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Abstract: In order to address the anti-ablation of carbon/carbon (C/C) composites, SiC nanowires
(SiCnws) network-modified C/C-ZrB2-ZrC-SiC composites were prepared through the one-step
precursor conversion method. With an optimized B-Si-Zr sol-precursor, uniformly dispersed SiCnws
and ceramic particles forming an interlocking structure were synchronous in situ grown in the C/C
matrix. During ablation, the partially oxidized SiCnws networks with molten SiO2 surface can
stabilize the oxide protecting layer and heal the microcracks efficiently in combination with the
refractory ZrO2 particles, thus significantly improving the anti-ablation properties of the composites.
This study lays the foundation for the high temperature and long-term anti-oxidation and anti-
ablation application of C/C composites in the aerospace industry.
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1. Introduction

As the key materials for the thermal protection systems of advanced space vehicles and
their propulsion systems, carbon fiber-reinforced carbon (C/C) composites must operate in
extreme environments above 2000 ◦C with complex airflow erosion and large gradient ther-
mal shock [1–3]. Therefore, it is crucial to obtain C/C composites with good anti-ablation
properties. Recently, ultrahigh temperature ceramics (UHTCs)-modified C/C composites
(C/C-UHTCs) have been proven to be the most promising candidate [4–6]. Ultra-high
temperature ceramics (UHTCs) generally refers to the carbides, nitrides, and borides of
the transition metals, with melting points higher than 3000 ◦C and excellent oxidation
ablation resistance [7]. In particular, the carbides and borides, such as ZrB2, ZrC, HfB2, and
HfC, have attracted much attention because their high melting points coupled with their
ability to form refractory oxide scales give them the ability to withstand temperatures in
the 1900–2500 ◦C range [8]. With the introduction of UHTCs, an oxide protecting layer
can be generated due to the oxidation of the UHTCs, which can efficiently decrease the
contact between oxygen and the substrate, thus contributing to the anti-ablation of the
composites [9–11]. However, the CTE mismatch between the ceramic phases (such as ZrB2,
~6.5 × 10−6 ◦C−1 [12]; ZrC, ~7.1 × 10−6 ◦C−1 [12]; ZrO2, 8.0~11 × 10−6 ◦C−1 [13]) with
C/C (1~2 × 10−6 ◦C−1 [14]) cause thermal stress concentration and may induce penetrating
cross cracks during the ablation. Generally, the greater the CTE mismatch, the larger the
crack frequency will be. The cracks become the channels for oxygen diffusion and provide
ways for the oxide protecting layer to be scoured away, which will accelerate carbon matrix
oxidation and the failure of the composites [15–17]. Therefore, it is crucial to restrain the
formation and propagation of the cracks and improve the stability of the oxide protecting
layer during ablation.
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SiC nanowires (SiCnws) have been widely applied as reinforcements to promote the
toughness of ceramic composites due to their high specific strength, large aspect ratio,
and harsh environment resistance [18–20]. Wang et al. [21] fabricated a nano-whisker SiC
coating for C/C composites, and found that the CTE of the composites at 1000 ◦C was
2.69 × 10−6 ◦C−1, which was much lower than that of the composites with a dense SiC
coating (5.80 × 10−6 ◦C−1). Chu et al. [22] investigated the influence of SiC nanowires
on the oxidation protective ability of an SiC coating for C/C composites between room
temperature and 1500 ◦C. It reveals that the CTE of the coated C/C samples with SiC
nanowires is always below that of the coated C/C samples without SiC nanowires at
the same temperature. Zhang et al. [23] investigated the CTE of bare C/C composites
and the SiC-coated C/C composites with or without SiC nanowires from 850 to 1500 ◦C.
The results showed that the CTE of the C/C-SiC sample with SiCnws was closer to that of
bare C/C composites, thus improving its resistance to thermal shock. As is well known,
the C/C substrates have the same thermal expansion behavior under the same conditions,
so that the measured results can reflect the difference in CTE of these coatings [24]. These
results suggest that the introduction of SiCnws could relieve CTE mismatch between the
carbon matrix and the ceramic phases [25,26], thus decreasing the formation of microcracks.
Furthermore, during oxidation, a molten silica scale glass can be formed, which can endow
the composites with a good self-healing effect against cracks [27,28]. Therefore, there is
a strong possibility that the CTE mismatch and self-healing problems of C/C-UHTCs
composites can be solved if we fully utilize the properties of SiCnws and the UHTCs matrix
synergistically [29–31]. If a ceramic matrix dispersed with SiCnws interwoven networks
can be obtained, it can not only alleviate the CTE mismatch between C/C and the UHTCs
to reduce the cracks formation, but also increase the length per unit area of the UHTCs/SiC
interface and provide molten glass SiO2 continuously during oxidation. This is expected to
help the ceramic matrix be more effective and efficient in forming the protective oxide layer
and to heal the cracks. However, preparing SiCnws reinforced with the UHTCs multiphase
ceramic matrix with a dispersed structure is challenging, due to the difficulty in controlling
the distribution of the SiCnws. Moreover, the ratio of the SiCnws in the ceramic matrix is
crucial. With a too low content of SiCnws, its effectiveness in forming a supporting skeleton
network structure and providing molten silica rich glass is limited. On the other hand, with
a too high content of SiCnws, the self-healing process cannot be achieved because of the
limited pinning effect of the refractory ceramic particles and the low viscosity of the oxide
layer. Therefore, the formation of SiCnws networks and its effect on the ablation behavior
of the composites still need to be explored.

In our previous study [32–34], we reported a facile approach to preparing homoge-
neously dispersed SiCnws in ZrB2-ZrC-based UHTCs powders with a regulatable mor-
phology and particle size distribution. In this method, the phase ratio of the ceramic
matrix can be optimized by regulating the composition of the sol precursor. The SiCnws-
reinforced multiphase ceramic matrix with a dispersed structure can be achieved by the
in situ growth of SiCnws and the ceramic matrix synchronously through pyrolyzing the
precursor. Therefore, an optimized structure and composition of the C/C-UHTCs com-
posites with dispersed SiCnws networks should be obtained to provide clearly improved
anti-ablation properties for C/C composites.

2. Experimental Section
2.1. Preparation of the C/C-ZrB2-ZrC-SiC(nws) Composites

Figure 1 shows the schematic for the fabrication of SiCnws network-reinforced C/C-UHTCs
composites (C/C-ZrB2-ZrC-SiC(nws)). T300 PAN-based carbon felts (0.45 g/cm3) were ob-
tained from Yixing Tianniao High Technology Co., Ltd. (Yixing, China). Firstly, a hydrothermal
carbon layer was deposited on the carbon fiber through hydrothermal treatment at 200 ◦C
for 2 h using glucose as the carbon source. Secondly, B-Si-Zr sol precursors with various
silicon contents were infiltrated into the carbon felt by vacuum impregnation, followed by
dring and pyrolysis at 1600 ◦C for 2 h in flowing Ar atmosphere. The specific preparation
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method for the B-Si-Zr sol precursor and morphologies of their pyrolysis products are shown
in our previous study [32,33]. Specifically, in each n(Si)/n(Zr) ratio range, i.e., n(Si)/n(Zr) < 6,
6 ≤ n(Si)/n(Zr) < 10, 10 ≤ n(Si)/n(Zr) < 14, 14 ≤ n(Si)/n(Zr) ≤ 18, the pyrolyzed products pos-
sess similar composition and morphology within the range. Moreover, the length of SiCnws in
the ceramic matrix clearly grew with the increasing n(Si)/n(Zr) ratio. Therefore, considering
the potential ability to form the SiCnws networks, the four precursors with n(Si)/n(Zr) values
of 4, 8, 12, 16, which can produce SiCnws in different lengths, were chosen. Viscosities of the
prepared sol precursors with n(Si)/n(Zr) values of 4, 8, 12, and 16 were 68, 45, 40, and 36 mPa·s,
respectively. Accordingly, the samples were labeled as 4SZ, 8SZ, 12SZ, and 16SZ, respectively.
We repeated the above precursor–infiltration–pyrolysis (PIP) process 15 times until the sample
density reached 1.8 g/cm3. Finally, resin carbon was infiltrated to fill the pores through vacuum
impregnation and carbonization. Final density of the composites measured by Archimedes
method was 2.2 g/cm3.
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Figure 1. Preparation of C/C-ZrB2-ZrC-SiC(nws) composites.

2.2. Ablation Tests

Ablation tests were conducted using a plasma torch (Multiplaz 3500, Multiplaz, Shen-
zhen, China) with working voltage of 160 V and working current of 6 A [35,36]. The ablation
specimens were cut into a cylindrical shape (Ø 30 × 10 mm). Distance between the speci-
mens and the nozzle was set to 10 mm. The maximum temperature region of the flame is
about 2 mm. For each composition, three samples were prepared for ablation tests. The ab-
lation time was 30 s for each test. The linear (Rl, mm·s−1) ablation rates with an accuracy of
±0.1 µm/s and mass ablation rates (Rm, g·cm−2·s−1) with an accuracy of ±0.1 mg/s were
the average of three samples tested at each testing condition by calculating the thickness
and mass changes in the specimens before and after ablation according to the following
formulas [37]:

Rl =
d0 − d1

t
(1)

Rm =
m0 − m1

S·t (2)

where d0 and d1 are the thicknesses of the samples before and after ablation, respectively;
m0 and m1 are the masses of the samples before and after ablation, respectively; S is the
ablation surface area; t is the ablation time.

2.3. Characterization

Viscosities of the precursors were detected by the rotational viscometer (NDJ-1S,
Shanghai, China). Phase analysis was recorded by a D/max-2200PC X-ray diffraction
with Cu K radiation (XRD) scanning at 4◦/min. Microstructure of the samples were
investigated by a FEI Verios 460 scanning electron microscopy (SEM) with energy-dispersive
spectroscopy (EDS, Oxford INCA) (FEI, HI, USA).

3. Results and Discussion
3.1. Microstructure and Composition

Figure 2 illustrates the surface morphology of the composites after undergoing the
PIP process twice. As can be seen, the content of the SiCnws clearly increased with the
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increase in the silicon content in the precursor. For 4SZ and 8SZ, mainly ceramic particles
and tiny amounts of SiCnws can be observed. For 12SZ and 16SZ, a large amount of
SiCnws was formed. The length of the SiCnws varies from a few micrometers to tens of
micrometers. And the diameter also varies from several nanometers to tens of nanometers.
The large aspect ratio (length/diameter) and the various length of the SiCnws contribute
to an enhanced toughening effect. Moreover, with an appropriate silicon content (12SZ),
the ceramic particles with a diameter of about 50–100 nm dispersed randomly in the gaps
of the SiCnws networks, indicating that SiCnws networks-reinforced multiphase ceramic
matrix with a dispersed structure can be obtained by the in situ growth of SiCnws and
ceramic particles simultaneously.
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Figure 2. Surface images of the composites after PIP process twice. (a–a2) 4SZ, (b–b2) 8SZ, (c–c2) 12SZ,
(d–d2) 16SZ.

Figure 3 shows a cross-sectional images of the composites with various silicon contents
after undergoing the PIP process twice. For the samples 4SZ and 8SZ, the ceramic particles
are mainly located on the surface of the carbon fibers. And the sample with a higher
silicon content shows a denser ceramic layer (8SZ). For the sample 12SZ, SiCnws with
a diameter of about 500 nm are uniformly distributed in the matrix including the fiber
surface and their gaps. In particular, the SiCnws are interwoven with each other forming
a network structure. Meanwhile, the ceramic particles show an aggregated morphology
but an even distribution. For the sample 16SZ, uniform and fine ceramic particles with
uniformly distributed warm-like SiCnws but a smaller diameter can be observed. As is
known, an appropriate local CO and SiO gas supersaturation is required for the growth of
SiCnws. And these reaction gases are generated from the pyrolysis of the B-Si-Zr precursor.
With an increased silicon content, the SiCnws begin to grow when the gas supersaturation
meets the requirements. But with a high gas supersaturation, the deposition rate of the
gases is greater than the growth of nanowires; thus, a warm-like morphology, usually
with a high number of defects, is obtained. Based on the above analysis, with an adjusted
silicon content in the precursor, SiCnws can be successfully introduced into the matrix and
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surface of the composites forming an interwoven network structure, which could produce
an enhanced toughing effect on the surface and substrate during the ablation process.
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(c,c1) 12SZ, (d,d1) 16SZ.

Figure 4 presents the XRD results of the composites with various silicon contents.
The XRD patterns show the phase compositions of SiC, SiO2, ZrB2, ZrC, and ZrO2 for all
of the samples. For sample 4SZ, ZrB2, SiC, and ZrO2 are the main phase. By increasing
the silicon content, a decrease in ZrO2 content and an increase in ZrB2 can be observed,
confirming the further carbothermal reaction caused by the grain-refining effect of SiO2 [34].
However, after further increasing the silicon content, a clear decrease in the ZrB2 peak in-
tensity was observed. This may have resulted from the full division and easier evaporation
of B2O3 due to the excessive silicon.
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Figure 4. XRD results of the prepared composites with various silicon contents.

Figure 5 presents cross-sectional images of the composites with various silicon contents
after densification. It shows that both the number of pores and the sizes of pores decreased
as the silicon content increased, suggesting that free spaces between the individual woven
fabrics can be filled completely by impregnating them with a B-Si-Zr sol-precursor. With the
increase in silicon content, the viscosity of the sol precursor decreases because of the
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increased tetraethyl orthosilicate content in the sol. For the samples prepared with a low
silicon content, there are clear incomplete infiltration defects, which may be due to the high
viscosity of the sol precursor with a low silicon content. For the samples prepared with
a high silicon content, a dense microstructure with a small number of matrix shrinkage
defects can be observed. Therefore, the infiltration of the prepared B-Si-Zr sol precursor of
appropriate viscosity can contribute to the fully filled of the porous structure.
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Figure 5. Cross-sectional images of the prepared composites after densification: (a) 4SZ, (b) 8SZ,
(c) 12SZ, (d) 16SZ.

3.2. Ablation Characteristics

The compositions of the composites before and after ablation are shown in Figure 6.
All the samples show a similar phase composition, but a clearly increased ZrO2 and SiO2
content and decreased SiC content can be noticed after ablation. This result indicates that
part of the ceramic matrix was oxidized during ablation, and oxidation products which are
mainly composed of ZrO2 and SiO2 were formed. Figure 7 shows the ablation morphologies
of the composites with various silicon contents. Compared to the other samples with a
clear peeling off of the protecting layer, the ablation surface of composite 12SZ shows a
continuous and integral structure, suggesting that a stable and anti-scouring oxide layer
was formed during ablation. After ablation, the Rm and Rl of 12SZ were 0.11 mg·cm−2·s−1

and 0.08 um·s−1 (as shown in Table 1), respectively, indicating a good ablation resistance.
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Table 1. Line and mass ablation rates of all the samples after ablation for 30 s.

Samples n(Si)/n(Zr) Linear Ablation Rate
(Rl, um·s−1)

Standard
Deviation of Rl

Mass Ablation Rate
(Rm, mg·cm−2·s−1)

Standard
Deviation of Rm

4SZ 4 0.84 0.04 1.8 0.90
8SZ 8 0.69 0.10 0.91 0.11

12SZ 12 0.08 0.05 0.11 0.06
16SZ 16 0.76 0.06 0.76 0.10

As for the ablation mechanism of the C/C-UHTCs composites, it has been widely
studied. A common conclusion is that the formation of an oxide protecting layer on the
ablated surface contributes to the improvement of anti-ablation properties [38–40]. In this
work, it is the ZrO2-SiO2 products. If the bonding strength of the oxide protecting layer is
not high enough, the oxide layer can be scoured away by the strong plasma flame, thus
leading to the failure of the composites. Therefore, the formation and structural evolution
of the oxide layer will be focused on and discussed in detail in the following section.

According to fluid mechanics, a high viscosity of the ablation products would provide
high shear strength to endure the scouring of the ablation flame. On the other hand, a
suitable viscosity is necessary to provide a good liquidity to heal the cracks. Therefore, the
viscosity of the ablation products is important for the ablation resistance of the compos-
ites. In the ablation process, the ZrO2-SiO2 products are formed due to the oxidation of
ZrB2-ZrC-SiC ceramics. In particular, under the plasma ablation temperature (∼2300 ◦C),
they are the solid ZrO2 (melting point, 2680 ◦C) and the molten glassy SiO2 liquid phase
(melting point, 1723 ◦C) according to the phase diagram of the ZrO2-SiO2 binary system [41].
The ablation products can be regarded as a ZrO2-SiO2 suspension system. According to the
semiempirical equation of Krieger and Dougherty for monodisperse suspensions [42], the
relative viscosity is a rapidly increasing function of the solid fraction.

ηr =
η

ηL
(3)

x =

(
1 − Φ

Φm

)−[η]Φm

(4)

where η is the viscosity of the suspension, ηL is the viscosity of the liquid phase, ηr is the
relative viscosity of the suspension, Φ and [η] are the volume fraction and the intrinsic
viscosity of the particles, and Φm is the maximum packing fraction of particles. Generally,
the crystal and liquid phases coexist up to Φm = 0.545.

The viscosity of SiO2 at ∼2300 ◦C is 4.5 Pa·s, which can be estimated using the
Vogel–Fulcher–Tammann equation [43]. When the volume fraction of solid phase in the
ablation products reached 0.1, 0.2, 0.3, 0.4, and 0.5, the relative viscosity increased to 1.5,
2.5, 5, 14, and 147, respectively [37]. When the volume fraction of the ablation products
exceeds the maximum packing fraction of particles (Φm, 0.545), there is not sufficient
fluid to lubricate the relative motion of particles and the viscosity rises to infinity [42].
This suggests that the viscosity of the ZrO2-SiO2 ablation products increased exponentially
with the increase in ZrO2 content.
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For sample 4SZ (Figure 8), the viscosity of the ablation products (mainly SiO2 and
ZrO2) was high due to the low SiO2 content. An oxide layer can ensure the ablation flame,
but it cannot cover the ablated surface rapidly, i.e., it possesses no self-healing ability;
therefore, a porous and discontinuous layer was formed in the ablation center. On the other
hand, due to the CTE difference between the C/C matrix and the oxide protecting layer,
microcracks were easily form and the oxide layer was easy to peel off. Without the efficient
protection of an oxidation layer, oxidative erosion of carbon fibers with scour marks can be
observed in the transition area. In the rim area, a layer composed of spherical or hollow
spheres in a size of about 20–100 um formed by airflow erosion can be observed.
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Figure 8. SEM images of sample 4SZ after ablation: (a,a1) Region I, (b,b1) Region II, (c) Region III.

With the increase in silicon content (6SZ), the morphology of the ablation center became
smooth and had a strong integrity (as shown in Figure 9), indicating its increased self-
healing ability. However, the content of SiCnws was not high enough to form a supported
network and cannot provide enough molten SiO2 to heal the cracks. Discontinuous and
porous structures formed by ZrO2 particles as confirmed by EDS analysis were formed in
the transition area. In the rim area, a large amount of spherical and broken hollow spherical
particles can be observed. With a higher SiO2 content (Figure 9(c2)), molten SiO2 of low
viscosity was scoured to the rim area of the composites under high-speed airflow, forming
a spherical morphology.
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With the introduction of SiCnws networks into the ceramic matrix (12SZ), the obtained
composites exhibit superior ablation property. As can be seen, the ablation surface shows
structural integrity with no presence of the peeling off of the oxide layer (Figure 10a). Al-
though big pits can clearly be observed, there are no large penetrating cracks present on the
surface. Moreover, the SiCnws network remained after ablation and they were uniformly
distributed in the whole area of the ablation surface. And the oxide products formed had a
relatively dense molten structure (Figure 10b), which was composed of large amounts of
molten oxides of SiO2 and ZrO2 (Figure 10(a2)) with bridging and reinforcing nanowires
(Figure 10(a1,b,b1)). Moreover, the EDS analysis (Figure 10(b2,c2)) shows that the element
composition of the nanowires is Si, O, and Zr, verifying that the surface of the SiCnws
has been oxidized into SiO2 phases, forming a molten SiO2 surface layer. The molten
SiO2 surface contributes greatly to the formation of the interlocking nanowires networks
and the healing of defects as they can easily integrate with each other in the molten state.
The strengthening effect of the nanowires can be remarkably enhanced by interconnecting
with each other. As the nanowires melt and connect with each other, the surrounding
pores or microcracks are filled and sealed. Therefore, in the early stage of ablation, the
formed molten SiO2 oxides can flow and heal the microcracks in combination with the
pinning effect of the ZrO2 particles as confirmed by the EDS analysis in Figure 10(a2), thus
undergoing a self-healing process. Nanowires in whole or in part are literally rooted into
the oxide products, strengthening or bridging the oxide layer, thus greatly improving the
stability of the oxide layer. This can be proved by the traces of the cracks being healed, and
the accumulation of molten oxides at the connected nodes (Figure 10(a1,b)). In Figure 10b,
large scales of molten products bridged by nanowires networks can be observed, which
is another common structure present on the ablation surface. The nanowires melted and
connected with each other and formed a branching structure with one end rooted in the
molten oxides (Figure 10(b1)). The oxide products were snared and pinned by the networks,
thus avoiding being scoured away. Moreover, in the rim area, a large number of nanowires
cross connected with each other can be observed. The relatively dense and interlocking
networks can resist the scouring and heat attack, thus preventing the matrix from being ab-
lated. Therefore, it can be concluded that the SiCnws networks can stabilize the oxide layer,
while restraining and healing the microcracks, thus significantly improving the ablation
resistance of the composites.
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For sample 16SZ (Figure 11), due to the high SiC content, the ablation products high
in SiO2 content possessed low viscosity and good flowability. During ablation, the ablation
products were easy to blow away and spherical structures were easy to form. Therefore, a
oxide protecting layer with a smooth but rough surface resulting from the molten spherical
particles accumulation was formed in the central area. As confirmed by the EDS analysis,
the spherical particles mainly consisted of SiO2 with ZrO2 particles deposited on their
surface. In the transitional area, scour marks of V-grooves along the ablation flow direction
were left. In the rim area, a porous and loose layer composed of spherical agglomerates
formed by particle accumulation can be observed.

Based on the above analysis, it can be concluded that ratio of the SiCnws in the ceramic
matrix is detrimental to the structure’s stability of the formed oxide protecting layer. By in-
creasing the silicon content in the precursor, the silicon content is high enough to support
the growth of SiCnws and form a supporting skeleton network structure. Furthermore, the
appropriate content of ZrO2 can ensure the high viscosity of the oxide products to ensure
the ablation flame. The formed SiCnws network can strength the oxide layer and provide
molten silica-rich glass to heal the microcracks, thus effectively improving the stability of
the oxide layer. However, when further increasing the silicon content, although a large
amount of SiCnws can be formed, the oxide protecting layer is easy to be sourced away
due to the insufficient volume fraction of the refractory ZrO2 particles.
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3.3. Ablation Mechanism

For the common C/C-UHTCs composites, the CTE mismatch between the ceramic
phases with the C/C matrix could cause thermal stress concentration, promote the initiation
and rapidly propagation of microcracks, and finally lead to their oxidation failure (Figure 12a).
For the SiCnws interwoven networks-reinforced C/C-UHTCs composites, some SiCnws
are positioned at the surface of the composite, some are completely growth in the matrix,
while others are partially rooted in the dense matrix, thus forming a uniformly dispersed
SiCnws interwoven network through the whole composite. The SiCnws connected with each
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other to form the reinforced structure, while adhering and bond ceramic particles to form
a dense matrix. And the presence of the dispersed SiCnws networks can efficiently reduce
the CTE difference between the ceramic phases and the carbon matrix, thus relieving the
stress concentration and restraining the formation of microcracks. During ablation, ceramic
phases are oxidized into ZrO2-SiO2 composite oxides forming an oxide protecting layer. The
remaining SiCnws networks with a molten SiO2 surface can join and lock the ceramic particles
and their oxide products together as an integrated structure, thus improving the stability
of the oxide layer. Moreover, the propagation of cracks can be effectively restrained due to
the strengthening effect of the nanowires (Figure 12b). Furthermore, SiCnws at the ablation
surface are completely or partially oxidized into a molten and flowable SiO2 phase, which
can further enhance their interaction with the surrounding ceramics particles. Meanwhile,
the appropriate volume fraction of the dispersed ZrO2 phase which has a high melting point
can restrict the movement of the oxide product layer, thus improving its resistance to peeling
off from the matrix. Furthermore, due to the larger contact interface with the ceramic matrix,
oxidized SiCnws networks can fill and heal the microcracks in the local position more quickly
in combination with the pinning effect of the ZrO2 ceramic particles, thus providing an
efficient self-healing ability to the protecting film. Finally, a continuous and anti-scouring
oxide protecting layer with efficient self-healing abilities was formed (Figure 12c). And the
anti-ablation abilities of the composites were enhanced.

J. Compos. Sci. 2024, 8, x FOR PEER REVIEW 12 of 14 
 

 

microcracks. During ablation, ceramic phases are oxidized into ZrO2-SiO2 composite ox-

ides forming an oxide protecting layer. The remaining SiCnws networks with a molten 

SiO2 surface can join and lock the ceramic particles and their oxide products together as 

an integrated structure, thus improving the stability of the oxide layer. Moreover, the 

propagation of cracks can be effectively restrained due to the strengthening effect of the 

nanowires (Figure 12b). Furthermore, SiCnws at the ablation surface are completely or 

partially oxidized into a molten and flowable SiO2 phase, which can further enhance their 

interaction with the surrounding ceramics particles. Meanwhile, the appropriate volume 

fraction of the dispersed ZrO2 phase which has a high melting point can restrict the move-

ment of the oxide product layer, thus improving its resistance to peeling off from the ma-

trix. Furthermore, due to the larger contact interface with the ceramic matrix, oxidized 

SiCnws networks can fill and heal the microcracks in the local position more quickly in 

combination with the pinning effect of the ZrO2 ceramic particles, thus providing an effi-

cient self-healing ability to the protecting film. Finally, a continuous and anti-scouring 

oxide protecting layer with efficient self-healing abilities was formed (Figure 12c). And 

the anti-ablation abilities of the composites were enhanced. 

 

Figure 12. Schematic diagram of the anti-ablation process of the prepared SiCnws network modified 

C/C-UHTCs composites. 

4. Conclusions 

C/C-ZrB2-ZrC-SiC(nws) composites were prepared by pyrolyzing B-Si-Zr gel precur-

sors using cyclic impregnation and pyrolyzing processes. SiC nanowires forming an in-

terwoven network were grown in situ in the C/C matrix with the synchronous generation 

of the ZrB2, ZrC, SiC and ZrO2 ceramic particles. When the molar ratio of silicon to zirco-

nium was 12, the obtained composites showed good anti-ablation properties. During ab-

lation, the SiCnws were partially oxidized forming a molten SiO2 surface, which contrib-

uted greatly to the formation of reinforcing interlock networks, while filling and healing 

Figure 12. Schematic diagram of the anti-ablation process of the prepared SiCnws network modified
C/C-UHTCs composites.

4. Conclusions

C/C-ZrB2-ZrC-SiC(nws) composites were prepared by pyrolyzing B-Si-Zr gel pre-
cursors using cyclic impregnation and pyrolyzing processes. SiC nanowires forming an
interwoven network were grown in situ in the C/C matrix with the synchronous genera-
tion of the ZrB2, ZrC, SiC and ZrO2 ceramic particles. When the molar ratio of silicon to
zirconium was 12, the obtained composites showed good anti-ablation properties. During
ablation, the SiCnws were partially oxidized forming a molten SiO2 surface, which con-
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tributed greatly to the formation of reinforcing interlock networks, while filling and healing
the cracks efficiently. In combination with the appropriate volume and content of the ZrO2
particles, the interlocking networks can stabilize the oxide layer, thus the anti-ablation of
the modified C/C composites was greatly enhanced.
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