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Abstract: Food packaging plays an imperative role in the food processing sector by safeguarding
foods from their point of harvesting until the moment of consumption. In recent years, biopolymers
have attracted the attention of the scientific community as an alternative to conventional packaging
materials. Among the available biopolymer sources, a lot of the focus has been on polysaccharides
due to their superior barrier properties against gases, oils, and odors and their processing versatil-
ity. Moreover, there is also a growing interest in aliphatic polyester as a potential replacement for
petrochemical-based synthetic plastics. Both polysaccharides and aliphatic polyesters have gained
popularity in sustainable food packaging due to their unique characteristics, including their low cost,
availability, biodegradability, gas and moisture barrier properties, film-forming capabilities, excellent
heat resistance, and ability to be processed into films, trays, and coatings. This review highlights the
structural features, properties, and recent advancements of several vital polysaccharides, namely,
starch, chitosan, cellulose, alginate, pectin, carrageenan, and aliphatic polyesters, including polylactic
acid (PLA) and polyhydroxybutyrate (PHB) for developing packaging materials, and their applica-
tions in the food industry. Conventional packaging and future perspectives of biopolymer-based
food packaging are also comprehensively covered in this review.

Keywords: food packaging; biopolymers; polysaccharides; aliphatic polyesters; biopackaging

1. Introduction

According to the World Health Organization (WHO), there are an estimated 600 million
cases of foodborne diseases and 420,000 deaths yearly due to contaminated and unsafe
food [1]. Therefore, it is crucial to intake safe and nutritious food to maintain a long and
healthy life. Food can be contaminated at various stages throughout the production chain,
from farm to consumption. Maintaining food safety is a top priority for public health and
essential for attaining food security. Moreover, food safety and quality control systems are
vital not only for protecting the health and well-being of consumers but also for supporting
economic growth and boosting livelihoods by providing access to local and global markets.

Advanced food processing and packaging techniques are important to maintain a safe
food supply worldwide. Food packaging is a key player in the food processing industry by
safeguarding foods from their point of harvesting to the time of consumption. Food pack-
aging protects its content from physical, biological, enzymatic, and biochemical damage.
Beyond preservation, packaging also provides containment, utility, and communication [2].
The most used conventional food packaging materials include plastics, glass, metal, pa-
per and paperboards, wood, and composites. These materials have long been the basis
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of the packaging industry as they have various properties that meet food preservation
requirements [3]. Even though conventional packaging materials fortify foods from differ-
ent contaminants, other factors related to production costs and social and environmental
aspects have raised many concerns over the past few decades.

Furthermore, single-use packaging materials prepared from conventional raw materi-
als are the most widely employed in the food industry. They are predominantly disposed
of right after use, causing numerous environmental concerns. For instance, over two-thirds
of the total production of single-use packaging materials is used in the food sector alone.
Due to changes in food production and consumption habits and the growing population,
this number continues to rise [4]. Consequently, accumulating packaging waste in large
quantities has made it extremely difficult to handle solid waste sustainably. Surprisingly,
around 30–35% of municipal solid waste comes from global packaging waste, and food
packaging accounts for approximately 60% of total solid municipal waste [5]. Hence, to
address issues related to conventional food packaging, sustainable packaging materials
with better thermal, mechanical, and barrier properties have significant importance in the
food industry [6]. Interestingly, many investigations are underway to develop alternative
food packaging materials due to increased consumer awareness about health, food quality,
food safety, and environmental sustainability pertaining to food packaging [7].

In this context, one of the emerging solutions for safer and sustainable food packaging
is using biopolymer-based packages that alleviate health and environmental concerns
over conventional packaging [6]. Biopolymer-based packaging or biopackaging materials
exhibit distinct features such as relative abundance, renewability, and biodegradability.
Interestingly, the global market for biopackaging materials is expected to grow rapidly
in the coming years. It is forecasted that the production capacity of bio-based packaging
is set to upsurge from the 2019 figure of 2.11 million tons to around 2.43 million tons in
2024 [8]. Among many biopolymers, polysaccharides and aliphatic polyesters have been
widely considered for developing biopackaging materials for the food industry. Biopoly-
mers can either be directly extracted from natural biomass or chemically synthesized
from biomass-derived monomers or microorganisms [9]. For example, natural polysac-
charides such as starch, cellulose, chitin, alginate, pectin, and carrageenan and synthetic
aliphatic polyesters such as PLA and PHB have been investigated for food packaging
applications [10]. Although numerous review articles have been published on the use of
biopolymers in food packaging applications, there is scarce information available explicitly
emphasizing the structure, properties, and food packaging applications of polysaccharides
and aliphatic polyesters [11–13].

This review first examines conventional food packaging materials, namely, paper,
plastic, glass, and metal, to understand their strengths and weaknesses. Then, it sets
the stage for a comparative study, discussing the advantages of biodegradable materi-
als over conventional materials regarding functionality and environmental sustainability.
After that, the current review focuses on the structural arrangement, properties, and re-
cent advancements of polysaccharides and aliphatic polyesters for food packaging. The
roles of polysaccharides, including starch, cellulose, chitosan, pectin, alginate, and car-
rageenan, and synthetic aliphatic polyesters, such as PLA and PHB, in biopackaging are
elaborated upon. Recent trends and future outlooks of the biopackaging industry are also
summarized in this review. Most importantly, we report the recent findings related to
polysaccharide- and aliphatic polyester-based food packaging to disseminate knowledge
on further advancing biopackaging materials and their potential as sustainable alternatives
to conventional packaging.

2. Conventional Food Packaging

Food packaging is a complex system that protects food until it arrives at its destination
in perfect condition through transportation, distribution, and storage. Various packaging
materials have been introduced to provide the desirable functionality of a packaging
system for different food items. The selection of proper packaging materials is essential
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for maintaining product quality until usage, as well as fulfilling product requirements
such as barrier properties and economic, environmental, and social factors [14]. Generally,
conventional packaging can be divided into three categories based on their application:
primary, secondary, and tertiary. Primary packaging comes directly into contact with the
food product and provides a protective barrier, secondary packaging stores several primary
packagers, and tertiary packaging is employed for bulk storage and transportation [3].
Paper and paperboard, plastics, glass, and metal are the primary packaging materials
utilized for most commercial food products, and a combination of more than two packaging
materials is used to provide the best protection for food products, as shown in Figure 1. The
following section discusses the conventional packaging materials and their pros and cons.
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2.1. Paper and Paperboard

Paper and paperboard represent over 30% of the worldwide packaging industry and
are commonly applied in the food industry for product containment and preservation [15].
Paper and paperboard packages can be recognized as environmentally friendly due to
their biodegradability, which promotes their usage in the food industry. Many paper and
paperboard packages are available, from lightweight packages such as infusible tissues for
tea bags to heavy tertiary packaging boxes. Paper and paperboard have been utilized for
food packaging since the seventeenth century, and usage increased in the late nineteenth
century [16]. Of total paper production, more than 92% is made from wood pulp and the
remaining 8% is generated from agricultural by-products such as bagasse, straw, flax, and
corn husks [17]. The quality of the paper depends on the type of raw materials used for
paper development and their fiber and pulp properties [18]. Cellulose is responsible for
providing a fiber-forming ability with long and straight fibers, hemicellulose in wood pulp
is responsible for bond development during the paper-beating process, and lignin acts as
a natural binding component for the paper development process [15]. After the pulping
process, all unit operations, such as bleaching, beating, refining, and final treatments, are
responsible for manufacturing paper with different qualities and appearances [19]. Table 1
summarizes the various types of paper packaging used in the food industry.
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Table 1. Major types of paper used in food packaging.

Paper Type Properties Application Ref.

Kraft paper
Type of coarse, high-strength, economical,
porous, tear-resistant paper with a rough
surface that can be coated or laminated

Beverage carriers, boxes, sacks,
cartons, packages for flour, dried
fruits, sugar

[15]

Greaseproof paper Translucent, machine-finished, resistant to oils Wraps cookies, confectionary, snack
foods, highly oily foods [20]

Parchment paper
Made from acid-treated pulp, not heat sealable,
poor air and moisture barrier properties, high
wet strength, greaseproof

Layer between pastry or meat slices,
labels for fatty foods, cheese
wrapping

[15]

Glassine paper Glassy, smooth surface; transparent sheet;
good grease and oil resistance; high density

Liner for baked goods, biscuits,
cookies, cooking fats [21]

Bleached paper Soft and white, weaker compared to
unbleached paper, expensive

Food labels, flour, sugar, fruits and
vegetables [22]

Paperboards

Thicker than paper, rigid, foldable; different
types are available: whiteboard, liner board,
food board, carton board, chipboard,
corrugated board

Rigid boxes, beverage cartons,
boxes for fruits and vegetables [22,23]

Paper and paperboard packaging possesses several advantages, including low produc-
tion cost, biodegradability, lightweightness, flexibility, printability, and recyclability [24].
However, they are also associated with environmental and health issues. For instance,
chemicals added during pulping and coating to enhance the properties of final packages
may migrate into foods, resulting in adverse health effects. Organic and inorganic dyes,
mineral oil phthalates, and polyfluorinated substances are some of those migrants, and
high mineral oil migration has been reported with recycled papers [15]. Other than that,
many researchers have found that printing inks used for paper packages could cause
cancer [25]. Moreover, the paper-making process requires a large volume of water and is
energy-intensive, giving rise to vast amounts of wastewater and pollutants.

2.2. Plastic

Plastics are synthetic polymers with macromolecular structures obtained from repeat-
ing units of low molecular weight monomers [26]. During the last few years, plastics have
become versatile and essential materials in the food industry. They are the second most
used packaging material due to their flexibility, chemical resistance, low cost, lightweight-
ness, and physical and optical properties. Plastics are commonly recognized as single-use
packaging materials, contributing immensely to the environment and human health [27,28].
Global annual plastic production was estimated at 360 million tons in 2018 and it is pro-
jected that the worldwide production of plastics will reach 25 billion tons by 2050 [29].
Single-use plastic accounts for nearly 40% of overall plastic usage [30]. Moreover, it was
estimated that China is the world’s top producer of plastic materials, meeting around
29.4% of global demand, followed by Europe and North America, with 18.5% and 17.7%
of the global market, respectively [31]. In the packaging sector, 50% of the plastics for
the food packaging industry are obtained from fossil fuels, and these fossil fuel-derived
plastics take many years to degrade [4]. Thermoplastics are popular in food packaging
applications. A thermoplastic is any polymer that becomes pliable or rubber-like above
a specific temperature, known as glass transition temperature (Tg), and solidifies below
Tg after cooling. The transition from the rubber-like state to the glass state is a key char-
acteristic of polymer behavior, providing significant changes in the physical properties,
including elasticity and hardness. Table 2 summarizes different types of plastics and their
applications in food packaging.
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Table 2. Major types of plastics used in food packaging.

Plastic Properties Application Ref.

Polyethylene terephthalate
(PET)

Good barrier to gases
and moisture; resistant to heat, mineral oils,
solvents, and acids; transparent; tough

Beverage and mineral water
bottles, jars, tubes, trays [32,33]

High-density polyethylene
(HDPE)

Good barrier to solvents
and moisture, high tensile strength, opaque,
high-temperature capability

Beverage and milk bottles,
shopping bags, ice cream
containers

[30,34]

Polyvinyl chloride (PVC)
High resistance to chemicals, high strength,
good oil barrier properties, good heat
sealability

Bottles, food wraps [35]

Low-density polyethylene
(LDPE)

Good heat sealing; resistant to acid, oils, and
bases; rigid; flexible; transparent

Bakery, frozen, fresh produce, and
meat packing; soft squeeze bottles [36]

Polypropylene (PP) Good water vapor barrier, resistant to gases
and odors, high strength, puncture resistance

Containers for ice cream,
margarine, yogurt, snack packs,
and biscuit packs

[34]

Polystyrene (PS) Brittle, rigid, poor barrier to moisture and
gases, good insulation properties

Cutlery, food insulation boxes,
meat trays, egg containers [37,38]

From 1950 to 2018, 6.3 billion tons of plastics were produced; only 9–12% were recy-
cled and incinerated and the remaining 79% were accumulated in the environment [39].
Due to their recalcitrant nature, plastic packages remain in the environment for decades,
causing soil, water, and air pollution. The leaching of many hazardous chemicals in
plastic packaging materials into the soil, underground, and into other water sources is
an enormous consequence of landfilling after use [40]. Plastics also release significant
amounts of greenhouse gases upon oxidation and incineration [41]. Different types of
additives in plastics, such as bisphenol A, poly-fluorinated chemicals, phthalates, and
brominated flame retardants, are toxic and potential carcinogens [30,42]. Also, synthetic
packages are petroleum-based, contributing to the depletion of nonrenewable petroleum
resources [4]. Furthermore, photodegradation causes these plastics to break into tiny frag-
ments, eventually forming microplastics. Microplastics have long been known for their role
in environmental implications and may enter the marine and human food chains, leading
to health risks.

2.3. Glass

Glass is one of the oldest food packaging methods and dates back to 2500 BC. Ac-
cording to the American Society for Testing and Materials (ASTM), glass is an amorphous
inorganic product of fusion that has been cooled to a rigid condition without crystalliz-
ing [43]. Glass is made of silica, which is naturally found in silica sand, with different
additives by fusion at high temperatures [44]. Recycled glasses can be used as a substitute
for virgin materials, reducing energy usage during glass production [45]. Glass bottles and
jars are employed primarily in the food industry and generally contain 68–73% of silica,
10–13% of limestone, 12–15% of soda ash, and 1.5–2% of alumina [46].

Glass is applied in food packaging because of its excellent barrier properties, heat
resistance, transparency, moldability, rigidity, and strength [47]. However, the main disad-
vantages of glass packages are their production costs, heavy weight, light permeability, and
fragility. When comparing the interaction of food packaging material with packaged food,
it was discovered that glass is the only packaging material that prevents toxic substances
from being transferred from the package to the food and maintains the best quality of the
food product [44]. However, the most notable setbacks of glass packaging include the high
energy requirement and air pollution during glass production, which is three-fold higher
than for plastic production [44].
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2.4. Metal

Metals are widely employed in the food industry for various applications and, amongst
the total usage packaging materials, 15% is accounted for by metal packaging [48]. Excellent
barrier properties, good physical protection, recyclability, formability, heat resistance, and
decorative ability enhance consumer preferences for metal packaging [49]. Steel, tinplate,
aluminum, and chromium are metals used for packaging dairy products, fruits, vegetables,
beverages, meat-based products, bakery, and confectionary products [48]. Steels provide
a barrier to gases, odors, moisture, and light; coating improves heat sealability due to
ductility [50]. Steel coated with tin is one of the most used materials in food packaging and
is utilized to produce cans and sheets for bulk products [51]. Aluminum can be formed
into different forms, such as cans, foils, and laminated films; they are lighter and weaker
and can be alloyed and shaped easily compared to tinplate [22].

The main food safety issue of metal packaging is the migration of materials, including
metallic compounds and their interaction with food. Bisphenol A, lead, chromium, alu-
minum, cadmium, mercury, and nickel coatings are some migrants from metal packaging
to food [48]. Metal packaging causes minimal direct impact on the environment compared
to plastic packaging other than landfilling. However, metal packaging contributes to
drainage blockage and the pollution of aquatic sources and requires high energy during
production; additionally, chronic metal and polyaromatic hydrocarbon co-exposure may
lead to cancer [48]. Table 3 compares the advantages and disadvantages of mainstream
packaging materials.

Table 3. Advantages and disadvantages of conventional packaging materials.

Packaging
Material Advantages Disadvantages References

Paper and paperboard
Low production cost, biodegradable,
lightweight, flexible, printable, renewable,
and recyclable

Combined with other packing
materials, limited barrier properties,
less durable, susceptible to damage,
and unsustainable

[15,24]

Plastic

Versatile, lightweight, flexible, chemically
resistant, low-cost, better physical
properties, inert characteristics, easily
processed, and recyclable

Non-biodegradable, causes
environmental pollution, leaches
many hazardous chemicals into
foods, and dependent on fossil fuels

[22,41,44]

Glass
Durable, chemically inert, recyclable,
transparent, good barrier properties,
heat-resistant, and high-strength

Fragile, heavier than other materials,
high production cost, and more
energy consumption in production

[44,47]

Metal

Durable, excellent barrier properties, good
physical protection, recyclable, good
formability, good heat resistance, and
versatility

High production cost, corrosive, and
non-biodegradable [48,50]

3. Biopolymers for Sustainable Food Packaging

Conventional petroleum-based packaging materials, primarily plastics, are currently
associated with numerous concerns, including the accumulation of packaging waste, envi-
ronmental pollution, climatic changes, and health effects. Therefore, packaging materials
with enhanced environmental and sustainable attributes have received significant attrac-
tion for fulfilling food and environmental protection requirements [52]. According to
the definition of sustainable food packaging, it must have numerous features, including
safety for people and society throughout its entire lifecycle, cost-effectiveness, utilization
of renewable energy sources and recycled materials, production process feasibility, and
cleaner technologies [53].

Currently, biopolymers are considered sustainable and innovative packaging materials
due to their relative abundance, renewability, nontoxicity, biodegradability, easy function-
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alization, and environmental benignity [54]. They are polymers entirely biosynthesized
by living organisms or chemically synthesized from natural sources [55] and can be easily
degraded biologically [56]. Interestingly, these biopolymers have the capacity to substitute
most conventional food packages [52,57].

These biopolymers contain different functional groups, such as hydroxyl, amide,
amino, phosphate, and phenol, and there are three main types of natural biopolymers:
polysaccharides, polypeptides, and polynucleotides [58]. Polysaccharides are made up
of simple sugar units combined via glycoside bonds, amino acids are the monomers for
polypeptides, and polynucleotides (DNA, RNA) are polymers of nucleotide monomers [59].
Moreover, biodegradable aliphatic polyesters, including polylactic acid (PLA) and polyhy-
droxyalkanoates (PHA), are chemically synthesized from bio-based monomers [56]. This
review mainly focuses on the recent advances in polysaccharide- and synthetic aliphatic
polyester-based biopackaging materials for the food industry. Figure 2 synopsizes the
biopolymers of the three categories and their key features related to sustainable packaging
discussed in this review.
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3.1. Polysaccharide-Based Biopackaging Materials and Their Applications in the Food Industry

Polysaccharides are the most abundant macromolecule in the biosphere and can be ob-
tained from plants, animals, and microorganisms. Polysaccharides are a group of complex
carbohydrates with different degrees of polymerization by α-1,4-, β-1,4-, or α-1,6-glycosidic
bonds [7]. Wide varieties of polysaccharides have been used to develop biodegradable
packaging materials, such as edible films and coatings since they have excellent barrier
properties against gases, oils, and aromas and processing adaptability [60]. Edible films
and coatings are thin layers of edible materials used to wrap or coat a product to give
protective and functional benefits, which can be ingested together with the product. Many
films formed using polysaccharide-based biopolymers show high tensile strength and
percentages of elongation and are comparable to synthetic polymers [27]. The main disad-
vantage of polysaccharide-based films is their poor barrier properties against water vapor
due to their hydrophilic nature [61]. Several polysaccharides, including starch, cellulose,
chitosan, pectin, alginate, and carrageenan, have been explored for their potential to form
films and coatings. The properties, including mechanical properties, solubility, barrier
properties, and gelation, vary depending on the type of polysaccharide [62]. However,
structural modifications can enhance these properties according to the final purpose, and
different additives such as plasticizers, antioxidants, and antimicrobial agents can also
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be incorporated with polysaccharides. Moreover, combining two or more biopolymers
improves the properties of the blend films with excellent barrier properties [63]. The most
widely explored polysaccharides in food packing include starch, cellulose, chitosan, pectin,
alginate, and carrageenan.

3.1.1. Starch

Starch is a natural polysaccharide derived from plants and composed of amylose, a
linear polymer with α-1,4-linked d-glucose monomer units, and amylopectin, a branched
polymer with α-1,4-linked d-glucose monomer units and 1,6 linkages. The chemical
structures of amylose and amylopectin units in starch are shown in Figure 3 [7]. Roots,
tubers, and seeds are botanical sources of starch found in the form of granules. Starch is
mainly isolated from wheat, corn, tapioca, cassava, potato, and rice [64]. Their granules
are spherical, oval, or irregular in shape, with diameters ranging from 0.1 to 200 µm, and
are insoluble in cold water [52]. Depending on the starch source, granule properties, and
amylose and amylopectin content, the physiochemical and functional properties of starch
can be varied. Most starches are semi-crystalline, with crystallinity between 15% and
45%. The crystalline regions contain short-branched chains of amylopectin and amorphous
regions include amylose and branching points of amylopectin [65]. According to an X-ray
scattering study of starch crystallites, there are two primary starches: type A and type B.
Type A is mainly found in cereals, while type B is mainly in amylose-rich starches, including
tubers and root crops. Moreover, mixed forms of type A and type B structures are called
type C and are found In bean and pea starches [66].
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Starch-based films exhibit low oxygen permeability but high hydrophilic properties.
On the other hand, poor mechanical properties and retrogradation limit the use of starch-
based films as food packaging material. However, incorporating plasticizers such as
glycerol and sorbitol, grafting with hydrophobic polymers such as polylactic acid (PLA),
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and blending with other polymers help overcome these drawbacks by improving chain
mobility and flexibility [67,68]. Starch can be converted into thermoplastic starch by
exposure to high temperatures and shear stress in the presence of water or plasticizers [69].
In the last few years, starch-based thermoplastics have been extensively used as bio-based
compostable materials to develop bags, films, and food containers [7,70]. Two widely tested
techniques for formulating starch-based films include solution casting or the wet method
and extrusion or the dry method. Figure 4 depicts schematic representations of the wet
and dry methods used for film preparation. The solution casting method is conducted
by solubilizing starch in a solvent followed by drying. In contrast, the extrusion process
is applied by plasticizing and heating starch above its Tg [71]. Regarding applications,
different food products, including candies, bakery products, fruits and vegetables, dry
products, and snacks, can be packed using starch-based films [72].
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According to the literature, numerous studies have investigated the potential of starch-
based materials for food packaging applications. For instance, Issa and coworkers studied
the impact of sweet potato starch-based composite films with thyme essential oil and
montmorillonite nano clay on fresh spinach leaves [73]. They showed that biodegradable
packaging material effectively reduces microbial growth while enhancing the sensory qual-
ity of baby spinach leaves during cold storage [73]. Baek et al. developed an antioxidant
film with cowpea starch and maqui berry extract to enhance the storage life of salmon by
delaying lipid oxidation [74]. Recently, Chen et al. tested potato starch-based film incorpo-



J. Compos. Sci. 2024, 8, 114 10 of 36

rated with tea polyphenols to extend the shelf-life of fresh-cut fruits. Figure 5 shows the
effect of potato starch-based film incorporated with different concentrations of tea polyphe-
nols on the color of fresh-cut bananas. They demonstrated strong free radical scavenging
activity and water vapor and oxygen barrier effects with high doses of tea polyphenols [75].
Garcia and coworkers suggested that the corn starch-based edible film with olive extract
is an affordable and environmentally friendly food packaging material to prevent the
oxidation of packed foods [76]. Behera et al. developed a novel biodegradable film using
yam starch and bentonite, using it as an alternative to synthetic packaging materials [77].
Liu and coworkers enhanced the shelf-life of beef sauce by 4–6 days compared to a control
by delaying rapid oxidation and microbial growth using an antimicrobial composite film
prepared with cassava starch, konjac glucomannan, chitosan, and Zanthoxylum armatum
essential oil [78]. Bangar and coworkers also prepared a pearl millet starch-based active
food packaging material with cellulose nanocrystals and clove bud oil and investigated
its potential for extending the shelf-life of red grapes [79]. Marichelvam et al. successfully
synthesized a biodegradable film using starch extracted from the Prosopis juliflora plant and
gelatin with similar properties to synthetic packaging materials [80]. The development of
edible starch-based film using tef starch and agar with proper mechanical properties was
conducted by Tafa and coworkers [81]. Ardjoum and coworkers evaluated the antimicrobial
properties of a cornstarch-based film by incorporating Thymus vulgaris essential oils and
ethanolic propolis extract against E. coli and Listeria monocytogenes [82].
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3.1.2. Cellulose

Cellulose is the most abundant biopolymer on the planet and the primary component
in plant cell walls and natural fibers. Microorganisms, such as algae, fungi, bacteria, and
tunicate family organisms, also biosynthesize cellulose [83]. Wood pulp and cotton fibers
are the most used commercial sources of cellulose and, recently, plant-based waste prod-
ucts such as sugar cane bagasse, peel, husk, and shells are also considered for extracting
cellulose [7]. Cellulose is a linear polymer composed of D-glucopyranosyl units linked by
β-(1→4) glycosidic bonds, which are covalently bonded between the equatorial -OH group
of C4 and the C1 carbon atom through acetal functionalities [84]. This allows cellulose
chains to be packed densely together, generating a strong inter-chain hydrogen bonding
network. However, neat cellulose is not suitable for film development since it is highly
crystalline, has a high molecular weight, and is insoluble in water due to strong inter-
molecular and intramolecular hydrogen bonding between chains [85]. Therefore, cellulose
is converted into various derivatives, such as hydroxyethyl cellulose, methylcellulose,
hydroxypropyl methylcellulose, and carboxymethyl cellulose, by breaking the polymer
chains before being processed into bioplastic films to obtain unique chemical and phys-
ical properties [86]. Generally, the cellulose extracted from bacteria is much purer than
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plant-based cellulose, with good strength, molding ability, and water-holding capacity [87].
Figure 6 represents the chemical structure of cellulose.
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The films prepared from cellulose derivatives display intriguing characteristics, includ-
ing transparency, tastelessness, odorlessness, flexibility, robustness, and excellent barrier
properties [88]. Hydroxypropyl methylcellulose is widely used to develop edible films
with high water vapor barrier and mechanical properties [7]. Methylcellulose is the hy-
drophilic derivate of cellulose and it produces films with excellent gas and lipid barrier
properties with less water vapor resistance [65]. Different methods, such as solution casting,
layer-by-layer assembly, extrusion, coating, and electrospinning, are applied for fabricating
cellulose-based packaging materials [89]. Moreover, studies have shown that blending
cellulose with different additives such as biopolymers, plasticizers, and active agents could
enhance the mechanical properties and storage ability [90].

Cellulose-based materials have broadly been tested for food packaging applications.
Atta et al. prepared bacterial cellulose (BC)- and carboxymethylcellulose (CMC)-based
bioactive food packaging material with olive oil and ginger oil as antimicrobial agents [88].
The authors revealed that the developed coating extended the shelf-life of oranges and toma-
toes by inhibiting the growth of three bacterial strains and two fungal strains under different
storage conditions for up to 9 weeks [88]. An epichlorohydrin-crosslinked hydroxyethyl
cellulose functional composite film was prepared with polyvinyl alcohol and ε-polylysine
as reinforcing agents by Zhang et al. The authors tested its antibacterial, barrier, and me-
chanical properties and ability to act as a packaging material for grapefruit. They reported
that the shelf-life of packaged grapes could be extended for up to 6 days due to the excel-
lent barrier properties and antimicrobial properties of the prepared film [89]. Yaradoddi
and coworkers demonstrated the use of agricultural waste-derived carboxymethyl cel-
lulose to develop cost-effective packaging materials with good mechanical and barrier
properties [90]. Moreover, Romao et al. summarized previous research on cellulose-based
films with antimicrobial and antioxidant properties for food applications [91]. Moradian
and coworkers synthesized a bacterial cellulose-based active film with herbal extracts,
including pomegranate peel, green tea, and rosemary, to pack button mushrooms [92]. The
authors revealed that the fabricated film helped extend the shelf-life of mushrooms with
its antioxidant and antimicrobial activity, as shown in Figure 7 [92]. Al-Moghazy et al.
developed an active food packaging material with cellulose to enhance the storage life of
cheese by delaying the growth of microorganisms [93]. Yordshahi and coworkers studied
the impact of postbiotics-incorporated bacterial nanocellulose antimicrobial wrappers on
ground meat [94]. They found that the developed films effectively extended the shelf-life
of ground meat by reducing mesophilic and psychrophile counts [94]. The development of
active food packaging materials using gallic acid-loaded hydroxypropyl methylcellulose
and polyethylene oxide (PEO) nanofibers and their potential as a packaging material for
walnuts was investigated by Aydogdu et al. [95]. Further, Liu and coworkers discussed nu-
merous studies on developing biodegradable films prepared from cellulose and derivatives
for the food packaging industry [96].
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Figure 7. The physical appearance of fresh mushrooms packed with pure bacterial cellulose-based
membranes (a) and active membranes containing pomegranate peel extract (b), green tea extract (c),
and rosemary extract (d) after 5 days (1) and 15 days (2) of storage at 4 ◦C (reprinted with permission
from [92]; copyright (2024) with permission from John Wiley and Sons).

3.1.3. Chitosan

Chitosan is the N-deacetylated derivative of chitin, with at least 50% free amine, the
second most abundant natural polysaccharide on earth after cellulose. Chitin is made up of
N-acetylglucosamine (β-1,4 linked 2-acetamido-D-glucose) monomers and can be found
in the exoskeleton of crustaceans and cell walls of fungi and insects [97]. Chitin is also
discarded as waste from the shrimp and crab processing industries. Chitosan polysaccha-
ride is polymerized with two monomers, N-acetyl-D-glucosamine and D-glucosamine,
randomly linked through β-(1-4) glycosidic bonds [98]. Chitosan can be deacetylated using
concentrated alkali at elevated temperatures or by an enzymatic hydrolysis process in the
presence of chitin deacetylase [99]. Figure 8 shows the structure of chitosan.
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Chitosan is insoluble in aqueous solutions due to its deprotonation at higher pH values
(>6.5), thus limiting its usage in the food and pharmaceutical industries [100]. However,
chitosan dissolves in weakly acidic solutions with a pH < 6.5 due to the protonation of
the free glucosamine [59]. Chitosan also shows excellent antimicrobial properties against
spoilage and pathogenic microorganisms such as fungi, bacteria, and viruses, making it
versatile in different industries [97]. Generally, chitosan-based films exhibit good mechan-
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ical properties, semi-permeability to gases such as carbon dioxide and oxygen, and low
barrier properties [7,56].

The characteristics of chitosan-based films depend on numerous factors, including
the degree of deacetylation, molecular weight, free amine regeneration mechanism, and
solvent evaporation process [101]. The solution casting technique is widely practiced
in preparing chitosan-based films. In the solution casting method, chitosan and other
additives, such as plasticizers, are dissolved in a slightly acidic solvent, poured into a flat
surface, and allowed to dry. The extrusion process is not applied to chitosan-based films
because chitosan is not a thermoplastic and degrades before the melting point, hindering
commercial usage [65]. Hence, numerous methods have been proposed to overcome
these drawbacks. Blending chitosan with different thermoplastic polymers enhances the
thermal properties and sealability of the film. On the other hand, incorporating different
hydrocolloids and biopolymers increases the water vapor transmission rate and other
mechanical properties [98]. Moreover, recent studies have also focused on incorporating
natural antimicrobial and antioxidant agents and nanomaterials with chitosan-based films
to improve shelf-life [102].

Biodegradable films and edible chitosan coatings have emerged as sustainable alter-
natives to compete with conventional non-biodegradable food packaging technologies.
The development of chitosan-based films from edible cricket species and their applica-
tion in the food industry was investigated by Malm and coworkers [103]. Zehra et al.
prepared a chitosan-based film with thyme essential oil, zinc oxide (ZnO), polyethylene
glycol (PEG), nanoclay (NC), and calcium chloride (CaCl2) as additives [104]. Then, the
film was tested for the preservation of collard greens under refrigerated conditions for
24 days. The authors reported that the chitosan-based film effectively extended the shelf-life
of collard greens [104]. A chitosan-based edible coating incorporated with tomato plant
extract enhanced the shelf-life of pork loin by reducing microbial growth, maintaining the
sensory attributes of pork during 21 days of storage [105]. Wang and coworkers developed
a packaging film for bread using chitosan blended with poly(ε-caprolactone) (PCL) and
grapefruit seed extract (GFSE) by extrusion and compression molding techniques [106].
They reported improved food safety and bread shelf-life by inhibiting different foodborne
pathogens [106]. Figure 9 shows the physical appearance of bread packed in the developed
chitosan-based film over other packaging materials [106]. Xu et al. prepared a chitosan-
based film with bacterial cellulose and curcumin that exhibited good mechanical properties
and antioxidant activity, with the potential to be used for packaging foods with high fat
contents [107]. Chitosan and whey protein hydrolysate composite films with improved
physicochemical and mechanical properties were prepared by Al-Hilifi and coworkers [108].
Yao and coworkers successfully formulated chitosan- and polyvinyl alcohol-based active
films incorporated with curcumin for food packaging applications [109]. Recently, De Carli
developed a biodegradable active film based on chitosan from crayfish shells enriched
with bioactive propolis extract. The prepared film exhibited good antioxidant, antimicro-
bial, and mechanical properties with the potential to package oxidation-sensitive food
products [110]. Chitosan film with zinc oxide (ZnO) nanoparticles and sodium montmoril-
lonite nanoclay was fabricated by Rodrigues et al. and demonstrated antimicrobial activity
against Escherichia coli and Staphylococcus aureus, with enhanced mechanical and physical
properties [111]. Karkar et al. synthesized an active, edible, chitosan-based film enriched
with Nigella sativa L. extract and investigated its potential to extend the shelf-life of grapes.
They concluded that the developed film could prolong the shelf-life of grapes compared
to the control, which was not covered [112]. Furthermore, applications of chitosan-based
composites in the food industry were summarized by Kumar et al. [113].
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Figure 9. The physical appearance of bread packaged by (a) polyethylene (PE), (b) PCL/chitosan,
(c) PCL/chitosan/GFSE 0.5 mL/g, (d) PCL/chitosan/GFSE 1.0 mL/g, (e) PCL/chitosan/GFSE
1.5 mL/g, (f) PCL/chitosan/GFSE 2.0 mL/g, and (g) PCL/chitosan/GFSE 2.5 mL/g films at 24 ◦C,
70% RH for 7 days (reprinted from [106]; copyright (2024) with permission from Elsevier).

3.1.4. Pectin

Pectin is a plant-based polysaccharide that makes up nearly two-thirds of the dry mass
of the primary plant cell wall. This complex polysaccharide comprises 10–30% of plant
primary walls and 2–5% of secondary walls [114]. It is a high-molecular-weight, heteroge-
neous, amorphous, white, colloidal carbohydrate found in fruits and vegetables, mainly
apple pomace and citrus peel [115]. The pectin backbone comprises D-galacturonic acid
units linked with α (1→4) linkages [60]. Figure 10 depicts the chemical structure of pectin.
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According to structural studies, pectin does not have a specific structure, compris-
ing around 100–1000 saccharide units in a chain-like configuration. Therefore, it is a
hetero-polysaccharide of three main domains, namely, homogalacturonan (HG),
rhamnogalacturonan-I (RGI), and rhamnogalacturonan-II (RGII) [116]. Homogalacturonan
is the major component of pectin polysaccharide, composed of (1-4)-linked α-D-galacturonic
acid and methyl esters. Rhamnogalacturonan I consists of (1-4)-linked α-D-galacturonic
acid and (1-2)-linked α-L-rhamnose. Rhamnogalacturonan II is a complex structure of
(1-4)-linked α-D-galacturonic acid backbone with side chains and sugars [117]. The plant
source and development stage govern the chemical composition, quantity, and structural
properties of pectin.

In the food industry, pectin is mainly used as a thickening agent, colloidal stabilizer,
gelling agent, and emulsifier, depending on its degree of esterification [116]. Besides these
applications, pectin and its derivatives are used to develop biodegradable and edible
food packaging, primarily for fresh fruits and vegetables. Depending on the degree of
esterification, there are two types of pectin: high-methoxyl pectin or rapid-set pectin and
low-methoxyl pectin or low-set pectin. High-methoxyl pectin is the best for producing
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good films and coatings [118]. The research on edible films developed from pectin and its
derivatives, such as pectate and amidated, exhibited good barrier properties against gas,
oil, and aromas and excellent mechanical properties. Still, the major drawback is the lack
of moisture barrier properties due to their hydrophilic nature [56]. The casting method
and extrusion are effective approaches for producing pectin-based films [119]. The casting
procedure entails spreading a prepared film-forming solution over a flat surface, followed
by a drying process, while the extrusion process uses high pressure and temperature
for film development [120,121]. However, the brittle nature, high water solubility, and
poor moisture barrier qualities of pure pectin films limit the usage of pectin-based films.
The brittle nature and poor elongations of these films can be overcome by incorporating
plasticizers, which increases their flexibility [119]. Besides that, antimicrobial substances,
emulsifiers, and other biopolymers have been incorporated to obtain packaging materials
with better barrier properties and antimicrobial activity [121]. Pectin-based films are
primarily used to pack fresh and minimally processed apples, berries, papaya, tomatoes,
and carrots [122].

Pectin has gained attention as a promising biomaterial for manufacturing bio-based
sustainable packaging films and coatings. For example, biodegradable films were prepared
from pectin extracted from apple and pequi mesocarp and their mechanical, thermal, and
barrier properties were tested for their application as food packaging materials [123,124].
Sadadekar and coworkers developed nano chitosan- and pectin-based food packaging
materials incorporated with fennel essential oil and potato peel extracts to enhance an-
timicrobial and antioxidant properties [125]. The fabrication of biodegradable films from
pomelo peel pectin, casein, and egg albumin was conducted by Sood and Saini [126].
The authors observed better mechanical, barrier, and thermal properties for their hybrid
films compared to the pure films of casein and egg albumin [126]. In another study, an
edible pectin-based biodegradable film enriched with mulberry leaf extract was tested for
the shelf-life performance of capsicum fruit [127]. The authors confirmed that the edible
pectin-based film is a promising material to extend the shelf-life of capsicum fruit for up
to 12 days [127]. Jiang and coworkers prepared an active and intelligent film using white-
fleshed pitaya peel pectin, betacyanins, and montmorillonite [128]. Their films exhibited
good mechanical and antioxidant activity and colorimetric response to pH and ammonia,
showing their ability to monitor the freshness of shrimp [128]. A pectin-based film with
sodium alginate and castor oil exhibited good moisture, barrier, and mechanical properties
and extended the shelf-life of capsicum and chili compared to uncoated samples [129].
Teleky et al. evaluated the physico-chemical and mechanical properties of pectin-based
films enriched with phenolic extracts from apple pomace and stated their applicability in
food packaging applications [130].

Han and Song prepared a mandarin peel pectin-based film with sage leaf extract [131].
The synthesized film could prolong the shelf-life of food, preventing the degradation of
the nutritional value of packaged food [131]. Nisar and coworkers successfully devised
a citrus pectin-based film incorporated with clove bud essential oil and investigated its
mechanical, thermal, antibacterial, and antioxidant properties for food packaging appli-
cations [132]. Moreover, different studies on pectin-based films from agro-waste residues
and their potential to be used in the food packaging industry were discussed by Mellinas
and others [121].

3.1.5. Alginate

Alginates are natural biopolymers derived from the marine brown algae of the family
phaeophyceae and can also be synthesized by bacteria, such as Pseudomonas and Azotobac-
ter [133]. Alginates are known for their biocompatibility, biodegradability, low cost, low
toxicity, ability to react with polyvalent metal cations, resistance to acidic media, and solubil-
ity at basic pH [101]. They are linear, unbranched, and water-soluble polysaccharides made
up of polyuronic acid with three block structures, namely, poly-β-D-manopyranosyluronic
acid (M) blocks, poly-α-L-gulopyranosyluronic acid (G) blocks, and M-G blocks linked by
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(1–4) linkages, with varying characteristics and distributions throughout the chain [134].
Depending on the plant source and the stage of plant development, the chemical composi-
tion and order of M and G units may differ [135]. The physical properties of alginates are
affected by the percentage of the three types of blocks, and the hardness of the three blocks
diminishes in the sequence GG > MM > MG [136]. Figure 11 depicts the chemical structure
of M and G monomer blocks, and the various combinations of M and G blocks can produce
at least 200 distinct alginates [137].
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Alginates are commonly utilized in the food industry as a thickener, gelling agent, and
colloidal stabilizer [138]. Also, alginates are used to develop food coatings by reacting with
divalent cations, especially calcium (Ca2+) ions, to generate water-insoluble polymers [139].
Alginate films can be fabricated via a two-step method: drying alginate solution and treat-
ment with calcium salts to induce instantaneous crosslinking at the interface [84]. Alginates
exhibit good film-forming characteristics; a uniform, transparent, and glossy appearance;
flexibility; tastelessness; odorlessness; high tensile strength; tear resistance; low perme-
ability to vapor and oxygen; and impermeability to fats and oils [137,139]. Furthermore,
alginate-based films and coatings provide better barrier characteristics to bacteria and
reduce the likelihood of microbial development in food products [140]. Alginate films
were initially employed for fresh fruits and vegetables to reduce respiration rates since Ca
crosslinking was more effective in attaching to a sliced fruit surface [139,141]. Apart from
fruits and vegetables, alginate films are now applied to many other foods, including cheese,
meat, and fish, resulting in the shelf-life extension of these products [137]. The properties
of alginate films can be enhanced by incorporating different additives such as organic acids,
essential oils, biopolymers, plant extract, and metallic nanoparticles [142].

Alginate-based edible coatings and films can efficiently maintain quality and lengthen
the shelf-life of fruit, vegetables, meat, and cheese by controlling respiration and microbial
growth and reducing dehydration [133]. Nair and coworkers studied the influence of
alginate- and chitosan-based coatings enriched with pomegranate peel extract to extend
the shelf-life of guava. The coating maintained the quality of guava at low temperatures
for 20 days by improving visual and nutritional properties while delaying senescence [143].
Dulta et al. also prepared an alginate–chitosan-based film supplemented with nano zinc
oxide (ZnO) and investigated its impact on orange quality for 20 days at 4 ◦C [144]. The
film extended the shelf-life of coated oranges by more than 1.5 times compared to uncoated
samples by delaying fruit senescence [144]. The impact of alginate-based edible coating
with resveratrol on the shelf-life of rainbow trout fillet at refrigerated temperatures was
examined by Bazargani-Gilani and revealed that the developed edible coating could extend
the shelf-life of fish, with more health benefits [145]. Mahcene and coworkers summarized
the potential of a sodium alginate-based film incorporated with essential oil to be utilized
as a food packaging material to extend the shelf-life of foods [146]. An alginate-based
bio-composite material prepared with pure reduced graphene oxide or mixed ZnO exhib-
ited high antioxidant and antimicrobial properties against E. coli and S. aureus, potentially
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extending food shelf-life [147]. Abdullah and coworkers prepared an alginate-based film
incorporated with cinnamaldehyde for food packaging applications [148]. They stated
high mechanical and antimicrobial properties against Gram-positive and Gram-negative
bacteria, with a 98% reduction in microbial growth for their film [148]. Bata Gouda et al.
evaluated the shelf-life of fresh-cut lotus root slices using sodium alginate mixed with an
L-cysteine and citric acid coating [149]. The authors reported that their coating prevented
microbial growth, browning, and membrane damage and extended the shelf-life of lotus
root slices for 14 days at 4 ◦C [149]. Montone and coworkers synthesized alginate-based
films charged with quercetin glycoside compounds and hydroxyapatite to coat fresh-cut
papaya [150]. The results demonstrated the preservation of fruits by reducing microbial
growth and respiration rate and preserving natural antioxidant compounds [150]. Pack-
aging film based on alginate, carboxymethyl cellulose, and potato starch incorporating
grapefruit seed extract was developed by Ramakrishnan et al. with excellent mechanical,
antioxidant, and antimicrobial properties, which effectively extended the shelf-life of green
chili by 25 days [151]. Feng et al. successfully developed a novel, cobalt-based, metal–
organic framework-loaded, sodium–alginate-based packaging film with antimicrobial and
ammonia-sensitive functions for shrimp freshness monitoring [152].

3.1.6. Carrageenan

Carrageenan is a marine-origin polysaccharide and can be isolated from red al-
gae, most often from Chondrus crispus, Kappaphycus alvarezii, and Eucheuma denticulatum
species [139]. Carrageenan is a linear hydrophilic polymer made up of sulfated or non-
sulfated galactose and 3, 6-dehydrated galactose linked together by α-(1→3) and β-(1→4)
glycosidic linkages [60]. There are three carrageenan types based on the position and
quantity of sulfate groups on the disaccharide structures: kappa (κ), iota (ι), and lambda
(λ) carrageenan [153]. In the food industry, kappa (κ) carrageenan is widely used, and the
sulfate concentrations of the kappa (κ), iota (ι), and lambda (λ) carrageenan are 20, 33, and
41 percent (w/w), respectively [154]. The presence of sulfate ester groups in the structure
influences the overall negative charge and water solubility of carrageenan [155]. Figure 12
shows the chemical structure of carrageenan.
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Carrageenan is commonly used in the food industry as a stabilizer, as a gelling and
thickening agent in dairy products, in pet food, in infant food formulas, and for preparing
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edible films [134]. Kappa (κ) carrageenan has been identified as the best type of carrageenan
for edible food packages because kappa (κ) carrageenan produces robust, fragile, and firm
gels, while iota (ι) carrageenan gels are weak, soft, and flexible [156]. Due to the higher
gelling ability of carrageenan, random coils of polysaccharides change into double helices
throughout the film-casting process by creating an extremely compact film with good
mechanical and structural qualities [7]. Further, carrageenan-based coatings, edible films,
and blends have been used in preserving freshly cut fruits due to the favorable properties of
less moisture loss and gas exchange, preventing discoloration and maintaining the texture
of the fruit [56]. Also, carrageenan films exhibit strong oxygen barrier properties and protect
against lipid oxidation [157]. However, the water vapor permeability and high brittleness
of carrageenan limit the usage of these polymer films in the food industry, and this can
be overcome by blending them with natural or synthetic polymers [158]. Carrageenan
film can be developed with antioxidant and antimicrobial properties by adding different
essential oils and antimicrobial agents [159].

Recently, carrageenan-based food packaging films have received more attention due
to their biodegradability, excellent biocompatibility, and availability. For example, Cheng
et al. reviewed information on carrageenan extraction methods, methods of preparing
biodegradable films, and their properties and applications for different food products to
extend shelf-life [160]. Martiny and coworkers prepared carrageenan-based biodegrad-
able films activated with olive leaf extract [161]. They reported that the developed film
reduced aerobic mesophile growth and extended the shelf-life of lamb meat by acting as an
active food packaging material [161]. Avila et al. investigated the mechanical, light barrier,
antimicrobial, and antioxidant properties of carrageenan-based films incorporated with
jaboticaba peel extract. They exhibited potential as active packaging materials for food ap-
plications [162]. Duan and coworkers fabricated a nanocomposite film from k-carrageenan,
konjac glucomannan, and titanium dioxide nanoparticles and applied it to strawberry
packing. They found that the shelf-life of strawberries could be extended for longer with
the nanocomposite film compared to the conventional plastic package due to its excellent
mechanical, thermal, barrier, and antimicrobial properties, as shown in Figure 13 [163].
Santos et al. evaluated the barrier, mechanical, and bioactive properties of developed
k-carrageenan-based films incorporated with Cymbopogon winterianus essential oil as a
novel food packaging material. The developed film presented high antioxidant activity
and inhibited the growth of most foodborne pathogens [164]. Panatarani and coworkers
protected minced chicken with semi-refined kappa carrageenan-based film mixed with
cassava starch and ZnO and SiO2 nanoparticles. The authors reported that the film exhib-
ited improved water barrier and mechanical and optical properties while extending the
shelf-life of minced chicken for up to 6 days [165]. Kim et al. synthesized a biodegradable
carrageenan-based functional nanocomposite film with silver nanoparticles that was made
using pine needle extract. The film exhibited intense antimicrobial activity, antioxidant
activity, and UV protection, with the potential to be utilized for active food packaging
applications [166]. Mahajan and colleagues developed a carrageenan-based edible film
with Aloe vera that improved the microbiological and lipid oxidative stability of frozen dairy
products during storage [167]. Color indicator film based on κ-carrageenan incorporating
silver nanoparticles and red grape skin anthocyanin was developed by You et al. for fish
freshness determination. The film displayed enhanced antioxidant activity, UV protection,
antimicrobial activity against E. coli and S. aureus, and high mechanical strength, with a
colorimetric response to pH and volatile ammonia variations [168].
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Figure 13. The effect of different packaging on the mass loss rate (A) and titratable acid (B) in
strawberry: polypropylene (PP) film, k-carrageenan (KC)/konjac glucomannan (KGM) composite
film, and KC/KGM/TiO2 5 wt% nano-composite film (reprinted from [163]; copyright (2024) with
permission from Elsevier).

3.2. Aliphatic Polymer-Based Food Packaging

A major category of biodegradable polymers is aliphatic polyesters, with many ex-
hibiting outstanding processability, biodegradability, and biocompatibility characteristics.
Aliphatic polyesters are synthetic biopolymers obtained from the classical polymerization
of renewable bio-derived monomers [62]. Polycondensation and ring-opening polymeriza-
tion are the two main methods to synthesize aliphatic polyesters. Depending on the need
and application, two different aliphatic polyesters are available: homopolymers and copoly-
mers. Homopolymers are created when ester links combine the same monomer units, while
copolymers are produced with two or more distinct types of blocks of monomer units [62].

The most researched aliphatic polyesters for a variety of applications are polylactic
acid (PLA), polycaprolactone (PCL), polyglycolic acid (PGA) and polyhydroxybutyrate
(PHB) and their copolymers [68]. Among these, PLA and PHB are mainly used to develop
biodegradable packaging materials with high melting points between 160 and 180 ◦C [56].
The excellent heat resistance, gas barrier qualities, and ability to be processed into films,
trays, and coatings of bio-based materials allow these aliphatic polyesters to be used as
food packaging agents [169].

3.2.1. Polylactic Acid (PLA)

Polylactic acid (PLA) is one of the most widely used biodegradable polymers, with
numerous applications in the commercial packaging industry. PLA is an aliphatic polyester
made from lactic acid or lactide monomers [170]. A thermoplastic biopolymer called poly-
lactic acid (PLA) is produced when bacteria ferment the carbohydrates in corn, sugarcane,
or cassava [171]. The synthesis of lactic acid is the first stage in the multistep process that
results in the synthesis of PLA, followed by the generation of the lactide monomer and
the actual polymerization procedure [9]. Poly (L-lactide) (PLLA), poly (D-lactide) (PDLA),
and poly (DL-lactide) (PDLLA) are the three stereochemical forms of PLA and, depending
on the form, crystallinity, melting temperature, and tensile properties can differ. Figure 14
shows the chemical structure of PLA.
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PLA is a good contender for several applications since it is an environmentally benign
polymer with qualities like thermoplasticity and nontoxicity and equivalent mechanical
properties to other traditional polymers like PP, PE, and polystyrene (PS) [172]. PLA has
been authorized as a primary food packaging material because it is generally recognized
as safe (GRAS) by the United States Food and Drug Administration (FDA). Different film-
forming methods, such as extrusion, injection molding, thermoforming, and film blowing,
can be employed to cast PLA-based sheets, films, and molded packages [4].

Features such as high recyclability, biocompatibility, low energy requirements in
manufacturing, easy processability into various shapes, and good transparency and their
desirable mechanical and barrier properties for oils and aromas have positively impacted
the development of PLA-based packaging materials [173]. Studies have shown that PLA-
based and polyethylene terephthalate (PET) bottles possess similar tensile strength and
elastic modulus [174]. PLA bottle manufacturing utilizes 36% less energy and produces
44% less CO2 than PET bottle manufacturing [4]. Also, PLA is superior to PP in terms of
its tensile strength and O2 and CO2 barrier qualities. However, it has less toughness and
impact strength than many non-biodegradable polymers [175].

Moreover, other drawbacks that limit PLA usage in the packaging industry include
intrinsic brittleness, low-temperature resistance, and inadequate water vapor barrier quali-
ties [176]. Depending on the application, the properties of PLA-based packages can be modi-
fied by blending with other biopolymers, crosslinking, or adding various natural fillers [62].

Different juices, milk, water, cheese, and yogurt are packaged using PLA-based pack-
aging materials [10]. Food trays, films, bottles, sheets, and cups can be made of PLA, which
is best for fresh products and those not needing to be protected from O2 [177]. For example,
Mohamad et al. developed a PLA-based film incorporating three active ingredients, namely,
thymol, kesum, and curry, and investigated its impact on chicken meat [178]. They reported
that the developed films extended the shelf-life of meat by 15 days while maintaining its
sensory properties and microbial growth [178]. A PLA-based film activated with Cinnamo-
mum verum essential oil was developed by Khanjari and coworkers and its impact on the
sensory, microbial, and chemical properties of minced squab was assessed over 12 days
at 4 ◦C. They revealed that the film reduced the growth of most bacteria, total volatile
base nitrogen, and thiobarbituric acid reactive substances and maintained the sensory
properties of minced squab [179]. Ardjoum et al. investigated the mechanical, thermal, and
antimicrobial properties of PLA-based film enriched with Thymus vulgaris essential oil and
an ethanolic extract of Mediterranean propolis and exhibited its potential as an active food
packaging material [180]. PLA-, poly(butylene adipate-co-terephthalate)-, and starch-based
films with salicylic acid were prepared and their potential as packaging for bananas was
investigated by Ding et al. [181]. The authors reported that the shelf-life of bananas could
be extended by 4–5 days due to the excellent barrier and mechanical properties of the
films [181]. Hernandez-Garcia et al. evaluated the effect of a multilayer PLA film on the
shelf-life of fresh pork meat compared to commercial, high-barrier, multilayer packaging
films. Figure 15 depicts that the meat samples packaged in the PLA films maintained a
reddish color and freshness at the end of storage compared to other samples [182]. Zhang
and coworkers developed and characterized the properties of a PLA-based film enriched
with cinnamaldehyde inclusions to preserve fruits [183]. The researchers found that the
formed film exhibited enhanced barrier properties, tensile strength, morphology, crys-
tallinity, and antibacterial activity against Escherichia coli and Listeria monocytogenes [183]. A
film based on PLA, polybutylene-succinate-co-adipate, and thymol demonstrated antifun-
gal properties against Aspergillus spp. and Penicillium spp. and prolonged the shelf-life of
bread to 9 days [184]. Zhou and the research group reported that the developed sandwich-
architectured films based on PLA and pea starch were effective in extending the shelf-life
of strawberries [185]. Wongthanaroj et al. examined the effect of nanocomposite films
based on polylactic acid and cellulose nanocrystals on the browning reaction of cut avoca-
dos. The film exhibited a reduction in browning reactions and extended the shelf-life of
avocados by 1.3 days at 23 ◦C and 5.4 days at 4 ◦C, with O2 properties and antimicrobial
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effects [186]. Further, more research on PLA-based intelligent food packaging materials
with different natural antibacterial and antioxidant agents; their mechanical, physical,
and antimicrobial properties; and the shelf-life extension of perishables was reviewed by
Nasution and co-authors [187].
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3.2.2. Polyhydroxybutyrate (PHB)

Polyhydroxybutyrate (PHB) is a well-known biodegradable poly-β-hydroxy alkanoate
(PHA) synthesized by numerous bacteria as an internal carbon or energy reserve [177].
Nearly 75 different genera of bacteria can accumulate PHB, but Ralstonia eutropha has
received the most attention because of its capacity to accumulate PHB in large quantities,
and Haloferax mediterranei, Bacillus megaterium, and Halomonas boliviensis were also used
for this purpose [188]. PHB is one of several biodegradable polymers that have reached
commercial production and has a wide range of applications, from manufacturing pack-
aging to more complex biomedical items [189]. This isotactic homopolyester has thermal
and mechanical qualities similar to petrochemical polymers such as PP and PS and is
biodegradable in various settings, including composting conditions and marine water.
Due to their thermoplastic properties, homopolymers, polyhydroxy butyrate (PHB) and
poly-3-hydroxybutyrate-co-3- hydroxy valerate (PHBV) copolymers, which are modified
by copolymerization with hydroxy valerate, are used to develop packaging as alternatives
to petroleum-based synthetic polymers [9]. Figure 16 shows the chemical structures of PHB
and PHBV. Like other biopolymers, synthetic PHB also has biocompatibility, biodegradabil-
ity, nontoxicity, thermoplasticity, and water barrier properties, making it widely available
for packaging applications [177].
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As a pure homopolymer, PHB has a melting point of 180 ◦C, glass transition tempera-
ture of nearly 55 ◦C, and crystallinity above 50% [190]. Its high crystallinity and melting
point makes it brittle and it has lower mechanical strength compared to petroleum-based
plastics, restricting the usage of PHB for packaging applications [191]. The high production
cost of PHB compared to petrochemical-based plastics due to the expenses of the substrate,
fermentation, and downstream processes is another critical barrier to mass manufactur-
ing and commercialization. Solution casting and extrusion methods are widely used to
fabricate PHB-based packaging materials [54]. The drawbacks of PHB-based packaging
materials can be overcome by using thermal treatments, developing copolymers, blending
them with natural or synthetic polymers, and reinforcing them with natural fibers and
inorganic fillers [192].

Recently, numerous studies have explored the potential of PHB-based films and coat-
ings for food packaging applications. For example, Rech et al. developed a PHB-based
film by incorporating nanosilica and clove essential oil as an active food packaging ma-
terial for brown bread [193]. The prepared film extended the shelf-life of bread for up to
10 days compared to PE, with high antibacterial activity against Escherichia coli, Aspergillus
niger, and Staphylococcus aureus [193]. Kumari et al. prepared PHB-based films enriched
with different essential oils, including grapeseed, ginger, and bergamot oil, and character-
ized their mechanical, thermal, barrier, and antimicrobial properties [194]. The impact of
methylcellulose- and chitosan-coated PLA-PHB film incorporated with olive leaf extract
on preserving fresh pork burgers was examined by Fiorentini and coworkers [195]. The
authors revealed that the shelf-life extension of the pork burgers was due to the reduction
in lipid oxidation and the growth of Enterobacteriaceae [195]. Jiang et al. examined the me-
chanical and antioxidant properties of PLA-PHB-based film enriched with α-tocopherol to
prolong the shelf-life of peach [196]. The results revealed that the film exhibited improved
barrier, mechanical, and antioxidant properties and extended peach storage life by reducing
malondialdehyde content and protecting cell wall structure [196]. Iglesias-Montes and
coworkers successfully developed a film based on a PLA-PHB blend and chitin nanocom-
posite, suggesting its application in the food packaging industry [197]. Another study
produced a PLA-PHB-based packaging film incorporating fennel oil and demonstrated its
performance on the shelf-life of oysters [198]. The research confirmed that the developed
film could prolong the shelf-life of oysters by 2–3 days due to its oxygen barrier properties
and antioxidant and antibacterial ability [198]. Manikandan and colleagues developed
PHB-based nanocomposites using graphene nanoparticles and examined the shelf-life
extension of oxygen-sensitive foods [189]. Table 4 summarizes several recent studies on
composite packaging materials, preparation methods, food types, mechanical and physical
properties, and impacts on food quality.
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Table 4. Applications of composite packaging materials in food packaging.

Packaging
Material Additives Preparation

Method
Food

Sample Properties of Packaging Role as Food
Packaging Ref.

Potato
starch-based

film

Sodium
Alginate
Glycerol

Essential oil

Casting
method

Perishable
food

products

Water vapor transmission rate
was 0.00254 g/m2/h for the
films.

Shelf-life extension and
inhibition of the
spoilage organisms E.
coli and
B. cereus.

[199]

Foxtail millet
starch-based

film

Clove leaf oil
Sorbitol

Casting
method Cheese

Possessed ultraviolet light
barrier properties, tensile
strength (6.78–4.00 MPa), and
elongation at break
(66.26–99.48%) when the
essential oil content was
increased.

Reduced lipid
oxidation and
microbial growth
compared to LDPE.

[200]

Corn, wheat,
and rice

starch-based
coating

Chitosan Coating
method Walnut

Thickness of starch films ranged
between 0.19 ± 0.01 and
0.21 ± 0.02 mm. Water vapor
permeability of films ranged
from 20.63 ± 0.27 to
23.96 ± 0.25 g mm/m2 d kPa.
Tensile strength ranged between
0.27 ± 0.04 and 0.89 ± 0.2 MPa.

Shelf-life extension due
to reduced effects of
oxygen, moisture, and
temperature.

[201]

Chinese yam
starch-based

film

Sorbitol
Glycerol
Eugenol

Casting
method Pork

Plasticizer enhanced the
mechanical strength and barrier
to moisture and oxygen.

Due to its superior
barrier and
antibacterial qualities.
increased the shelf-life
of pork beyond 50%.

[202]

Cellulose
nanofiber-
based film

Zinc oxide
nanorods

Grapefruit
seed extract

Casting
method -

Highly transparent,
nanocomposite films with an
enhanced vapor barrier (ranged
from 0.46 ± 0.01 to
0.56 ± 0.02 × 10−9 g·m/m2·Pa·s)
and UV blocking qualities.

Exhibited antimicrobial
activity against
food-borne pathogens
and good antioxidant
activity.

[203]

Chitosan-
based coating Glycerol Coating

method Strawberry -

Excellent antibacterial
and antifungal activity
for one week and
maintained the
appearance of
strawberries.

[204]

Chitosan-
based film

Apricot
kernel

essential oil

Casting
method

Sliced
bread

With addition of essential oil,
water vapor transmission rate
was decreased from 1394 ± 47 to
821 ± 31 g m−2 d−1 and tensile
strength increased from
9.45 ± 0.53 to 19.36 ± 1.06 MPa.

Enhanced the shelf-life
of bread, with
antioxidant and
antimicrobial activity
against E. coli, B.
subtilis, and fungal
growth.

[205]
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Table 4. Cont.

Packaging
Material Additives Preparation

Method
Food

Sample Properties of Packaging Role as Food
Packaging Ref.

Chitosan-
based films

Plant extracts
obtained from
oak, hop, and
brown algae

Casting
method -

Blended films showed
increasing moisture content
(21.5–28.3%), total soluble matter
(23.8–28.9%), and elongation at
break (14.0–31.0%) for oak and
algal extract-containing films
but decreasing tensile strength
(12.7 MPa–5.5 MPa) and Young’s
modulus (230.8 MPa–19.4 MPa)

- [206]

Chitosan-
based films

Pomegranate
peel extract

Glycerol

Casting
method

Fruits and
vegeta-

bles

Thickness (0.142–0.159 mm),
tensile strength (32.45–35.23
MPa), opacity (0.039–0.061%),
water barrier effect (1.32–1.60
g·mm/m2), and gas barrier
properties (93.81–103.45
meq/kg) of the films increased
with increasing volume of
pomegranate peel extract.

Extended storage life
and improved quality. [207]

Alginate-
based films

Glycerol
Aloe vera

Frankincense
oil

Casting
method

Green
capsicum

Mechanical properties and
thermal stability were increased
in the presence of aloe vera and
frankincense oil. Water vapor
permeability was decreased in
the film containing aloe vera
and oil from 21.53 ± 1.43 g
mm/m2 day kPa for alginate to
8.18 ± 0.24 g mm/m2 day kPa.

Senescence retardation
and resistance to the
mass loss of green
capsicums.

[208]

Alginate-
based film

Glycerol
Thymol

Two-stage
cross-

linking
method

Fresh-cut
apple

In comparison to sodium
alginate films without thymol,
thymol/sodium alginate
composite films were shown to
have poor water vapor
permeability, water solubility,
and swelling ratios but good
tensile strength, elongation at
break, and UV–vis light
blocking capabilities.

Inhibited the growth of
Staphylococcus aureus
and E. coli and
maintained apple
weight, color, and
appearance.

[209]

Alginate-
based coating

Glycerol
Thyme oil

Dipped
method

Fresh-cut
apple -

Prevented bacteria
growth, respiration,
weight loss, and
browning reaction
while preserving
firmness.

[210]
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Table 4. Cont.

Packaging
Material Additives Preparation

Method
Food

Sample Properties of Packaging Role as Food
Packaging Ref.

Alginate-
based film

Kiwi peel
extract
Silver

nanoparticles

Casting
method Cherry

Films exhibited high UV barrier
qualities, water vapor resistance,
and tensile strength.

Increased cherries’
shelf-life by preventing
moisture loss and
protecting against
microbial deterioration
with strong
antimicrobial and
antioxidant properties.

[211]

Pectin-based
film

Carvacrol Cin-
namaldehyde

Casting
method

Ham and
bologna

Thickness of the films varied:
apple films, from 0.128 to 0.135
mm; carrot films, from 0.041 to
0.049 mm; and hibiscus films,
from 0.049 to 0.056 mm.

Improved microbial
food safety by reducing
the L. monocytogenes
population with
essential oil.

[212]

Pectin-based
film

Glycerol
Berry extract

Casting
method

Salmon
fillets

With the addition of berry
extract, the thickness of the films
was increased from
0.128 mm to 0.248 mm.

Improved shelf-life due
to antioxidant and
barrier properties.

[213]

Carrageenan-
based film

Water extract
of germinated

fenugreek
seeds

Sorbitol

Casting
method

Chicken
breast -

Improved the shelf-life
of meat by controlling
the growth of
microorganisms on the
surface of chicken
breast.

[214]

Carrageenan-
based film

ZnO
nanoparticles

Glycerol

Dipping
method Mango

Water vapor transmission rate of
the film ranged from 65.88 ± 1.55
to 59.94 ± 0.87 g m−2 24 h−1,
tensile strength ranged from
84.83 ± 4.67 to 121.53 ± 6.57
MPa, and elongation ranged
from 60.94 ± 6.03 to
65.91 ± 2.49% with the addition
of ZnO.

Maintained firmness
and delayed the
discoloration and
decay of mango.

[215]

PLA-PHB
based films

Glycerol
Cinnamaldehyde

Casting
method Salmon

PLA-PHB based film showed
better tensile strength and
excellent oxygen permeability
rate compared to ethylene vinyl
alcohol copolymer-based based
film. Ethylene vinyl alcohol
copolymer-based films had
reduced water vapor
transmission rates compared to
PLA-PHB-based films.

Reduced the total
bacterial count of the
sample.

[216]

PLA-based
film

Bergamot
essential oils
Nano-TiO2
Nano-Ag

Casting
method Mango -

PLA nanocomposite
films effectively
extended the
postharvest life and
delayed the loss of
mango firmness during
the entire storage
period.

[217]
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Table 4. Cont.

Packaging
Material Additives Preparation

Method
Food

Sample Properties of Packaging Role as Food
Packaging Ref.

PLA- and
chitosan–
caseinate-
based film

Rosemary
essential oil

Casting
method

Fresh
minced
chicken
breast

Elastic
modulus of films ranged from
1133 ± 136 MPa for control
sample to 2073 ± 89 MPa for
chitosan- and oil-incorporated
film. The tensile strength of the
control film was 93 ± 9 MPa,
whereas the value of the
chitosan, caseinate, and essential
oil-incorporated film was
160 ± 28 MPa.

Provided antioxidant
effects and improved
the shelf-life of fresh
meat products.

[218]

4. Challenges and Future Perspectives of Biopackaging in the Food Industry

Consumer demand, advancements in industrial trends, environmental concerns, mar-
keting methods, and customer lifestyles contribute to the growth of novel and inventive
packaging strategies in the food sector [2]. Developing biodegradable packaging is an
imperative step in the packaging industry toward reducing the environmental impact of
conventional plastics and advancing sustainability objectives. The utilization of biodegrad-
able and renewable materials is an excellent way to conserve the environment while adding
economic value to neglected crops and industrial waste [219]. Despite the environmental
friendliness of degradable packaging materials, several obstacles prevent their widespread
application in food packaging. A major issue is the biodegradability via thermal, photo-
induced, and chemical degradation. Major reasons for biodegradation are weak heat
resistance, mechanical strength, and moisture and gas barrier properties. This reduces
the shelf life of foods and renders materials less appropriate for several packaging appli-
cations [220]. Furthermore, certain biopolymers have low processability, demonstrating
poor melt rheology and heat sensitivity, which poses difficulties for traditional polymer
processing. Commercialization efforts are additionally impeded by insufficient legal re-
quirements and a lack of regulations for biopackaging [221]. The efficacy of biopolymer
packaging varies widely based on the product, and stability is highly affected by storage
conditions like humidity and temperature. In order to overcome these constraints, several
modifications have been introduced. For instance, the mechanical strength and barrier
qualities of biodegradable materials can be enhanced by blending different polymers and
using different modification techniques [222]. Biopolymers can be modified using various
chemical, physical, and enzymatic methods to alter the physical and chemical properties of
biopolymers for different applications [223]. Optimizing manufacturing procedures and
exploring relatively abundant and low-cost biopolymers are important tactics for cutting
costs in producing biodegradable packaging materials. Standardizing biodegradation
testing methods and introducing new regulations and policies ensure consistent, reliable,
and sustainable packaging solutions.

Currently, the improvement of primary biopackaging materials into active packaging
materials incorporated with different active compounds such as antioxidant, antimicrobial,
and anti-browning agents; colorants; flavors; vitamins; and enzymes is an exciting and
rapidly evolving area of the food packaging industry to extend the shelf-life of foods and
maintain their quality [224]. To gain optimal material properties for functional packaging
films in particular applications, the blend of these various additives must be carefully
examined [225]. Furthermore, O2 scavengers, CO2 releasers, ethylene scavengers, moisture
absorbers, UV barriers, and antimicrobial packaging systems are common active pack-
aging systems tested in the food industry [226]. In addition, intelligent food packaging
has recently emerged as a novel technique to improve the functionality of biopackaging.
Intelligent food packaging, also known as smart packaging, is a novel solution that utilizes
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indicators and sensors incorporated in the packaging to monitor and report changes in
food quality and safety. These indicators and sensors can detect various changes in the
food system, including microbial activity and chemical and physical changes [227]. Some
intelligent packages observe the real-time conditions of food and some provide a source for
releasing bioactive agents during food spoilage [228].

Further, nanotechnology-integrated biopolymer-based food packaging can be devel-
oped by addressing the current issues with the mechanical, thermal, and barrier properties
of biopolymers. The use of nanotechnology in biopackaging entails the production of
bionanocomposites at the nanoscale or using nanoparticles to improve the properties of
packaging material. Bionanocomposites are sophisticated materials composed of biodegrad-
able polymers and nanoscale reinforcing elements with better mechanical, thermal, and
barrier qualities than typical biodegradable polymers [229]. Future applications of bio-
nanocomposites would rise with the development of smart and intelligent packaging as
a new technology, incorporating novel programmable, artificial intelligence (AI)-based
materials into bioplastics.

5. Conclusions

Economic, health, and environmental concerns associated with conventional pack-
aging materials such as plastic, metal, paper, and glass have shifted consumers toward
sustainable food packaging. One of the emerging solutions for sustainable food packaging
is biopolymer-based packages that eliminate common waste and aid in minimizing the ad-
verse effects of conventional packages on the environment. Biopackaging has been widely
used in the food industry due to its degradability, renewability, nontoxicity, and edibility.
The main biopolymers used to develop biodegradable food packaging are polysaccharides,
which include starch, cellulose, chitosan, alginate, pectin, and carrageenan. Polysaccharides
show excellent mechanical properties with superior barrier properties against O2, CO2, oil,
and aromas while demonstrating poor moisture resistance. Moreover, synthetic aliphatic
polyesters also exhibit desirable mechanical and barrier properties for oils and aromas. This
review discussed the structure, properties, and recent developments in food packaging
applications of polysaccharide-, including starch, cellulose, chitosan, alginate, pectin, and
carrageenan, and aliphatic polyester-based polylactic (PLA) and polyhydroxy-butyrate
(PHB) biopackaging materials.

Although most of these biopolymers have poor mechanical and physical structures,
numerous studies have demonstrated that polymer blends and composites have drastically
strengthened structures and other properties. Also, biopackaging is vital in packaging
perishable fruits; vegetables; meat, poultry, and fish products; cereals; bakery products;
dairy products; and oil-fried products. Current trends in biopackaging include active
packaging, intelligent packaging, edible coating and films, and bionanocomposites and
blends. Nevertheless, despite these innovations, concerns related to shelf-life, finances,
customer perception, and socioeconomics directly impact the replacement of conventional
packaging, hindering biopolymers from being broadly commercialized in food packaging.
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