diagonal cross + Inner
cage geometry applied to the MBB case study.

(a) (b) (c)
Figure 18. MBB case study: Diagonal cross + Inner cross geometry. (a) Relative density distribution—
material 1 in blue, material 2 in red. (b) Aspect ratio distribution. (c) Render: Diagonal cross + Inner
cross geometry applied to the MBB case study.

(a) (b) (c)
Figure 19. MBB case study: Diagonal cross + Inner diagonal cross geometry. (a) Relative density
distribution—material 1 in blue, material 2 in red. (b) Aspect ratio distribution. (c) Render: Diagonal
cross + Inner diagonal cross geometry applied to the MBB case study.

4.1.3. Hook Case Study

The renders of the following results of this case study are presented in Figures A13–A18.
The Hook case study starts with a structure in the L shape with a square section. The

top square section is fully constrained, whereas the other square section (other end of the
“L” shaped structure) is free to move. A downward vertical force is to be applied on the
centre of the free-to-move section. This case study TO should result in a final structure that
is symmetrical in relation to a plane parallel to xy.

The case studies that are presented below are quite similar in terms of overall relative
density distribution and present qualitatively identical areas where material 1 and material
2 was allocated. In the figures that relate to relative density distribution (Figures 20a,
21a, 22a, 23a, 24a and 25a), the salient observation that can be made is that there is a
concentration of material 1 (in blue, less stiff) on the corner area of the L-shaped structure,
which then switches into material 2 (in red, stiffer) as we move from the corner towards
the constrained and free edges. The exact positioning of material does not appear to be the
same for the different geometries presented, although the qualitative position of it within
the structure is, in a way, identical.
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(a) (b) (c)
Figure 20. Hook case study: Cross + Diamond geometry. (a) Relative density distribution—material
1 in blue, material 2 in red. (b) Aspect ratio distribution. (c) Render: Cross + Diamond geometry
applied to the Hook case study.

(a) (b) (c)
Figure 21. Hook case study: Cube + Inner diagonal cross geometry. (a) Relative density distribution—
material 1 in blue, material 2 in red. (b) Aspect ratio distribution. (c) Render: Cube + Inner diagonal
cross geometry applied to the Hook case study.

(a) (b) (c)
Figure 22. Hook case study: Diagonal cross + Diamond geometry. (a) Relative density distribution—
material 1 in blue, material 2 in red. (b) Aspect ratio distribution. (c) Render: Diagonal cross +
Diamond geometry applied to the Hook case study.

(a) (b) (c)
Figure 23. Hook case study: Diagonal cross + Inner cage geometry. (a) Relative density distribution—
material 1 in blue, material 2 in red. (b) Aspect ratio distribution. (c) Render: Diagonal cross + Inner
cage geometry applied to the Hook case study.
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(a) (b) (c)
Figure 24. Hook case study: Diagonal cross + Inner cross geometry. (a) Relative density distribution—
material 1 in blue, material 2 in red. (b) Aspect ratio distribution. (c) Render: Diagonal cross + Inner
cross geometry applied to the Hook case study.

(a) (b) (c)
Figure 25. Hook case study: Diagonal cross + Inner diagonal cross geometry. (a) Relative density
distribution—material 1 in blue, material 2 in red. (b) Aspect ratio distribution. (c) Render: Diagonal
cross + Inner diagonal cross geometry applied to the Hook case study.

4.1.4. Wheel (“Table Top”) Case Study

The renders of the following results of this case study are presented in Figures 26–31.
The Wheel case study features a parallel piped structure that is supported in the four

bottom corners. These corners are fully constrained. A downward vertical force is applied
to the center of the bottom face of the structure. This case study might resemble a table top.
The TO final structure should be symmetrical to a plane parallel to xy and yz.

In the Wheel case studies, the qualitative similarities of density as well as material
distribution amongst the various case studies with different geometries can be observed.
On the bottom corners of the design domain, all figures show a concentration of material 2
(in red) starting from the support points, where the structure is fully constrained. From this
point upwards and inwards, the “legs” of the final structure develop towards the middle of
the design domain and eventually change into material 1 (in blue).

(a) (b) (c)
Figure 26. Wheel case study: Cross + Diamond geometry. (a) Relative density distribution—material
1 in blue, material 2 in red. (b) Aspect ratio distribution. (c) Render: Cross + Diamond geometry
applied to the Wheel case study.
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(a) (b) (c)
Figure 27. Wheel case study: Cube + Inner diagonal cross geometry. (a) Relative density distribution—
material 1 in blue, material 2 in red. (b) Aspect ratio distribution. (c) Render: Cube + Inner diagonal
cross geometry applied to the Wheel case study.

(a) (b) (c)
Figure 28. Wheel case study: Diagonal cross + Diamond geometry. (a) Relative density distribution—
material 1 in blue, material 2 in red. (b) Aspect ratio distribution. (c) Render: Diagonal cross +
Diamond geometry applied to the Wheel case study.

(a) (b) (c)
Figure 29. Wheel case study: Diagonal cross + Inner cage geometry. (a) Relative density distribution—
material 1 in blue, material 2 in red. (b) Aspect ratio distribution. (c) Render: Diagonal cross + Inner
cage geometry applied to the Wheel case study.

(a) (b) (c)
Figure 30. Wheel case study: Diagonal cross + Inner cross geometry. (a) Relative density distribution—
material 1 in blue, material 2 in red. (b) Aspect ratio distribution. (c) Render: Diagonal cross + Inner
cross geometry applied to the Wheel case study.
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(a) (b) (c)
Figure 31. Wheel case study: Diagonal cross + Inner diagonal cross geometry. (a) Relative density
distribution—material 1 in blue, material 2 in red. (b) Aspect ratio distribution. (c) Render: Diagonal
cross + Inner diagonal cross geometry applied to the Wheel case study.

4.2. Results Comparison

The compliance values at which the TO has converged is displayed in bar-type graphs.
In order to check the efficiency of combining the outer and inner branches of the geometries
proposed, the converged compliance values for three different scenarios are presented for
each geometry: when only the outer branches are used (ρext = 1, in orange), for when only
the inner branches are used (ρext = 0, in blue), and finally for when the aspect ratio varies
freely within the 0 to 1 scope (ρext ∈ [0, 1], in grey), resulting in a combination of the outer
and inner branches.

An immediate observation that can be made from the information presented in
Figures 32 and 33 is that the use of the full geometry presented, meaning having a combi-
nation of the outer and inner branches of the geometry, tends to give a slightly or even a
substantially better result (compliance value wise) when compared to the cases where the
aspect ratio was set to 0 or 1, either only inner branches or only outer branches.

(a) (b)

(c) (d)
Figure 32. Compliance comparison between geometries. (a) Compliance comparison between TO
final results for 3 geometries, each geometry with ρext = 0 or ρext = 1 or ρext varying from 0 to 1.
(b) Compliance comparison between TO final results for 3 geometries, each with ρext = 0 or ρext = 1
or ρext varying from 0 to 1. (c) Compliance comparison between TO final results for 3 geometries,
each with ρext = 0 or ρext = 1 or ρext varying from 0 to 1. (d) Compliance comparison between TO
final results for 3 geometries, each with ρext = 0 or ρext = 1 or ρext varying from 0 to 1.
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(a) (b)

(c) (d)
Figure 33. Compliance comparison between geometries. (a) Compliance comparison between TO
final results for 3 geometries, each with ρext = 0 or ρext = 1 or ρext varying from 0 to 1. (b) Compliance
comparison between TO final results for 3 geometries, each with ρext = 0 or ρext = 1 or ρext varying
from 0 to 1. (c) Compliance comparison between TO final results for 3 geometries, each with ρext = 0
or ρext = 1 or ρext varying from 0 to 1. (d) Compliance comparison between TO final results for
3 geometries, each with ρext = 0 or ρext = 1 or ρext varying from 0 to 1.

Figure 32a,b illustrate the compliance results obtained in the Cantilever case study
for the six geometries. From the values of the grey bars (representing the 0–1 aspect ratio
interval), the geometry with the lowest value of compliance was the Diagonal Cross + Inner
Cross geometry. On the other hand, the geometry with the greatest compliance value was the
Diagonal Cross + Inner Cage (for the scenario where the aspect ratio varies from 0 to 1 only).

Regarding the results obtained for the MBB case study (Figure 32c,d), the geome-
try which resulted in the lowest value of compliance was the Diagonal Cross + Inner
Cage. On the other hand, the geometry with the highest value of compliance was for
both the Cube + Inner Diagonal Cross and the Diagonal Cross + Inner Diagonal Cross
geometries. The final compliance results are within 3.5% from each other (for the 0–1 aspect
ratio scenario).

In the figures presented next (Figure 33a,b), it can be verified that from the Cube + Inner
Diagonal Cross geometry resulted the lowest value of compliance for the Hook case study.
The Diagonal Cross + Inner Diagonal Cross geometry had the highest value of compliance
(for the 0–1 aspect ratio scenario). As a side note, both of these geometries share the same
inner branches architecture, although they have different outer branches.

Regarding the Wheel case study, given the information from Figure 33c,d the geometry
which resulted in the lowest value of compliance was the Cross + Diamond geometry.
The geometry with the highest value of compliance was the Diagonal Cross + Inner Cross
geometry (for the 0–1 aspect ratio scenario). The final compliance values for the 0–1 aspect
ratio scenario of all 6 geometries vary roughly 1% from one another.

5. Concluding Remarks

The novelties of this work stem from the creation of six surrogate models that effec-
tively represent the elasticity tensor of each of the six geometries concerning two design
variables: relative density and aspect ratio. These design variables determine both the
volume occupied by the geometry within the designated finite element volume and the
distribution of that volume between the inner and outer branches of the geometry.
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For the topology optimization process, surrogate models were created for six hier-
archical lattice materials during the first solution phase. The creation of these models
involved constructing a database based on material homogenization theory. Here, it should
be noted that considerable computational time was needed for each run. It was assumed
that the number of finite elements would adequately represent the strut-based lattice shape
and that the lattice-independent branches would not significantly intersect for the entire
density range. While this assumption did not prevent the creation of a surrogate model, it
could result in failure to converge for a multi-scale topology optimization. Therefore, it is
essential to consider branch interception when using the PILM principle to develop new
surrogate models. A set of sampling points for each elasticity tensor were calculated and
later interpolated using LSM with a 7th order polynomial, which resulted in the coefficients
of the best fitting surface to those points.

Next, multi-scale, multi-variable topology optimization was performed. The overall
average improvement considering the compliance result when the [0, 1] interval of aspect
ratio was considered, and the second best result (either with the result from having aspect
ratio set as 0 or 1) was 3.32%. In more detail, in the Cantilever case study the average
improvement in compliance value, in the same circumstances as previously described, was
1.9%. In the MBB case study, the improvement was 1.67%. In the Wheel case study, the
improvement was 1.7%. Lastly, the improvement in the Hook case study was 8.02%. These
improvements bring to light the advantages of the combination of the outer and inner
branches presented into more complex although better-performing geometries.

Furthermore, the amount of finite elements seems to have been sufficient, given that
none of the TO runs resulted in a divergent behaviour. The number of iterations enabled
the TO process to run until an acceptable level of convergence had been reached.
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Appendix A

Figure A1. Render: Cross + Diamond geometry applied to the Cantilever case study.
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Figure A2. Render: Cube + Inner diagonal cross geometry applied to the Cantilever case study.

Figure A3. Render: Diagonal cross + Diamond geometry applied to the Cantilever case study.

Figure A4. Render: Diagonal cross + Inner cage geometry applied to the Cantilever case study.

Figure A5. Render: Diagonal cross + Inner cross geometry applied to the Cantilever case study.
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Figure A6. Render: Diagonal cross + Inner diagonal cross geometry applied to the Cantilever
case study.

Figure A7. Render: Cross + Diamond geometry applied to the MBB case study.

Figure A8. Render: Cube + Inner diagonal cross geometry applied to the MBB case study.

Figure A9. Render: Diagonal cross + Diamond geometry applied to the MBB case study.
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Figure A10. Render: Diagonal cross + Inner cage geometry applied to the MBB case study.

Figure A11. Render: Diagonal cross + Inner cross geometry applied to the MBB case study.

Figure A12. Render: Diagonal cross + Inner diagonal cross geometry applied to the MBB case study.



J. Compos. Sci. 2024, 8, 124 24 of 28

Figure A13. Render: Cross + Diamond geometry applied to the Hook case study.

Figure A14. Render: Cube + Inner diagonal cross geometry applied to the Hook case study.

Figure A15. Render: Diagonal cross + Diamond geometry applied to the Hook case study.
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Figure A16. Render: Diagonal cross + Inner cage geometry applied to the Hook case study.

Figure A17. Render: Diagonal cross + Inner cross geometry applied to the Hook case study.

Figure A18. Render: Diagonal cross + Inner diagonal cross geometry applied to the Hook case study.
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Figure A19. Render: Cross + Diamond geometry applied to the Wheel case study.

Figure A20. Render: Cube + Inner diagonal cross geometry applied to the Wheel case study.

Figure A21. Render: Diagonal cross + Diamond geometry applied to the Wheel case study.
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Figure A22. Render: Diagonal cross + Inner cage geometry applied to the Wheel case study.

Figure A23. Render: Diagonal cross + Inner cross geometry applied to the Wheel case study.

Figure A24. Render: Diagonal cross + Inner diagonal cross geometry applied to the Wheel case study.
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