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Abstract: The present study aims to fill a gap in the literature on the estimation of the bond strength
of fiber reinforced polymer sheets bonded to concrete, via the externally bonded reinforcement on
grooves (EBROG) technique, employing the curve-fitting on existing datasets in the literature and
the methodology of Artificial Neural Networks (ANNs). Therefore, a dataset of 39 experimental
results derived from EBROG technique is collected from the literature. A mathematical equation for
the bond strength of FRP sheets applied on concrete via the EBROG technique was suggested using
curve-fitting and general regression. The proposed mathematical equation is compared and validated
with experimental results. The developed ANN model was constructed after testing diverse hidden
layers and neurons to find the optimal predictions. The validation of the model is carried out using
the experimental results and a statistical analysis is applied to assess the proposed mathematical
equation and the proposed ANN model. Furthermore, a parametric study using the ANN model
was also performed to investigate the influence of various factors on the bond strength of FRP sheets
bonded to concrete. The parametric study proves that the bond strength increases with increasing the
tensile stiffness per width, the FRP sheet width, and the concrete compressive strength; however, the
effect of the Groove’s width and depth is found to be not monotonous.

Keywords: ANN model; bond strength; EBROG; FRP; mathematical equation

1. Introduction

While several techniques are used to strengthen and repair reinforced concrete build-
ings, externally fastened fiber-reinforced polymer (FRP) plates or sheets have become a
popular approach. Their many benefits—such as their high tensile strength, remarkable
corrosion resistance, and lightweight and flexible nature—have led to this favor. External
reinforcement in the form of FRP composite sheets is frequently used to improve the flex-
ural capabilities of beams [1]. However, in a complex interaction impacted by multiple
elements, the behavior of the bond formed between the FRP sheet and the concrete surface
plays a crucial role in the efficacy of the reinforced structures. The performance of the bond
strongly depends on many variables including the concrete’s compressive strength, the
largest aggregate’s size, the FRP material’s tensile strength, thickness, modulus of elasticity,
adhesive tensile strength, the FRP’s length and width, the laborers’ level of experience, and
the state of the concrete surface. Here, “bond strength” refers to the highest load that the
FRP sheet can bear when firmly fastened to the concrete [2].

The early debonding of the FRP from the substrate before the FRP sheet achieves
its ultimate bearing capacity is a crucial factor affecting the success of the reinforcing
process [3]. There are continuing research investigations on a number of the specifications
of FRP composites [4,5] and a wide range of experimental, analytical, and numerical
models for bond strength and effective bond length have been developed to date by
researchers [4,6–10] and have been approved by various national laws [11] to streamline
the design processes for external reinforcement (EBR)-based structural reinforcement of
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prepared members. In order to forecast the debonding behavior of RC members reinforced
with externally bonded FRP, fracture mechanics techniques have been researched [12–14].

Numerous experimental studies have been conducted to address the bonding issues
between the concrete surface and FRP panels. In 2009, Ozbakkaloglu and Saatcioglu [15]
employed FRP anchors to resolve delamination problems encountered with surface-bonded
FRP sheets. Their research revealed that the use of FRP stabilizers can enhance pull-out
capabilities, consequently mitigating the delamination of externally bonded FRP sheets. In
2018, Murad [16] found that the orientation angle of and carbon fiber-reinforced polymer
(CFRP) sheets significantly impacts the maximum load and deflection of reinforced concrete
elements. Additionally, Ozbacaloglu et al. [17], in their 2017 study, explored the influence
of the configuration of FRP anchors on the behavior of externally bonded FRP sheets on
concrete structures. They observed that both the number and arrangement of anchors can
significantly affect the sliding load behavior of FRP panels. The variables that significantly
impact the bond strength between concrete and CFRP panels have been the subject of
several experimental studies. Al-Rousan et al.’s research from 2015 [18] showed that while
aggregate size has a minor impact on bond strength, the kind of aggregate had a negligible
impact. Additionally, they reported that the bond strength increases by increasing concrete
compressive strength. They have also found that the bond strength increases by decreasing
w/c ratio. Additionally, they discovered that when bond length and width increase, bond
strength diminishes. The bonding strength between fibers and concrete is negatively
impacted by high temperatures above 400 ◦C, as Haddad et al. [19] found in 2013, leading
to a 64% loss in bond strength. Finally, in 2016, Irshidat and Al-Saleh [20] discovered that
bond length and width affect the behavior of the bond between concrete and fibers.

Despite being widely used, the early debonding of the FRP sheet from the substrate
causes problems for the EBR technology in terms of efficient load transfer between concrete
and the composite [21–24]. Mostofinejad and Mahmoudabadi have recently introduced
a novel method called “externally bonded reinforcement on grooves” as an alternative
to the usual EBR surface preparation methodology [25] in order to solve this significant
constraint. Using this novel method, the concrete surface where the FRP sheet is to be
attached is grooved, and the grooves are then filled with epoxy resin. This innovative
method transfers the interfacial stresses in reinforced elements to deeper concrete layers,
delaying or eliminating FRP debonding altogether. Consequently, the EBROG method
outperforms the conventional EBR. To highlight the benefits of EBROG and investigate
its possible uses, a great deal of study and experimentation has been done. Longitudinal
grooves have been found to be more efficient than transverse or diagonal ones [25]. The
EBR or EBROG approach was used to build reinforced concrete (RC) beams and strengthen
them against shear loads in a 2013 study by Mostofinejad and Tabatabaei Kashani [22].
Because FRP strips were affixed to vertical grooves on the lateral edges of the beams, the
failure mode shifted from shear to flexural, and the load capacity of the beam increased
as a result. In a follow-up study, Mostofinejad and Moghaddas (2014) [23] contrasted
the EBR and EBROG methods for flexural reinforcement of specimens of RC beams with
different internal steel ratios. The findings showed that under various flexural failure
modes, EBROG specimens showed greater maximum load capacity and ductility. In
order to ascertain the optimal length and location for longitudinal grooves on the tensile
side of RC beams, Mostofinejad and Khozaei [26] experimented with several layouts in
2015. Additionally, utilizing particle image velocimetry (PIV) and the single lap-shear
test, research has investigated FRP bond strength, effective bond length, and bond-slip
curves [27–29]. In a study employing non-reinforced masonry structures in 2014, Hosseini
et al. [24] discovered that the EBROG technique was more effective than the EBR technique
at improved external strengthening by utilizing the tensile capacity of CFRP composites.

Worksheets, curve-fitting methods, and a small collection of test results were used to
create the current bond strength formulae [16]. As a result, it was difficult for researchers to
take into consideration all possible linkages and combinations of components, which made
it difficult to create an exact equation. One of the first structural engineering applications
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of ML was carried out by Adeli and Yeh in 1989 using artificial neural network (ANN) to
design steel beams [30]. Because machine learning models work well in speech recognition,
image recognition, and language processing, they are quickly spreading to other technical
domains [31]. In the next two decades, unanticipated and revolutionary effects on the
entire field of designing and analyzing composite materials and structures can be expected
due to the convergence of unprecedented data growth from experiments and simulations,
increasing computing power, and developing advanced algorithms [31].

Artificial Neural Networks (ANN) have been the most widely used machine learning
model in recent years. Based on experimental data, these ANN models are frequently
used to explain events in complicated systems when a thorough physical knowledge is
unavailable [32]. ANN has found use in a variety of engineering challenges, in contrast
to traditional methods based on continuum mechanics. This pattern has been used in
the design of steel constructions and for one-dimensional stress states in tension tests of
metal specimens at elevated temperatures [33,34]. In [35–39], ANNs have been used to
characterize the vibrations of structures, stability problems in structures, reliability studies
of structures, and the effect of welding on material characteristics. Furthermore, an ANN
was suggested for steel pressure vessel embrittlement, specifically with reference to nuclear
reactors [40]. In [41], multiscale issues were discussed. ANNs have the advantage of
being able to completely replace mechanical models and drastically reduce computing time.
It is not necessary to specify material properties because they can be taught exclusively
on experimental data [42]. As a result, a mathematical model based on neural networks
is created that can approximate any given function [43]. This method approximates the
intended output data by refining all parameters, including weights and biases, using a
supervised learning algorithm [44]. User-provided examples and experiences direct the
ANN’s learning process [45].

There is still no formula to predict the bond strength between concrete and FRP
as a function of influencing factors, despite some experimental programs and analytical
models focusing on the factors influencing the bond strength between FRP sheets and
concrete surfaces when using EBROG. Furthermore, little study has been conducted on the
application of ANN equations to determine the bonding strength of FRP sheets adhered to
concrete using the EBROG approach.

Setting the standards for FRP’s use in structural composites is essential to determining
the bonding strength at the concrete-FRP interface. With the use of a sizable testing dataset,
this study attempts to present a unique mathematical formula and ANN model for evalu-
ating the binding strength of FRP sheets applied to concrete using the EBROG approach.
The main goal is to use curve-fitting and a general regression method in the MATLAB
program to determine the best form for a projected mathematical equation. Then, in order
to obtain the greatest fit, an ANN model is suggested and calibrated using the testing
dataset. Additionally, a thorough parametric study is carried out utilizing the projected
ANN equation in order to evaluate the impact of different factors on bond strength.

2. Dataset Development

Moghaddas et al. (2019) experimentally investigated the FRP-concrete bond strength
for ERBOG subjected to the single lap-shear test [3]. The image processing technique of
PIV was used to analyze the strain and stress fields on the FRP bond area. Table 1 exhibits
the characteristics of the 39 specimens prepared through the EBROG technique. Specimens’
specifications include groove’s width (bg) and depth (hg), FRP sheet width (bf) and tensile
stiffness per width (Eftf), and concrete compressive strength (fc). The precision of the
outcomes was guaranteed through the execution of a minimum of one additional iteration
for each test, resulting in a noticeable reduction in the variability of experimental results.
This enhancement in consistency significantly bolstered the robustness and confidence
level of the findings.
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Table 1. Specimen specifications and the experimental results [3].

bg (mm) hg (mm) Eftf (kN/mm) bf (mm) fc (MPa) P (kN)

5 5 12.92 40 37.88 6.91
5 5 12.92 50 27.09 7.87
5 5 12.92 60 32.7 10.15
5 5 25.3 30 39.07 7.15
5 5 25.3 40 22.68 9.4
5 5 25.3 60 28.09 11.85
5 5 39.1 30 26.69 8.56
5 5 39.1 50 32.7 14.75
5 5 78.2 30 39.07 11.44
5 5 78.2 40 22.68 16.1
5 10 12.92 40 22.68 7.37
5 10 12.92 60 26.67 9.51
5 10 25.3 30 26.69 7.2
5 10 25.3 30 48.15 7.59
5 10 39.1 30 39.07 9.32
5 10 39.1 40 22.68 10.95
5 10 39.1 60 32.7 16.64

10 10 12.92 40 22.68 7.68
10 10 12.92 50 48.24 8.51
10 10 12.92 60 45.35 9.1
10 10 25.3 40 37.88 9.69
10 10 25.3 60 47.9 12.67
10 10 39.1 30 39.07 8.72
10 10 39.1 40 22.68 10.96
10 10 39.1 40 47.9 10.42
10 10 39.1 50 36.46 14.45
10 10 39.1 60 26.67 15.31
10 10 78.2 30 26.69 12.93
10 10 78.2 30 48.15 11.49
10 10 78.2 50 47.9 16.71
10 10 78.2 60 48.24 19.05
10 15 12.92 40 37.88 7.43
10 15 12.92 60 36.94 10.12
10 15 12.92 60 45.35 9.12
10 15 25.3 50 27.09 11.01
10 15 39.1 50 27.09 12.66
10 15 39.1 60 45.35 14.94
10 15 78.2 40 37.88 16.71
10 15 78.2 60 28.09 20.01

The statistical details of these characteristics and the bond strengths obtained from the
strain and stress profiles for all the EBROG are given in Table 2.

Table 2. Dataset information of bond strength of FRP sheets applied on concrete via EBROG technique.

bg (mm) hg (mm) Eftf (kN/mm) bf (mm) fc (MPa) P (kN)

Lowest 5 5 12.92 30 22.68 6.91
Highest 10 15 78.2 60 48.24 20.01
Mean 7.89 9.87 37.54 45.79 34.76 11.46

St. deviation 2.51 3.43 23.57 11.65 9.14 3.54
Coef. of
variance 0.32 0.35 0.63 0.25 0.26 0.31

3. Projected Mathematical Equation

In the scientific literature, some equations have been developed to estimate the effective
bond length for externally bonded reinforcement on grooves, but there is no proposed
mathematical equation to predict the bond strength. One of the objectives of this paper is



J. Compos. Sci. 2024, 8, 30 5 of 16

to develop an accurate equation that can be used to predict the bond strength for externally
bonded reinforcement on grooves.

In our research, data from reference [3] have been used and curve-fitting on the data
has been performed. The general form of the formula is taken similar to the equation
proposed by Moghaddas et al. (2019) [3], for the effective bond length of FRP sheets
bonded on concrete, through the EBROG technique, which depicted the highest precision
as compared with the other equations suggested by other researchers [46–49].

The overall organization of the currently forecasted equation for the bond strength for
the FRP sheet is shown in Equation (1).

P = α
(

E f t f

)β1(
f ′c
)β2 exp

(
γ1hg + γ2bg + γ3b f

)
(1)

MATLAB’s curve fitting method was employed to acquire the best fit to the testing
dataset, yielding counts for the constants α, β1, β2, γ1, γ2 and γ3 of 1.57, 0.41, −0.08, 0.002,
0.002 and 0.017, correspondingly. Consequently, below is the equation predicting the bond
strength of FRP sheets applied on concrete, through the EBROG technique.

P = 1.57
(

E f t f

)0.41(
f ′c
)−0.08exp

(
0.002

(
hg + bg

)
+ 0.017b f

)
(2)

The forecasted equation for the bond strength was evaluated employing the dataset
presented in Table 1. The factor of determination (R2) and the root mean square error
(RMSE) which are provided by Equations (3) and (4), the most significant statistical mea-
sures and the most suited to account for testing data, were utilized in this comparative
investigation.

R2 =
n(∑n

i=1 xiyi)− (∑n
i=1 xi)(∑n

i=1 yi)[
n∑n

i=1 x2
i − (∑n

i=1 xi)
2
][

n∑n
i=1 y2

i − (∑n
i=1 yi)

2
] (3)

RMSE =

√
1
n∑n

i=1(xi − yi)
2 (4)

Here n indicates the number of tested elements, xi is the target secured from ex-
periments and yi is the value given by the mathematical equation. Figure 1 shows the
assessment of the mathematical equation.

Figure 1 shows that the forecasted equation given by Equation (2) performed well
and it is observed that the projected equation depicted high precision with R2 = 0.954 and
RMSE = 0.0641 as compared with experimental results. The accuracy of the developed
equation can be seen through the absolute error value for each individual measurement,
which is obtained in the majority of experimental results within 10%.

Figure 2 plots the distribution of the bond strength of FRP sheets bonded on con-
crete through the EBROG method both experimentally measured and predicted using the
proposed mathematical equation.

In Figure 2, the distribution of the bond strength, both experimentally measured
and predicted, is shown. Figure 2 clearly shows that eleven values of the measured bond
strengths are between 6 and 9 kN. On the other hand, the suggested equation predicted nine
values within this range. In the interval 9–12 kN, there were 15 testing and 16 predicted
values; in the 12–15 kN limit, there were 6 testing and 8 predicted values; in the 15–18 kN
limit, there were 5 testing and 4 predicted values. Finally, the experimentation and the
proposed equation give the same number of values in the range 18–21 kN; there were two
testing and two forecasted values. These quantities further demonstrate that the projected
model precisely captured the bond strength of FRP sheets applied to concrete through the
EBROG technique.
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4. Artificial Neural Networks

ANNs have the ability to compress, simplify, categorize, and imagine the counts of
many complicated factors. They consist of a number of layers, each of which contains a
cluster of integrated “neurons”. All neurons are connected by a link that has a certain
weight. The counts provided by the neurons are multiplied by these particular weights.
Links are taken to transmitting the outcomes of the previous phase, adding bias [50]. This
resulting total serves as the input to an activation function that displays the connection
between the several levels as defined by Equation (5).

Output = f
{
∑ wixi + b

}
(5)

Here, wi represents the constants of weight, xi represents the counts provided as input,
and b represents the bias quantity. Neurons in the below-given layer obtain counts from
the activation function as input. The bond strength is forecasted by employing ANNs
throughout the current experiment. In ANNs, features of the material and geometry of FRP
sheets and the grooves are always transported in an input layer (IL). In the present investi-
gation, five factors are defined as the inputs to ANN equations such as the groove’s width
and depth, FRP sheet width, the tensile stiffness per width, and the concrete compressive
strength. As more relationships are carried across the data to connect the provided factors
to one another and to the output factors, the counts from the IL progress to the hidden
layer (HL). The construction of the neural networks in ANNs determines how many HLs
are taken to process input [50]. The output, the bond strength, is the last one. The specified
activation function has a considerable impact on the output efficacy and functionality of the
ANNs model. From the left to the right side of the ANN structure, the signals generated by
the diverse IL neurons are handled before being sent to the OL on the right side of ANN
assemblies [51]. The IL, hidden, and OL of the ANN equations were taken to analyze the
testing data of FRP sheets/concrete bond strength. Sigmoid functions were taken as the
predetermined activation functions. In order to correct randomly chosen counts provided
to weights at the beginning, the key goal of this repeating procedure is to confidently match
the outcomes with the final counts in order to attain the highest level of output precision
minimizing output error in the form of the factor of determination (R2) and the root mean
square error (RMSE).

4.1. Normalization of Dataset

The accuracy and simplicity of the expected ANN model are also significantly influ-
enced by the normalization procedure. Because diverse factors have diverse units, the
normalizing approach enables their transformation to unitless factors. To prevent the issues
caused by the poor learning scopes of ANN at the highest and lowest counts, the supplied
counts of the factors should be controlled between the appropriate ultimate value of the
factors (LeCun et al., 2012) [52]. All of the factors related to the bond strength between FRP
sheets and concrete are between 0 and 1, as shown in Table 3.

Table 3. Equations for the normalized quantities.

Quantities Normalized Quantities

Groove width : bg bgnorm =
bg−bgmin

bgmax−bg min

Groove thickness : hg hgnorm =
hg−hgmin

hgmax−hgmin

Product of thickness and elasticity modulus of FRP sheets : E f t f E f t f norm =
E f t f −E f t f min

E f t f max−E f t f min

Width of FRP sheets : b f b f norm =
b f −b f min

b f max−b f min

Compression stress of concrete: f ′c f ′cnorm =
f ′c− f ′c min

f ′c max− f ′c min
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The constructed dataset is split into two separate sets, with 70% of the dataset taken to
train the ANN model and 30% of the dataset taken to validate and test it.

4.2. Structure of ANN Model

In the structure of the ANN model, the kind of activation function, the number of
neurons in each layer, and the number of internal layers have a significant impact on
estimation correctness. This kind of problem determines the ANN’s design, which is then
refined through a process of trial and error. The number of neurons and HL is significantly
determined by the issue type, input data, and existing dataset. In this research, a MATLAB
code is developed to fix the internal and hyperparameters of the ANN model. The code
allows the investigation of the effect of the number of layers and neurons on the factor
of determination (R2) and the root mean square error (RMSE). The Selected ANN model
corresponds to the maximum R2.

Figure 3 compares the estimates of RMSE for the training and the validation sets
over several ANN trials over the dataset. One can conclude that the model is underfitted
for a smaller number of neurons and overfitted for a large number of neurons. Figure 3
shows that the minimum value of the RMSE for both the training and the validation sets
corresponds to four neurons in the first layer.
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The assessment of the ANN model for one hidden layer with four neurons in the
absence of the second layer is shown in Figure 4. This figure indicates that the model
predictions are too close to experiment values. The optimal value of RMSE (0.0452) and R2

(0.965) corresponding to the whole set was obtained.
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The assessment of the ANN model with four neurons in the first hidden layer and
five neurons in the second layer is shown in Figure 6. This figure indicates that this
model delivers more accurate results compared to the ANN model with just one layer and
compared the proposed mathematical equation obtained using MATLAB’s curve fitting
procedure. When there were four neurons in the first HL and five neurons in the second
HL, respectively, the optimal value of RMSE (0.0169) and R2 (0.972) corresponding to the
whole set was reached.
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As a result, the assembly of the ANN model recommended in this study to calculate
the bond strength of FRP sheets bonded to concrete is plotted in Figure 7.

4.3. Performance of ANN Model

Overfitting and Underfitting are the two main problems that occur in machine learning
and degrade the performance of the models. Overfitting can happen whether because
the model is too complex which memorizes very subtle patterns in the training data
and does not generalize well or when the training data size is too small for the model
complexity. Underfitting is faced when the model does not align well with the training
data or generalize well to new data.

The performance of the developed model is evaluated with training dataset, validation
dataset and testing dataset. Figure 8 shows that the error reduces after more epochs of
training, but starts to increase on the validation dataset as the network starts overfitting the
training data. The training stops after six consecutive increases in validation error, and the
best performance is taken from the epoch with the lowest validation error. It is noted from
Figure 8 that the mean square error for the training, validation and testing of datasets is
very low; hence, the good performance of the proposed model is justified.
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5. Statistical Comparison

The testing outcomes employing the selected ANN model and the mathematical equa-
tion of the bond strength of FRP sheets bonded to concrete are shown in Tables 4 and 5,
respectively, along with the outcomes of the statical Analysis of Variance (ANOVA). Anal-
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ysis Of Variance, written as ANOVA for short, is a statistical technique that compares
sample populations based on their means and spread of the data. The model helps to
answer the question of whether the means of two or more groups are significantly different.
When analyzing the results of the one-way ANOVA test, two measures are used to make
conclusions; the p-value and the comparison of F-test to F-critical value. The vital result of
the model is the p-value, which only has meaning for the null hypothesis, stating all sample
means are not significantly different (all groups have the same mean). In layman terms, the
p-value can be interpreted as the level of confidence we have that the null hypothesis is a
plausible model for the data.

Table 4. ANOVA outcomes for ANN estimates for the bond strength.

Groups Count Sum Average

Testing capacity (kN) 39 438.77 11.250
mathematical equation

Capacity (kN) 39 442.45 11.345

Source of Variation Sum of squares
(SS)

Degrees of
freedom (df)

Mean squares
(MS) F p-value Fcri

Between groups 0.17 1 0.17 0.0142 0.905 3.967
Within Groups 930.49 76 12.24

Total 930.66 77

Table 5. ANOVA outcomes for mathematical equation estimates for the bond strength.

Groups Count Sum Average

Testing capacity (kN) 39 442.45 11.34
ANN model (kN) 39 441.79 11.33

Source of Variation Sum of squares
(SS)

Degrees of
freedom (df)

Mean squares
(MS) F p-value Fcri

Between groups 0.0056 1 0.0056 0.0005 0.983 3.967
Within Groups 870.9646 76 11.4601

Total 870.9701 77

For both ANN and mathematical estimations, the F-value is much lower than Fcrit.
ANN estimations showed a correctness probability of 98.3%, whilst mathematical estimates
showed a correctness probability of 90.5%. As a result, it can be said that the suggested
ANN and mathematical equations successfully prophesized the bond strength.

6. Parametric Study Employing ANN Equation

The bond strength of FRP sheets bonded on concrete via the ERBOG technique was
predicted employing the expected ANN model during the parametric study. The groove’s
width and depth, the tensile stiffness per width, the FRP sheet width, and the concrete
compressive strength are the five factors employed in this parametric analysis. The specifics
of these factors are shown in Table 6, when the effects of each factor were investigated
while keeping the other factors constant.

The evolution of the bond strength as a function of the Groove’s width is given in
Figure 9a. It was discovered that the evolution of the bond strength of FRP sheets bonded
on concrete via EBROG technique as a function of the Groove’s width is not monotonous
from 5 to 10 mm. Beyond 10 mm the bond strength decreases when the Groove’s width
increases. The bond strength decreased by a factor of 1.32 when the Groove’s width raised
from 10 to 15 mm.
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Table 6. Factors employed for the parametric study.

Parameter Constant Value Investigated Counts

Groove’s width (mm) 7.89
5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10,
10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14,

14.5, 15

Groove’s depth (mm) 9.87

5, 5.25, 5.5, 5.75, 6, 6.25, 6.5, 6.75, 7,
7.25, 7.5, 7.75, 8, 8.25, 8.5, 8.75, 9,

9.25, 9.5, 9.75, 10, 10.25, 10.5, 10.75,
11, 11.25, 11.5, 11.75, 12, 12.25, 12.5,

12.75, 13, 13.25, 13.5, 13.75, 14, 14.25,
14.5, 14.75, 15, 15.25, 15.5, 15.75, 16,

16.25, 16.5, 16.75, 17, 17.25, 17.5,
17.75, 18, 18.25, 18.5, 18.75, 19, 19.25,

19.5, 19.75, 20
Tensile stiffness per width

(kN/mm) 37.54 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65,
70, 75, 80, 85, 90, 95, 100

FRP sheet width(mm) 45.79
20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42,

44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64,
66, 68, 70

Concrete compressive
strength (MPa) 34.76 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47,

50, 52, 55, 57, 60
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Figure 9b depicts the influence of the Groove’s depth on the bond strength. It was
noted that the bond strength increases for Groove’s depth in the interval [5 7.5] and
decreases for a given value superior to 7.5 mm. The bond strength can reach 13.2 kN for
Groove’s depth equal to 7.5 mm then climbs to 11.5 for Groove’s depth equal to 20 mm.

Figure 9c–e show, respectively, the variation of the bond strength as a function of the
tensile stiffness per width, FRP sheet width, and the concrete compressive strength. It is
observed from these figures that the tensile stiffness per width, the FRP sheet width, and
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the concrete compressive strength have the same effect on the bond strength. This latter
grew when these factors were raised. The bond strength of FRP sheets applied on concrete
is improved by 2.6 kN when the concrete compressive strength is raised by 40 MPa. It was
also seen that the bond strength rose by 72 percent when the tensile stiffness per width was
augmented from 10 to 100 mm. The bond strength of the FRP sheet bonded to concrete
improved by 200 percent when the FRP sheet width was raised from 20 to 70 mm.

7. Conclusions

The bond strength of FRP sheets bonded on concrete through EBROG was predicted
by a mathematical equation using the MATLAB curve fitting method and by the ANN
model. The suggested mathematical equation delivered good predictions compared to
experimental results with RMSE = 0.0641, R2 = 0.954. The ANN model, which included
four neurons in each of the first layers and five neurons in the remaining layer, closely
matched the outcomes of the experiment with RMSE = 0.0169, R2 = 0.972. The validity
of the presented Models was also strongly supported by one-way ANOVA statistical
outcomes. This work shows that while even the regression method gives good predictions,
an ANN model can be developed to increase the prediction accuracy even further. The
parametric analysis employing the ANN model demonstrated that there is a considerable
rise in the bond strength as the tensile stiffness per width, FRP sheet width and the concrete
compressive strength are augmented. The evolution of the bond strength of FRP sheets
applied on concrete via the EBROG technique as a function of the Groove’s width and depth
is not monotonous. The current work helps structural engineers by providing information
for the design of FRP sheets applied to concrete via the EBROG technique.
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