
Citation: Hlinenko, L.; Fast, V.;

Yakovenko, Y.; Trach, R.; Wierzbicki,

T.; Szymanek, S.; Leśniewska, A.;

Daynovskyy, Y.; Rys, V.; Koda, E.

Solving Some Graph Problems in

Composite 3D Printing Using

Spreadsheet Modeling. J. Compos. Sci.

2023, 7, 299. https://doi.org/

10.3390/jcs7070299

Academic Editor: Francesco

Tornabene

Received: 7 June 2023

Revised: 8 July 2023

Accepted: 19 July 2023

Published: 20 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Solving Some Graph Problems in Composite 3D Printing Using
Spreadsheet Modeling
Larysa Hlinenko 1, Volodymyr Fast 1, Yevheniia Yakovenko 1, Roman Trach 2 , Tomasz Wierzbicki 2 ,
Sylwia Szymanek 2, Aleksandra Leśniewska 2, Yuriy Daynovskyy 3, Vasyl Rys 4 and Eugeniusz Koda 2,*

1 Department of Electronics and Information Technology, Lviv Polytechnic National University,
79000 Lviv, Ukraine; larysa.k.hlinenko@lpnu.ua (L.H.); volodymyr.m.fast@lpnu.ua (V.F.);
yevheniia.i.yakovenko@lpnu.ua (Y.Y.)

2 Institute of Civil Engineering, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland;
roman_trach@sggw.edu.pl (R.T.); tomasz_wierzbicki@sggw.edu.pl (T.W.);
sylwia_szymanek@sggw.edu.pl (S.S.); aleksandra_lesniewska@sggw.edu.pl (A.L.)

3 Department of Marketing, Lviv University of Trade and Economics, 79005 Lviv, Ukraine; yddd@ukr.net
4 Department of Operation and Technical Service of Machines, Lviv National University of Nature

Management, 80831 Dubliany, Ukraine; rysvi@lnup.edu.ua
* Correspondence: eugeniusz_koda@sggw.edu.pl

Abstract: The use of composite materials in additive manufacturing has significant potential and
prospects for development. However, the 3D printing of composite materials also has some challenges,
such as tool path planning and optimization, material distribution and planning, optimization of
printing parameters, and others. Graph theory may be suitable for solving some of them. Many
practical problems can be modeled as problems of identifying subsets of graph vertices or edges
with certain extremal properties. Such problems belong to the category of graph extremal problems.
Some of these problems can be represented as integer linear programming problems, for which, in
order to solve, modifications of simplex method can be used. These methods are supported by MS
Excel Solver add-in, which suggests the possibility of solving these problems effectively with its help.
The task of implementing procedures for solving such problems by means of standard engineering
software seems to be possible. This paper aims to develop efficient spreadsheet models of some
extremal problems for graphs of higher strength in order to prove the feasibility and to unify the
procedures of solving such problems via the MS Excel Solver add-in. Several spreadsheet models
based on the graph representation by its expanded incidence matrix, while specifying a vector of
unknowns as the vector of binary variables associated with vertices or edges of the sought parts of
the graph, have been developed and proven to be efficient for solving such problems by simplex
method via the MS Excel Solver add-in.

Keywords: problems on graphs; minimum vertex/edge cover; maximum inner independent vertex set;
composite materials; 3D printing

1. Introduction

Today, the use of polymer materials in 3D printing technology (additive manufac-
turing) has significant potential for development. Three-dimensional (3D) printing is a
process of creating three-dimensional objects by adding layers of material on top of each
other and using composite materials leads to enhanced mechanical, thermal, or electrical
properties [1]. Additive manufacturing with composite materials offers several advantages
over traditional single-material printing. Composite materials offer the ability to engineer
specific material properties by selecting appropriate combinations of matrix materials and
reinforcements [2]. This allows for tailoring strength, stiffness, other mechanical properties,
conductivity, electrical conductivity, chemical resistance, and more to meet the application

J. Compos. Sci. 2023, 7, 299. https://doi.org/10.3390/jcs7070299 https://www.mdpi.com/journal/jcs

https://doi.org/10.3390/jcs7070299
https://doi.org/10.3390/jcs7070299
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcs
https://www.mdpi.com
https://orcid.org/0000-0001-6654-9870
https://orcid.org/0000-0002-4310-8789
https://orcid.org/0000-0002-3895-960X
https://doi.org/10.3390/jcs7070299
https://www.mdpi.com/journal/jcs
https://www.mdpi.com/article/10.3390/jcs7070299?type=check_update&version=1


J. Compos. Sci. 2023, 7, 299 2 of 21

requirements. In addition, 3D printing allows for the use of various types of matrix ma-
terials and reinforcements, such as thermoplastics, thermosets, carbon fibers, glass fibers,
metal particles, and more. This allows for complex geometries and intricate designs, opti-
mizing designs, and reducing weight while maintaining mechanical integrity. However, it
is worth noting that the 3D printing of composite materials also poses some challenges [3].
Some of them, for instance toolpath planning and optimization, material allocation and
scheduling, optimizing printing parameters, can be solved using graph theory. Similar
problems occur in the development of interconnection topology in 3D MID technology
(Three-Dimensional Molded Interconnect Devices) of injection-molded thermoplastic cir-
cuit carriers with in-built conductive traces and pads which can be regarded as a kind of
3D PCB [4].

Graph algorithms, such as shortest path algorithms, can be used to plan and optimize
the toolpath for 3D printing [5,6]. The toolpath is the sequence of movements that the 3D
printer’s nozzle or laser follows to create the object. By modeling the printing environment
as a graph, with nodes representing printable locations and edges representing feasible
movements, algorithms can find efficient toolpaths that minimize travel time, reduce the
number of retractions or tool head movements, and optimize the overall printing process.
Graph theory can assist in optimizing material allocation and scheduling in multi-material
or multi-object printing scenarios [7]. By representing the objects or materials as nodes and
their dependencies or constraints as edges, graph algorithms can find optimal allocation
strategies, minimize material changes or swaps, and schedule the printing process to
minimize downtime and maximize efficiency.

These problems mostly refer to the category of NP problems, whose solution algo-
rithms are mainly based on forms of variant search. Computer support of this process is
implemented by specialized, expensive application software packages. The methodological
basis for solving such problems is created by graph theory. Graph theory is a mathematical
field that deals with the study of graphs, which are mathematical structures used to model
relationships between objects. Graph theory has applications in many different fields,
including computer science, research of operations in complex systems, physics, biology,
social sciences, and many others.

Computer graph algorithms are used in many applications such as routing and
scheduling problems, recommendation systems, social networks, and data mining [8].
In physics, graphs are used to model the behavior of physical systems such as molecules,
crystals, and networks [9,10]. Graph theory is used in biology to model and analyze bi-
ological networks such as gene regulatory networks, protein interaction networks, food
webs, in the study of epidemiology, and the spread of infectious diseases [11]. In social
sciences, graphs are used to study social networks and social structures and determine
the level of influence of subjects in these networks [12]. Graph theory is also actively used
in operations research of complex systems to model and solve problems such as network
optimization, transportation planning, and facility location [13–15]. Graph algorithms can
then be used to find the optimal allocation of resources that maximize effectiveness of the
system. It is necessary, though, to separate the optimization problems [16,17]. Graph theory
is used to model such networks and to find optimal paths or routes that minimize cost,
time, or other factors. By using graph theory algorithms and techniques, it is possible to
find optimal solutions to a wide range of telecommunication or computer network design
and optimization problems [18–20].

The most common extremal problems on graphs of wide practical application are the
problems of finding minimum vertex and edge covers, minimum dominant and maximum
independent sets of vertices and edges, maximum clique, critical path, minimal spanning
tree, and minimum Hamiltonian cycle of a graph. Such problems belong to the category
of graph extremal problems. Some of these problems can be represented as integer linear
programming problems, the solving of which can be achieved with modifications of the
simplex method.



J. Compos. Sci. 2023, 7, 299 3 of 21

The simplex method is a widely used algorithm for solving linear programming
problems that is used to find the optimality solution to a system of linear equations, subject
to constraints in the form of linear inequalities [21]. The simplex method works by starting
at a feasible solution and iteratively improving the solution until the optimal one is reached.
This method is used in a wide range of applications, including production planning,
resource allocation, financial modeling, and transportation planning. The algorithm has
been extended and modified over time to handle more complex problems, such as mixed-
integer programming and nonlinear programming [22].

Variants of modeling and solving some of these problems by MS Excel Solver are
proposed in [23,24]. The mathematical formulation of extremal problems as Boolean linear
programming problems in [23,25,26] are given individually for every graph configuration,
which does not allow unifying the procedures of creating and solving a spreadsheet model.
Moreover, some models include redundant constraints, e.g., a constraint on the number
of edges/vertices in minimal edge/vertex covers, which makes sense if the edge cover
is supposed to be the graph spanning tree. The authors of [23,27] propose modeling the
problems on finding the smallest set covering and packing, the smallest dominant set of
vertices, the shortest path on a graph, and the minimum Hamiltonian cycle as integer linear
programming problems when using analytical representation of a graph by its adjacency
matrix. Thus, a matrix of unknowns with the dimension of the graph adjacency matrix is
used to find the required subset of vertices, thereby limiting the use of the method to graphs
with the number of vertices N ≤ (N0)1/2, where N0 is the Solver limit for the number of
integer variables, which in non-professional versions does not exceed 100, so the vertex set
power for the studied graph is limited to 10. In [28], the graph is represented by reduced
adjacency matrix with dimension (N−1), which makes it possible to slightly extend the
modeled graph range and to propose modeling and solution of minimal path and minimal
spanning tree problems. In [24], a Solver-oriented spreadsheet model of the graph, the
critical path problem is based on specifying the graph structure by an extended incidence
matrix (i.e., matrix containing also a basic node) with using the matrix of unknowns of the
same dimension as the extended incidence matrix, thus limiting the method application to
graphs with N ×M ≤ N0, where N and M are the powers of the graph vertex and edge
sets, respectively. N0 is the Solver limit for integer variables.

Thus, the task of implementing procedures for solving such problems by means of
standard engineering software seems to be actual. This paper aims to develop efficient
spreadsheet models of some extremal problems for graphs of higher strength in order to
prove the feasibility and unify the procedures of solving such problems via the MS Excel
Solver add-in.

The basic novelty of the work consists in finding the way to represent a number of
combinatorial problems on graphs as binary linear programming problems in Microsoft
Excel. The very idea of solving some of the considered problems on graphs not by using
algorithms common for each type of problem but as binary linear programming prob-
lems belongs to S. P. Ighlin [19]. However, the presenting the proposed BLP models as
spreadsheet models appears to be too cumbersome, which makes it difficult to use the
Microsoft Excel Solver add-in for solving these problems. At the same time, the version
of spreadsheet models developed by the authors is the most compact one and does not
require additional built-in functions for matrix transformation, thus making it affordable
for common users. An additional result of this research is also the extension of the types of
problems that can be solved directly by MS Excel Solver by the simplex method, including
extreme graph problems, previously considered beyond the scope of MS Excel (please see
the Supplementary Materials).

The area of application of the proposed models extends far beyond 3D printing. The
urgency of such solutions became even more acute in Ukraine during the armed hostilities,
when many small- and medium-sized enterprises were forced to relocate their business. The
usual logistics chains were destroyed, and the identification and optimization of new ones
had to be carried out as quickly as possible without the involvement of additional funds



J. Compos. Sci. 2023, 7, 299 4 of 21

or personnel, using the most common software, primarily the Microsoft Office package.
The developed problem models allow these tasks to be solved with very few staff skills.
It should also be noted that many of the optimal target hitting problems also come down
to the tasks discussed above. These problems are to be solved in combat situations by
mid-level military personnel using, among others, smartphones, which precludes the use
of special software.

2. Methods
2.1. Extremal Graph Problems under Study: Definition and Relationship

Minimum vertex and edge cover problems. A vertex and an edge of a graph G(V,U)
cover each other if they are incident to each other. Therefore, edge uij ⊂ {vi, vj} covers
vertices vi and vj, and each of these vertices covers edge uij [25,29].

Definition 1. A subset of vertices V* ⊂ V is called a vertex cover of graph G(U,V) if each
edge uij of U is incident to at least one vertex of V. A cover of graph G is called minimum
vertex cover (MVC) if the number of vertices in it is the smallest one among all the covers
of graph G. The number of vertices in the smallest cover of graph G is called vertex cover
number of graph G and is denoted β(G).

Definition 2. An edge cover of a graph G(V,U) is such a subset of its edges U* ⊆ U
that all vertices of V are incident to at least one edge of this subset U*. The edge cover
is called minimum line cover (MLC) or minimum edge cover (MEC) if it contains the
smallest possible number of edges to cover all vertices [26,30]. The problems of finding
minimum vertex and edge cover in a graph are called the minimum vertex and edge
cover problems, respectively, and are NP-complete [25]. The problems are modeled as
optimization problems on graphs; for each of these problems, specific solution algorithms
were developed, providing for particular software implementation [31–33]: Maximum
inner independent vertex set, maximum independent edge set, and the maximum clique
problems. The concept of graph cover is closely related to the notion of internal independent
vertex set [34].

Definition 3. A set of vertices V′ ⊂ V is called independent (or internally stable) if no
vertices of this set are adjacent to each other. That is, for any ∀vi ∈ V′, ∀vj ∈ V′, no edge
uij ⊂ {vi, vj} exists. An independent set of the largest size is called the maximum one. The
cardinality of the maximum independent set of graph G is called the independence number
(internal stability number, non-density) and denoted by α(G).

The problem of finding the largest independent set in a graph is called the maximum
independent set problem and is NP-complete as well [35]. The relation between vertex
cover and vertex independent set of graphs is given by the following theorem: set Z of
vertices of graph G = (V, U) is the minimum cover of this graph if and only if Y = V\Z is
the maximum independent set. Thus, maximum independent vertex sets correspond to the
complements of minimum vertex covers and the independence number α(G), and vertex
cover number β(G) of a graph G are related by: α(G) + β(G)= |V|, where |V| is the vertex
number [32]. It means that all vertices of the graph, which do not belong to the minimum
cover, will form the maximum independent set, and vice versa, all vertices of the graph not
belonging to the maximum independent set form its minimum cover. Thus, the problems
about minimum cover and maximum independent set are dual; the solution of one of them
automatically gives the solution of the other one as well.

Definition 4. A subset of vertices V” ⊂ V of graph G = (V, U) is called a clique if any two
vertices of V” are adjacent, i.e., the stemmed subgraph G”(V”,U”) is a complete (strongly
connected) graph. A clique of largest strength is called a maximum one. The number of
vertices in the graph maximum clique is called density, or clique number, and is denoted



J. Compos. Sci. 2023, 7, 299 5 of 21

by ϕ(G). The complement graph of graph G is a graph G** with the same set of vertices
as G, any two vertices connected by an edge, only when they are not connected by an
edge in graph G. Therefore, a subset of graph G vertices forms a clique only when it is
independent in the complement graph G**. Hence ϕ(G) = α(G**). Therefore, to get the
maximum clique of graph G, we just have to construct the complement graph G** and find
the maximum independent set in it [36]. Thus, it can be stated that the solution of each of
the three above-described problems can be reduced to the solution of any one of them.

Definition 5. The set of edges of graph G = (V, U) is called an independent edge set
or a matching on G if no two edges in it have a common vertex. The size of matching
of maximum strength is called the matching number of G and is denoted by ν(G). The
maximum matching problem for a given graph is a problem of finding the matching set of
the largest strength [37]. Considering the above dependencies between different extreme
sets of vertices, at first, we set out to solve one of these problems—the minimum cover
problem, the solving of which would give the maximum independent set and the maximum
clique as well.

2.2. Extremal Graph Problems under Study: Spreadsheet Modeling

Suppose it is required to find the minimum vertex cover (MVC) of graph G(V,U)
(Figure 1). Graph G can be specified by the matrix A = {aik}, in which each row corresponds
to a vertex of the graph, and each column—to an edge of the graph [38,39]. This matrix
differs from the canonical incidence matrix by having rows representing all nodes, including
the base node. Hereafter, we refer to this matrix as the extended incidence matrix A.
Introducing a row representing the base node is redundant in terms of the analytical
representation of the graph, but greatly simplifies the formation of a spreadsheet model in
the media similar to Microsoft Excel. Matrix A element aik takes value 1 if vertex vi covers
edge uk, (vi ∈ uk), and 0 otherwise. Then, finding minimum vertex cover in a graph G is
equivalent to finding its part G*(V*), V* ⊂ V, whose matrix A* has the least number of rows
covering all columns of this matrix by values of 1. Then, the model of this problem takes
the form:

∀i, ∀k, k = 1, T, i = 1, N
N
∑

i=1
xik ≥ 1 (1)

∀i, ∀k, k = 1, T, i = 1, N xik = 0∨ 1 (2)

∀i, ∀k, k = 1, T, i = 1, N xik ≤ aik (3)

F =
N

∑
i=1

(
ni

∣∣∣∣∣ T

∑
k=1

xik ≥ 1

)∣∣∣∣∣→ min (4)

where xik is a value of the element of the unknowns matrix A* at the intersection of the
i-th row (corresponding to i-th vertex) and k-th column (corresponding to k-th edge); T is
cardinality of the edge set U of the graph G; N is cardinality of the vertex set V of the graph
G; ni is a row corresponding to i-th vertex covering at least one graph edge (∑T

K=1 xik > 0);
F—number of vertices of the required subgraph with degree not less than 1, i.e., the number
of rows in the matrix of unknowns for which ∑T

K=1 xik ≥ 1.
The target function F can be calculated in Microsoft Excel using the built-in COUNTIF

function, which returns the number of matrix rows meeting a certain condition. The prob-
lem thus presented is reduced to a Boolean optimization problem with a discontinuous
objective function. Solving such problems is supported by Solver add-in Microsoft Excel
version 10 and higher, using evolutionary programming methods based on genetic algo-
rithms. Thus, to form a spreadsheet model of the problem in Microsoft Excel and to solve
it, it is necessary to form an extended incidence matrix of the original graph and a matrix
of unknowns of the same size and to input formulas reflecting (1–4) into the corresponding



J. Compos. Sci. 2023, 7, 299 6 of 21

cells of the Excel sheet. These are formulas for the sum (SUM) for each column of the matrix
of unknowns, to form the constraint (1) and for each row of the matrix of unknowns to form
the target function (4) argument and the final formula for the target function COUNTIF
with the parameters for the condition of sum across rows exceeding 0.5 (i.e., non-zero
values considering the precision of setting an integer value). Then, the problem model is
to be transferred into Solver by setting additional constraints of Booleanity of matrix of
unknowns (binarity constraint for cells of matrix of unknowns) and belonging of the graph
G* to the graph G, i.e., (xik ≤ aik). As a solving method, the evolutionary method should
be chosen.

J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 1. Graph G [32,40], developed by authors spreadsheet model of the MVC problem on it and 
results obtained by Solver evolutionary search. The cover vertex list is displayed on the right-hand 
side of the incidence matrix, through appropriate formulas and conditional formatting. 

The target function F can be calculated in Microsoft Excel using the built-in COUN-
TIF function, which returns the number of matrix rows meeting a certain condition. The 
problem thus presented is reduced to a Boolean optimization problem with a discontinu-
ous objective function. Solving such problems is supported by Solver add-in Microsoft 
Excel version 10 and higher, using evolutionary programming methods based on genetic 
algorithms. Thus, to form a spreadsheet model of the problem in Microsoft Excel and to 
solve it, it is necessary to form an extended incidence matrix of the original graph and a 
matrix of unknowns of the same size and to input formulas reflecting (1–4) into the corre-
sponding cells of the Excel sheet. These are formulas for the sum (SUM) for each column 
of the matrix of unknowns, to form the constraint (1) and for each row of the matrix of 
unknowns to form the target function (4) argument and the final formula for the target 
function COUNTIF with the parameters for the condition of sum across rows exceeding 
0.5 (i.e., non-zero values considering the precision of setting an integer value). Then, the 
problem model is to be transferred into Solver by setting additional constraints of Boole-
anity of matrix of unknowns (binarity constraint for cells of matrix of unknowns) and 
belonging of the graph G* to the graph G, i.e., (xik ≤ aik). As a solving method, the evolu-
tionary method should be chosen. 

The evolutionary programming method is based on genetic algorithms and due to 
the specificity of these algorithms, it can return different solutions even with the same 
initial conditions. Therefore, it is recommended to repeat the search procedure several 
times, increasing the convergence and changing the starting points. Each of the search 
procedures returns the vertex cover and gradually approaches (over 3–4 procedures) its 
minimum value. 

3. Results 
3.1. Minimum Vertex Cover Problem 

For the initial testing of the proposed method, graph G presented in [32,40,41] was 
chosen. Graph G and its spreadsheet model based on its extended incidence matrix are 
shown in Figure 1 and Tables 1 and 2. 

Table 1. MS Excel spreadsheet model of the MVC problem for graph G (Figure 1). 

Cells Formulas or Initial Values Model Component 

C3:H9 0 Matrix of unknowns. After performing the search procedure, filled rows of 
the matrix identify the vertices of MVC of graph G 

C14:H20 0∧1 The incidence matrix of the original graph G 

I3 SUM(C3:H3), extended to 
I4:I9 

Number of edges covered by a vertex included in the cover G* of graph G 

Figure 1. Graph G [32,40], developed by authors spreadsheet model of the MVC problem on it and
results obtained by Solver evolutionary search. The cover vertex list is displayed on the right-hand
side of the incidence matrix, through appropriate formulas and conditional formatting.

The evolutionary programming method is based on genetic algorithms and due to
the specificity of these algorithms, it can return different solutions even with the same
initial conditions. Therefore, it is recommended to repeat the search procedure several
times, increasing the convergence and changing the starting points. Each of the search
procedures returns the vertex cover and gradually approaches (over 3–4 procedures) its
minimum value.

3. Results
3.1. Minimum Vertex Cover Problem

For the initial testing of the proposed method, graph G presented in [32,40,41] was
chosen. Graph G and its spreadsheet model based on its extended incidence matrix are
shown in Figure 1 and Tables 1 and 2.

After transferring the problem model to the Solver dialog box and setting the con-
vergence parameter to 0.00001, we run the solution search procedure for minimizing the
objective function by evolutionary method for 10 times. For nine runs, we obtained values
of the objective function of 3, with MVC = {2, 3, 4}, which corresponds to the result obtained
in [40,41]. Once the search procedure returned a target cell value of 4 with MVC = {1, 2, 3, 4}.
After reducing the convergence to 0.0000001, the value of the objective function of 3 and
MVC = {2, 3, 4} was obtained. A similar result was obtained after changing the initial search
values. In all cases, a search time limit of 30 s was set, with actual search times ranging
from 4 to 15 s.

For smaller graphs [42,43], as one would expect, the search took less time. For the
graph in Figure 2, a similar problem model was built and similar constraints were set. The
result of solving the problem (Figure 2) was obtained 10 consecutive times with the search
time never exceeding 5 s.



J. Compos. Sci. 2023, 7, 299 7 of 21

Table 1. MS Excel spreadsheet model of the MVC problem for graph G (Figure 1).

Cells Formulas or Initial Values Model Component

C3:H9 0
Matrix of unknowns. After performing the search

procedure, filled rows of the matrix identify the vertices
of MVC of graph G

C14:H20 0∧1 The incidence matrix of the original graph G

I3 SUM(C3:H3), extended to I4:I9 Number of edges covered by a vertex included in the
cover G* of graph G

C10 SUM(C3:C9), extended to D10:H10 Number of MVC vertices covering each edge of graph G

C22 COUNTIF(I3:I9; “>0.5”)
Objective function: vertex cover number of graph G

β(G) (number of vertices in MVC), which is equal to the
number of non-zero cells in the range I3:I9

Table 2. MS Excel spreadsheet model of the constraints of the MVC problem for graph G (Figure 1).

Constraint Constraint Content

C3:H9=binary The Boolean character of variables in the matrix of unknowns

$C$3:$H$9<=$C$14:$H$20 Condition of belonging the MVC vertices to graph G (V* ⊂ V)

$C$10:$H$10>=1 The requirement of covering every edge of the graph G by at least one of the
vertices v ∈ V*

J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 7 of 21 
 

 

C10 SUM(C3:C9), extended to 
D10:H10 

Number of MVC vertices covering each edge of graph G 

C22 COUNTIF(I3:I9; “>0.5”) 
Objective function: vertex cover number of graph G β(G) (number of 

vertices in MVC), which is equal to the number of non-zero cells in the 
range I3:I9 

Table 2. MS Excel spreadsheet model of the constraints of the MVC problem for graph G (Figure 
1). 

Constraint Constraint Content 
C3:H9=binary The Boolean character of variables in the matrix of unknowns 

$C$3:$H$9<=$C$14:$H$20 Condition of belonging the MVC vertices to graph G (V* ⊂ V) 

$C$10:$H$10>=1 The requirement of covering every edge of the graph G by at least one of the 
vertices v ∈ V* 

After transferring the problem model to the Solver dialog box and setting the conver-
gence parameter to 0.00001, we run the solution search procedure for minimizing the ob-
jective function by evolutionary method for 10 times. For nine runs, we obtained values 
of the objective function of 3, with MVC = {2, 3, 4}, which corresponds to the result ob-
tained in [40,41]. Once the search procedure returned a target cell value of 4 with MVC = 
{1, 2, 3, 4}. After reducing the convergence to 0.0000001, the value of the objective function 
of 3 and MVC = {2, 3, 4} was obtained. A similar result was obtained after changing the 
initial search values. In all cases, a search time limit of 30 s was set, with actual search 
times ranging from 4 to 15 s. 

For smaller graphs [42,43], as one would expect, the search took less time. For the 
graph in Figure 2, a similar problem model was built and similar constraints were set. The 
result of solving the problem (Figure 2) was obtained 10 consecutive times with the search 
time never exceeding 5 s. 

 
Figure 2. Graph G1 [42], developed by authors spreadsheet model of the MVC problem on it and 
results obtained by Solver evolutionary search. 

To test the suitability of the method for graphs of higher strength, the method was 
tested on several graphs, one of which is shown in the figure below (Figure 3) together 
with a spreadsheet model of the MVC problem for this graph G2 on an Excel sheet and 
Solver model parameters. 

Figure 2. Graph G1 [42], developed by authors spreadsheet model of the MVC problem on it and
results obtained by Solver evolutionary search.

To test the suitability of the method for graphs of higher strength, the method was
tested on several graphs, one of which is shown in the figure below (Figure 3) together
with a spreadsheet model of the MVC problem for this graph G2 on an Excel sheet and
Solver model parameters.



J. Compos. Sci. 2023, 7, 299 8 of 21J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 8 of 21 
 

 

 
Figure 3. Spreadsheet model of solving the MVC problem for graph G2 by the evolutionary search 
method. 

Having set the convergence parameter to 0.00001, we implemented the procedure for 
minimizing the target function by evolutionary search 8 times, gradually increasing the 
convergence to 0.0000000001, with a change of the starting point in some cases (tests 2, 7, 
and 8). A search time limit of 30 s was set. The search did not last more than 25 s. The 
results of the computational experiment are given in Table 3. 

Table 3. Results of identifying the graph G2 MVC and the corresponding cover number by evolu-
tionary search in MS Excel Solver. 

Te
st

 Cover Number β(G) and MVC Composition (Vertices Involved in the MVC) 
1 2 3 4 5 6 7 8 

1 6 (2, 3, 6, 7, 9, 10) 6 (2, 6, 7, 8, 9, 10) 6 (2, 6, 7, 8, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 5 5 
2 7 (3, 4, 6, 7, 8, 9, 10) 6 (2, 6, 7, 8, 9, 10) 6 (2, 6, 7, 8, 9, 10) (2, 6, 7, 8, 9, 10) 5 (2, 6, 7, 9, 10) 5 5 5 
3 7 (3, 4, 6, 7, 8, 9, 10) 6 (2, 6, 7, 8, 9, 10) 6 (2, 6, 7, 8, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 5 5 
4 6 (2, 3, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 5 5 
5 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 5 5 
6 6 (2, 3, 6, 7, 9, 10) 6 (2, 3, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 5 5 
7 6 (2, 3, 6, 7, 9, 10) 6 (2, 3, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 5 5 
8 6 (2, 6, 7, 8, 9, 10) 6 (2, 6, 7, 8, 9, 10) 6 (2, 3, 6, 7, 9, 10) 6 (2, 6, 7, 8, 9, 10) 5 (2, 6, 7, 9, 10) 5 5 5 
9 6 (2, 6, 7, 8, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 5 5 

10 6 (2, 6, 7, 8, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 5 5 

As Table 3 shows, for all cases the graph MVC consisting of vertices {2, 6, 7, 9, 10} 
was obtained over several search procedures. It corresponds to the maximum inner inde-
pendent vertex set {1, 3, 4, 5, 8}, being the difference of the set of graph vertices V and the 
MVC V*. 

As computational experiments show, while the number of vertices and edges of a 
graph increases, it becomes more and more difficult to obtain a globally optimal solution 
to the MVC problem and the associated problem of determining the maximum independ-
ent set by the evolutionary search. The evolutionary search method was applied because 
of the discontinuous nature of the target function COUNTIF. In order to change the search 
method, an attempt was made to change the model of the problem, so that the COUNTIF 
function could be replaced by the SUM function. To do this, the items of the target function 

Figure 3. Spreadsheet model of solving the MVC problem for graph G2 by the evolutionary search
method.

Having set the convergence parameter to 0.00001, we implemented the procedure for
minimizing the target function by evolutionary search 8 times, gradually increasing the
convergence to 0.0000000001, with a change of the starting point in some cases (tests 2, 7,
and 8). A search time limit of 30 s was set. The search did not last more than 25 s. The
results of the computational experiment are given in Table 3.

Table 3. Results of identifying the graph G2 MVC and the corresponding cover number by evolution-
ary search in MS Excel Solver.

Te
st Cover Number β(G) and MVC Composition (Vertices Involved in the MVC)

1 2 3 4 5 6 7 8

1 6 (2, 3, 6, 7, 9, 10) 6 (2, 6, 7, 8, 9, 10) 6 (2, 6, 7, 8, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 5 5

2 7 (3, 4, 6, 7, 8, 9, 10) 6 (2, 6, 7, 8, 9, 10) 6 (2, 6, 7, 8, 9, 10) (2, 6, 7, 8, 9, 10) 5 (2, 6, 7, 9, 10) 5 5 5

3 7 (3, 4, 6, 7, 8, 9, 10) 6 (2, 6, 7, 8, 9, 10) 6 (2, 6, 7, 8, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 5 5

4 6 (2, 3, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 5 5

5 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 5 5

6 6 (2, 3, 6, 7, 9, 10) 6 (2, 3, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 5 5

7 6 (2, 3, 6, 7, 9, 10) 6 (2, 3, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 5 5

8 6 (2, 6, 7, 8, 9, 10) 6 (2, 6, 7, 8, 9, 10) 6 (2, 3, 6, 7, 9, 10) 6 (2, 6, 7, 8, 9, 10) 5 (2, 6, 7, 9, 10) 5 5 5

9 6 (2, 6, 7, 8, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 5 5

10 6 (2, 6, 7, 8, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 (2, 6, 7, 9, 10) 5 5 5

As Table 3 shows, for all cases the graph MVC consisting of vertices {2, 6, 7, 9, 10} was
obtained over several search procedures. It corresponds to the maximum inner independent
vertex set {1, 3, 4, 5, 8}, being the difference of the set of graph vertices V and the MVC V*.

As computational experiments show, while the number of vertices and edges of a
graph increases, it becomes more and more difficult to obtain a globally optimal solution to
the MVC problem and the associated problem of determining the maximum independent
set by the evolutionary search. The evolutionary search method was applied because of



J. Compos. Sci. 2023, 7, 299 9 of 21

the discontinuous nature of the target function COUNTIF. In order to change the search
method, an attempt was made to change the model of the problem, so that the COUNTIF
function could be replaced by the SUM function. To do this, the items of the target function
are to take only one of two values 0∨1, where 1 corresponds to the vertex included in
MVC (i.e., there are values other than 0 in the row corresponding to the vertex) and
0 otherwise. This can be achieved by introducing into the problem model a vector of
unknowns X = {xi}, i = 1, N, xi = 0∨ 1, whose N components will be associated with
the vertices of the graph, and take value 1 if the vertex is included in the MVC, and 0 in the
opposite case [30].

Then, using, as before, the extended incidence matrix A = {aik} to define the structure
of the initial graph, the constraint for covering all edges of the graph by the required set of
vertices forming MVC can be represented as:

N

∑
i=1

aikxi ≥ 1 (5)

for each edge, i.e., for each matrix A column, and the model of the problem under consider-
ation assumes the following form:

X = {xi}, i = 1, N, xi = 0∨ 1

∀k, k= 1, T
N
∑

i=1
aikxi ≥ 1

F = β(G) =
N
∑

i=1
xi → min

(6)

This is a model of a Boolean linear programming (BLP) problem [19]. The simplest
way to implement the constraint (5) is to use the built-in Excel function SUMPRODUCT
(array1, array2, . . . [arrayn]), which returns the sum of element-by-element products of
arrays of the same size. In this case, the spreadsheet model for finding the minimum vertex
cover of the graph G2 (Figure 3) will look as presented in Figure 4 and Tables 4 and 5.

J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 9 of 21 
 

 

are to take only one of two values 0∨1, where 1 corresponds to the vertex included in MVC 
(i.e., there are values other than 0 in the row corresponding to the vertex) and 0 otherwise. 
This can be achieved by introducing into the problem model a vector of unknowns X =x , i = 1, N, x = 0 ∨ 1, whose N components will be associated with the vertices of the 
graph, and take value 1 if the vertex is included in the MVC, and 0 in the opposite case 
[30].  

Then, using, as before, the extended incidence matrix A = {aik} to define the structure 
of the initial graph, the constraint for covering all edges of the graph by the required set 
of vertices forming MVC can be represented as:  

a x ≥ 1 (5)

for each edge, i.e., for each matrix A column, and the model of the problem under consid-
eration assumes the following form: X = x , i = 1, N, x = 0 ∨ 1 

∀k, k = 1, T a x ≥ 1 

F = β G = x → min 

(6)

This is a model of a Boolean linear programming (BLP) problem [19]. The simplest 
way to implement the constraint (5) is to use the built-in Excel function SUMPRODUCT 
(array1, array2, … [arrayn]), which returns the sum of element-by-element products of 
arrays of the same size. In this case, the spreadsheet model for finding the minimum ver-
tex cover of the graph G2 (Figure 3) will look as presented in Figure 4 and Tables 4 and 5.  

 
Figure 4. Spreadsheet model of solving the MVC problem for graph G2 (Figure 3) as a BLP problem 
by simplex method. 

Table 4. MS Excel spreadsheet model of the MVC problem for graph G2 (Figure 3) as a Boolean 
linear programming problem based on the model (6). 

Cells Formulas or Initial Values Model Component 

V6:V15 0 Vector of unknowns X = {xi}. After performing the solution search 
procedure xi take values 0 ∨ 1 

Е6:Т15 0∧1 The incidence matrix of the original graph G2 

E20 =SUMPRODUCT(E6:E15;$V6
:$V15), extended to F20:T20 

Number of vertices covering each edge of the graph, ∑ a x   

V17 SUM(V6:V15) 
Objective function: vertex cover number β(G) of graph G2 (number of 

vertices in MVC) F =  ∑ x → min, which equals the number of cells with 
value 1 in the range V6:V15, i.e., ones (xi = 1) in vector X 

Figure 4. Spreadsheet model of solving the MVC problem for graph G2 (Figure 3) as a BLP problem
by simplex method.

As can be seen from Table 4, all model functions are linear. Transferring the model
to the Solver dialog box and setting the optimization criterion to minimization, we chose
the simplex search method, taking into account linearity of the model. The solution
{2, 6, 7, 9, 10} is obtained almost instantly (Figure 4). This is one of the minimum vertex
covers. Using additional constraints on the inclusion of a certain vertex in a cover, we
obtain all variants of MVCs. In particular, if the vertex 9 (P27 = 1) is mandatory to be
included in the cover, we obtain the solution {2, 6, 7, 9, 10}, i.e., the graph has 2 minimum
vertex covers with number of cover of 5.



J. Compos. Sci. 2023, 7, 299 10 of 21

Table 4. MS Excel spreadsheet model of the MVC problem for graph G2 (Figure 3) as a Boolean linear
programming problem based on the model (6).

Cells Formulas or Initial Values Model Component

V6:V15 0 Vector of unknowns X = {xi}. After performing the solution search procedure
xi take values 0 ∨ 1

E6:T15 0∧1 The incidence matrix of the original graph G2

E20 =SUMPRODUCT(E6:E15;$V6:$V15),
extended to F20:T20 Number of vertices covering each edge of the graph, ∑N

i=1 aikxi

V17 SUM(V6:V15)
Objective function: vertex cover number β(G) of graph G2 (number of vertices
in MVC) F = ∑N

i=1 xi → min , which equals the number of cells with value 1
in the range V6:V15, i.e., ones (xi = 1) in vector X

Table 5. MS Excel spreadsheet model of the MVC problem constraints for graph G2 (Figure 3) based
on the model (6).

Constraint Constraint Content

V6:V15=binary The Boolean character of variables in the matrix of unknowns X, xi = 0∨ 1

$E$20:$T$20>=1 The requirement to cover every edge of graph G2 by at least one of the vertices v ∈ V*.

As seen from the comparison of Tables 2–5, this variant of problem representation
provides a significantly more efficient spreadsheet model suitable for solving by the simplex
method which guarantees obtaining globally optimal (minimum) value of coverage number
in any case, i.e., the minimum vertex cover. The number of variables in comparison to the
previous variant decreases by a factor T, which makes it possible to apply the method for
graphs of bigger strength up to 200, since for linear programming problems, the number
of Boolean variables in standard versions of Excel Solver cannot exceed 200. A gain
in model efficiency compared to [24,30] is achieved by eliminating the formation of the
transposed incidence matrix and matrix multiplication operation by taking advantage of
the SUMPRODUCT function.

3.2. Minimum Weighted Vertex Cover Problem

The problem differs from the previous one by proposing to minimize not the number
of covers, but its value under the assumption that each i-th vertex has a certain cost (weight)
ci. The model of this problem will differ from the previous one only in the objective
function F = ∑N

i=1 cixi, which necessitates the introducing into the spreadsheet model a
one-dimensional array containing the costs (weights) of the vertices ci, i = 1, N. After
placing this array in cells X6:X15, the objective function formula in cell X17 changes to
SUMPRODUCT(V6:V15; X6:X15). Other elements of the problem model remain correspond-
ing Tables 4 and 5. By transferring the problem model to the Solver parameter window, we
obtain the solution shown in Figure 5.

J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 10 of 21 
 

 

Table 5. MS Excel spreadsheet model of the MVC problem constraints for graph G2 (Figure 3) based 
on the model (6). 

Constraint Constraint Content 
V6:V15=binary The Boolean character of variables in the matrix of unknowns X, x = 0 ∨  1  
$Е$20:$Т$20>=1 The requirement to cover every edge of graph G2 by at least one of the vertices v ∈ V*. 

As can be seen from Table 4, all model functions are linear. Transferring the model 
to the Solver dialog box and setting the optimization criterion to minimization, we chose 
the simplex search method, taking into account linearity of the model. The solution {2, 6, 
7, 9, 10} is obtained almost instantly (Figure 4). This is one of the minimum vertex covers. 
Using additional constraints on the inclusion of a certain vertex in a cover, we obtain all 
variants of MVCs. In particular, if the vertex 9 (P27 = 1) is mandatory to be included in the 
cover, we obtain the solution {2, 6, 7, 9, 10}, i.e., the graph has 2 minimum vertex covers 
with number of cover of 5. 

As seen from the comparison of Tables 2–5, this variant of problem representation 
provides a significantly more efficient spreadsheet model suitable for solving by the sim-
plex method which guarantees obtaining globally optimal (minimum) value of coverage 
number in any case, i.e., the minimum vertex cover. The number of variables in compari-
son to the previous variant decreases by a factor T, which makes it possible to apply the 
method for graphs of bigger strength up to 200, since for linear programming problems, 
the number of Boolean variables in standard versions of Excel Solver cannot exceed 200. 
A gain in model efficiency compared to [24,30] is achieved by eliminating the formation 
of the transposed incidence matrix and matrix multiplication operation by taking ad-
vantage of the SUMPRODUCT function. 

3.2. Minimum Weighted Vertex Cover Problem 
The problem differs from the previous one by proposing to minimize not the number 

of covers, but its value under the assumption that each i-th vertex has a certain cost 
(weight) ci. The model of this problem will differ from the previous one only in the objec-
tive function F = ∑ c x , which necessitates the introducing into the spreadsheet model 
a one-dimensional array containing the costs (weights) of the vertices ci, i = 1, N. After 
placing this array in cells X6:X15, the objective function formula in cell X17 changes to 
SUMPRODUCT(V6:V15; X6:X15). Other elements of the problem model remain corre-
sponding Tables 4 and 5. By transferring the problem model to the Solver parameter win-
dow, we obtain the solution shown in Figure 5. 

 
Figure 5. Spreadsheet model of solving the minimum weighted vertex cover problem for graph G2 
(Figure 3) as a BLP problem by simplex method: vertex costs are defined in column Cost ci. 

3.3. Maximum Inner Independent Vertex Set (MIVS) Problem 
As mentioned before, due to the interrelation between the MIVS and MVC the solu-

tion of the MIVC problem can be obtained from the solution of that for MVC as MIVS = 
G\MVC. However, if the application problem assumes finding exactly the MIVS, a 

Figure 5. Spreadsheet model of solving the minimum weighted vertex cover problem for graph G2
(Figure 3) as a BLP problem by simplex method: vertex costs are defined in column Cost ci.



J. Compos. Sci. 2023, 7, 299 11 of 21

3.3. Maximum Inner Independent Vertex Set (MIVS) Problem

As mentioned before, due to the interrelation between the MIVS and MVC the solution
of the MIVC problem can be obtained from the solution of that for MVC as MIVS = G\MVC.
However, if the application problem assumes finding exactly the MIVS, a spreadsheet
model of the problem can be easily obtained in the same way as the model of the MVC
problem. Applying the same notations as in the previous case, and using, as before, the
extended graph incidence matrix A = {aik} to specify the structure of the original graph, a
mathematical model of the MIVS problem can be obtained as (7):

X = {xi}, i = 1, N, xi = 0∨ 1

∀k, k = 1, T
N
∑

i=1
aikxi ≤ 1

N
∑

i=1
xi → max

(7)

It is evident that the spreadsheet model of the problem (7) differs from that presented
in Table 4 only in the meaning of the unknowns {xi}, which are associated with MIVS
vertices instead of those included in MVC, and in the meaning and type of the objective
function extremum, which will specify the independence number α(G) and will aim at a
maximum ∑N

i=1 xi = α(G)→ max (). The spreadsheet model of the constraints takes the
form shown in Table 6.

Table 6. MS Excel spreadsheet model of the MIVS problem constraints for graph G2 (Figure 3) based
on the model (7).

Constraint Constraint Content

V6:V15=binary The Boolean character of variables in the matrix of unknowns X, xi = 0∨ 1

$E$20:$T$20<=1 The requirement of non-adjacency of vertices belonging to the MIVC of G2

All the model functions are linear (Tables 4 and 6). After transferring the model to the
Solver dialog box and setting the optimization criterion to maximum, the simplex search
method is run (Figure 6).

J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 11 of 21 
 

 

spreadsheet model of the problem can be easily obtained in the same way as the model of 
the MVC problem. Applying the same notations as in the previous case, and using, as 
before, the extended graph incidence matrix A = {aik} to specify the structure of the original 
graph, a mathematical model of the MIVS problem can be obtained as (7):  X = x ,   i = 1, N, x = 0 ∨ 1 

∀k, k = 1, T a x ≤ 1 

x → max 

(7)

It is evident that the spreadsheet model of the problem (7) differs from that presented 
in Table 4 only in the meaning of the unknowns {xi}, which are associated with MIVS ver-
tices instead of those included in MVC, and in the meaning and type of the objective func-
tion extremum, which will specify the independence number α(G) and will aim at a max-
imum ∑ x = α G → max (). The spreadsheet model of the constraints takes the form 
shown in Table 6. 

Table 6. MS Excel spreadsheet model of the MIVS problem constraints for graph G2 (Figure 3) based 
on the model (7). 

Constraint Constraint Content 
V6:V15=binary The Boolean character of variables in the matrix of unknowns X, x = 0 ∨  1  
$Е$20:$Т$20<=1 The requirement of non-adjacency of vertices belonging to the MIVC of G2 

All the model functions are linear (Tables 4 and 6). After transferring the model to 
the Solver dialog box and setting the optimization criterion to maximum, the simplex 
search method is run (Figure 6). 

 
Figure 6. Spreadsheet model of MIVS problem for graph G2 (Figure 3) as a BLP problem solved in 
MS Excel Solver applying the simplex method. 

The solution {1, 3, 4, 5, 8} is obtained almost immediately. This is one of the maximum 
independent sets of vertices. By applying additional constraints on the inclusion of certain 
vertices in an independent set, other variants of the MIVS can be obtained, in particular 
{3, 4, 5, 8, 9}. 

3.4. Minimum Weighted Inner Independent Vertex Set 
The problem aims to minimize not the independence number α(G), but its value C 

under the assumption that each i-th vertex has a certain cost (weight) ci. The model of this 
problem differs from the MIVS problem only in the objective function F = ∑ c x , which 
results in introducing into the spreadsheet model a one-dimensional array containing the 
costs (weights) of the vertices ci, i = 1, N. After placing this array in cells Y6:Y15, the 

Figure 6. Spreadsheet model of MIVS problem for graph G2 (Figure 3) as a BLP problem solved in
MS Excel Solver applying the simplex method.

The solution {1, 3, 4, 5, 8} is obtained almost immediately. This is one of the maximum
independent sets of vertices. By applying additional constraints on the inclusion of certain
vertices in an independent set, other variants of the MIVS can be obtained, in particular
{3, 4, 5, 8, 9}.

3.4. Minimum Weighted Inner Independent Vertex Set

The problem aims to minimize not the independence number α(G), but its value C
under the assumption that each i-th vertex has a certain cost (weight) ci. The model of this



J. Compos. Sci. 2023, 7, 299 12 of 21

problem differs from the MIVS problem only in the objective function F = ∑N
i=1 cixi, which

results in introducing into the spreadsheet model a one-dimensional array containing the
costs (weights) of the vertices ci, i = 1, N. After placing this array in cells Y6:Y15, the
objective function formula in cell X17 changes to SUMPRODUCT(V6:V15;Y6:Y15). Other
model elements remain corresponding to Tables 4 and 6. By transferring the problem model
to the Solver parameter window and running the simplex method, we obtain the solution
in Figure 7.

J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 12 of 21 
 

 

objective function formula in cell X17 changes to SUMPRODUCT(V6:V15;Y6:Y15). Other 
model elements remain corresponding to Tables 4 and 6. By transferring the problem 
model to the Solver parameter window and running the simplex method, we obtain the 
solution in Figure 7. 

 
Figure 7. Spreadsheet model of solving the minimum weighted inner independent vertex set prob-
lem for graph G2 (Figure 3) as a BLP problem by simplex method: vertex costs are defined in column 
Cost ci. 

3.5. Maximum Matching (Independent Edge Set, Edge Packing) Problem 
An edge packing, otherwise known as a matching, is a set of pairwise non-adjacent 

edges in a graph. Otherwise, an edge subset U* ⊂ U is called a matching in graph G(V,U) 
if no vertex vi ∈ V is incident to more than one edge uj ∈ U*. A maximum matching (also 
known as maximum-cardinality matching/edge packing) is a matching containing the 
largest possible number of edges [37]. 

Maximum matching problems occur when a group of people, a set of devices/prem-
ises, or their combinations are to be divided into pairs by the possibility or necessity of 
joint work. If each edge means the possibility or necessity of joint work or use, the problem 
is reduced to the creation of the largest possible number of workable pairs, i.e., non-adja-
cent edges (maximum matching). If the pairing provides different efficiency (perfor-
mance, speed of information transfer, probability of error or risk), a weight corresponding 
to this efficiency is assigned to the edge, and the problem is reduced to determining the 
maximum weighted matching.  

Denoting by xk the edges of the graph included in the matching of graph G(V,U) with 
N vertices and T edges and using as before the extended incidence matrix A = {aik} to 
describe the structure of the initial graph, we obtain, via analogy with the previous cases, 
a mathematical model of the problem on finding the maximum matching of the graph as:  X = x ,   k = 1, T, x = 0 ∨ 1 

∀i,    k = 1, N a x ≤ 1 

x → max 

(8)

Similarly to MVC problem model (6), the model (8) is a BLP model. Applying the 
built-in Excel function SUMPRODUCT(array1, array2, … [arrayn]) to implement the con-
straint ∑ a x ≤ 1, a spreadsheet model reflecting (8) takes form shown in Tables 7 
and 8 and Figure 8.  

Figure 7. Spreadsheet model of solving the minimum weighted inner independent vertex set problem
for graph G2 (Figure 3) as a BLP problem by simplex method: vertex costs are defined in column
Cost ci.

3.5. Maximum Matching (Independent Edge Set, Edge Packing) Problem

An edge packing, otherwise known as a matching, is a set of pairwise non-adjacent
edges in a graph. Otherwise, an edge subset U* ⊂ U is called a matching in graph G(V,U) if
no vertex vi ∈ V is incident to more than one edge uj ∈ U*. A maximum matching (also
known as maximum-cardinality matching/edge packing) is a matching containing the
largest possible number of edges [37].

Maximum matching problems occur when a group of people, a set of devices/premises,
or their combinations are to be divided into pairs by the possibility or necessity of joint
work. If each edge means the possibility or necessity of joint work or use, the problem is
reduced to the creation of the largest possible number of workable pairs, i.e., non-adjacent
edges (maximum matching). If the pairing provides different efficiency (performance,
speed of information transfer, probability of error or risk), a weight corresponding to this
efficiency is assigned to the edge, and the problem is reduced to determining the maximum
weighted matching.

Denoting by xk the edges of the graph included in the matching of graph G(V,U) with
N vertices and T edges and using as before the extended incidence matrix A = {aik} to
describe the structure of the initial graph, we obtain, via analogy with the previous cases, a
mathematical model of the problem on finding the maximum matching of the graph as:

X = {xk}, k = 1, T, xk = 0∨ 1

∀i, k = 1, N
T
∑

k=1
aikxk ≤ 1

T
∑

k=1
xk → max

(8)

Similarly to MVC problem model (6), the model (8) is a BLP model. Applying the built-
in Excel function SUMPRODUCT(array1, array2, . . . [arrayn]) to implement the constraint
∑T

k=1 aikxk ≤ 1, a spreadsheet model reflecting (8) takes form shown in Tables 7 and 8
and Figure 8.



J. Compos. Sci. 2023, 7, 299 13 of 21

Table 7. MS Excel spreadsheet model of the maximum matching problem for graph G2 (Figure 3) as a
Boolean linear programming problem based on the model (8).

Cells Formulas or Initial Values Model Component

V6:V15 0
Vector of unknowns X = {xk}, corresponding to graph G2 edges. After
performing the solution search procedure xk take values 0∨1; where 1

refers to edges included in maximum matching

E6:T15 0 The incidence matrix of the original graph G2

E20 =SUMPRODUCT(E6:E15;$V6:$V15),
extended to F20:T20 Number of edges common to each vertex of the graph, ∑T

k=1 aikxk

V17 SUM(E19:T19) Objective function: matching number F = ∑T
k=1 xk → max

Table 8. MS Excel spreadsheet model of the maximum matching problem constraints for graph G2

(Figure 3) based on the model (8).

Constraint Constraint Content

E19:T19=binary The Boolean character of variables in the matrix of unknowns X, xk = 0∨ 1

$V$6:$V$15=<1 The requirement to have no common vertices for edges included in G2 matching.
J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 8. Spreadsheet model of solving the maximum matching problem for graph G2 (Figure 3) as 
a BLP problem by simplex method. 

Tables 7 and 8 show that all model functions are linear. Transferring the model to the 
Solver dialog box, setting the optimization criterion to maximum, and choosing the sim-
plex search method, we almost immediately obtain the solution {1_9, 2_3, 10_5, 4_6, 7_8} 
(Figure 8). This is one of the maximum independent edge sets in graph G2. 

Table 7. MS Excel spreadsheet model of the maximum matching problem for graph G2 (Figure 3) as 
a Boolean linear programming problem based on the model (8). 

Cells Formulas or Initial Values Model Component 

V6:V15 0 
Vector of unknowns X = {xk}, corresponding to graph G2 edges. After 
performing the solution search procedure xk take values 0∨1; where 1 

refers to edges included in maximum matching 
Е6:Т15 0 The incidence matrix of the original graph G2 

E20 =SUMPRODUCT(E6:E15;$V6:$
V15), extended to F20:T20 

Number of edges common to each vertex of the graph, ∑ a x   

V17 SUM(E19:T19) Objective function: matching number F = ∑ x → max  

Table 8. MS Excel spreadsheet model of the maximum matching problem constraints for graph G2 
(Figure 3) based on the model (8). 

Constraint Constraint Content 
E19:T19=binary The Boolean character of variables in the matrix of unknowns X, x =  01 
$V$6:$V$15=<1 The requirement to have no common vertices for edges included in G2 matching . 

Applying additional constraints either on the including or excluding of certain edges 
in maximum matching, other variants of the maximum independent edge sets can be ob-
tained, in particular {1_9, 2_4, 10_5, 3_6, 7_8} and {1_9, 2_3, 10_4, 5_6, 7_8} with the same 
matching number of 5. 

3.6. Maximum Weighted Independent Set (Maximum Weighted Matching, MVM) Problem 
The problem differs from the previous one in requiring to maximize not the number 

of edges in a matching, but its cost under the assumption that each k-th edge has a certain 
cost (weight) ck. The model of this problem differs from the previous one, presented by 
(8), only by the objective function that takes the form of F = ∑ c x → max, which ne-
cessitates introducing into the spreadsheet model a one-dimensional array of the same 
size as the array of unknowns containing values (weights) of all T edges ck. After placing 
this array in cells E18:T18, the objective function formula in cell V17 changes to 
SUMPRODUCT(E18:T18; E19:T19). Other model elements remain corresponding Tables 7 

Figure 8. Spreadsheet model of solving the maximum matching problem for graph G2 (Figure 3) as a
BLP problem by simplex method.

Tables 7 and 8 show that all model functions are linear. Transferring the model to the
Solver dialog box, setting the optimization criterion to maximum, and choosing the simplex
search method, we almost immediately obtain the solution {1_9, 2_3, 10_5, 4_6, 7_8} (Figure 8).
This is one of the maximum independent edge sets in graph G2.

Applying additional constraints either on the including or excluding of certain edges
in maximum matching, other variants of the maximum independent edge sets can be
obtained, in particular {1_9, 2_4, 10_5, 3_6, 7_8} and {1_9, 2_3, 10_4, 5_6, 7_8} with the same
matching number of 5.

3.6. Maximum Weighted Independent Set (Maximum Weighted Matching, MVM) Problem

The problem differs from the previous one in requiring to maximize not the number of
edges in a matching, but its cost under the assumption that each k-th edge has a certain cost
(weight) ck. The model of this problem differs from the previous one, presented by (8), only
by the objective function that takes the form of F = ∑T

k=1 ckxk → max, which necessitates
introducing into the spreadsheet model a one-dimensional array of the same size as the
array of unknowns containing values (weights) of all T edges ck. After placing this array in
cells E18:T18, the objective function formula in cell V17 changes to SUMPRODUCT(E18:T18;



J. Compos. Sci. 2023, 7, 299 14 of 21

E19:T19). Other model elements remain corresponding Tables 7 and 8. After transferring
the problem model to the Solver dialog box and running the simplex method, we obtain the
solution MVM = {9_2, 10_4, 3_7, 5_6}. The number of edges in it is less than the previously
obtained matching number for maximum matching (4 vs. 5), though the total cost of them
is the largest possible. If the number of edges in matching is to be kept maximum, an
additional constraint ∑T

k=1 aikxk = 5 is to be introduced as V16 = 5. The obtained solution
{1_9, 2_4, 10_5, 3_6, 7_8} provides a total cost of only 37 < 39.

3.7. Minimum Line Cover (MLC) Problem

Line cover (edge cover) of a graph G(V,U) is such a subset of its edges U* ⊆ U that
all vertices V = {vi} are incident to at least one edge belonging to this subset U*. To solve
the problem of minimum line/edge cover (MLC, MEC) means to determine the smallest
number of edges sufficient to cover all vertices of the graph [37].

Denoting by xk the graph edges included in the edge cover of graph G(V,U) with
N vertices and T edges and using, as before, the extended incidence matrix A = {aik} to
define the structure of the original graph G, similarly to the previous cases, we obtain a
mathematical model of the MLC problem as:

X = {xk}, k = 1, T, xk = 0∨ 1

∀i, k = 1, N
T
∑

k=1
aikxk ≥ 1

T
∑

k=1
xk → min

(9)

Similarly to previous problem models (6–8), model (9) appears to be a BLP model. Ap-
plying the built-in Excel function SUMPRODUCT to implement the constraint ∑T

k=1 aikxk ≥ 1,
a spreadsheet model reflecting (9) takes the form shown in Figure 9 and Tables 9 and 10.

J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 14 of 21 
 

 

and 8. After transferring the problem model to the Solver dialog box and running the 
simplex method, we obtain the solution MVM = {9_2, 10_4, 3_7, 5_6}. The number of edges 
in it is less than the previously obtained matching number for maximum matching (4 vs. 
5), though the total cost of them is the largest possible. If the number of edges in matching 
is to be kept maximum, an additional constraint ∑ a x = 5 is to be introduced as V16 
= 5. The obtained solution {1_9, 2_4, 10_5, 3_6, 7_8} provides a total cost of only 37 < 39. 

3.7. Minimum Line Cover (MLC) Problem 
Line cover (edge cover) of a graph G(V,U) is such a subset of its edges U* ⊆ U that all 

vertices V = {vi} are incident to at least one edge belonging to this subset U*. To solve the 
problem of minimum line/edge cover (MLC, MEC) means to determine the smallest num-
ber of edges sufficient to cover all vertices of the graph [37].  

Denoting by xk the graph edges included in the edge cover of graph G(V,U) with N 
vertices and T edges and using, as before, the extended incidence matrix A = {aik} to define 
the structure of the original graph G, similarly to the previous cases, we obtain a mathe-
matical model of the MLC problem as: X = x , k = 1, T, x = 0 ∨ 1 

∀𝑖, 𝑘 = 1, 𝑁 𝑎 𝑥 ≥ 1 

𝑥 → 𝑚𝑖𝑛 

(9)

Similarly to previous problem models (6–8), model (9) appears to be a BLP model. 
Applying the built-in Excel function SUMPRODUCT to implement the constraint ∑ a x ≥ 1, a spreadsheet model reflecting (9) takes the form shown in Figure 9 and 
Tables 9 and 10.  

 
Figure 9. Spreadsheet model of solving the minimum line cover problem for graph G2 (Figure 3) as 
a BLP problem by simplex method. 

Table 9. MS Excel spreadsheet model of the minimum line cover problem for graph G2 (Figure 3) as 
a BLP problem (8). 

Cells Formulas or Initial Values Model Component 

E19:T19 0 
Vector of unknowns X = {xk}, corresponding to graph G2 
edges. After performing the solution search procedure xk 

takes values 0∨1; 1 refers to edges included in MLC 
Е6:Т15 0∧1 Incidence matrix of the original graph G2 

Figure 9. Spreadsheet model of solving the minimum line cover problem for graph G2 (Figure 3) as a
BLP problem by simplex method.

As Tables 7 and 8 show, all model functions are linear. Transferring the model to the
Solver dialog box, setting the optimization criterion to minimum and choosing the simplex
search method, we almost immediately obtain the solution MLC = {1_9, 2_4, 10_5, 3_6, 7_8}
(Figure 9), which is one of the G2 minimum line covers.

Using additional constraints on the inclusion/exclusion of a certain edge, (e.g., conse-
quently setting xk = 0 for determined MLC edges), we get two more MLC sets ({1_9, 2_3,
10_5, 4_6, 7_8}, {1_9, 2_3, 10_4, 5_6, 7_8}) with the same cover number of 5.



J. Compos. Sci. 2023, 7, 299 15 of 21

Table 9. MS Excel spreadsheet model of the minimum line cover problem for graph G2 (Figure 3) as
a BLP problem (8).

Cells Formulas or Initial Values Model Component

E19:T19 0
Vector of unknowns X = {xk}, corresponding to graph G2 edges. After

performing the solution search procedure xk takes values 0∨1; 1
refers to edges included in MLC

E6:T15 0∧1 Incidence matrix of the original graph G2

V6 =SUMPRODUCT(E$19:T$19;E6:T6),
extended to V7:V15 Number of edges covering each vertex of the graph, ∑T

k=1 aikxk

V17 SUM(E19:T19)
Objective function: edge cover number of graph G2 (number of edges
in MLC) F = ∑T

k=1 xk → min equal to the number of cells with value
1 in the range E19:T19, i.e., ones (xk = 1) in vector X

Table 10. MS Excel spreadsheet model of minimum line cover problem constraints for graph G2

(Figure 3) based on (8).

Constraint Constraint Content

E19:T19=binary The Boolean character of variables in the matrix of unknowns X, xk = 0∨ 1

$V$6:$V$15>=1 The requirement to cover every vertex of graph G2 by at least one of the edges u ∈ U*
belonging to the MLC

3.8. Minimum Weighted Line Cover (MWLC) Problem

The problem differs from the previous one by aiming to minimize not the number
of edges in line cover, but the MLC total cost assuming that each k-th edge has a certain
cost (weight) ck. Thus, the model of this problem will differ from the previous one only
in the objective function F = ∑T

k=1 ckxk → min. Therefore, a new one-dimensional array
C containing the edge costs (weights) ck, k = 1, T is to be introduced into the spreadsheet
model. After placing this array in cells E18:T18, the objective function formula in cell
V17 changes to SUMPRODUCT(E18:T18; E19:T19). Other elements of the problem model
stay as they are in Tables 9 and 10. Transferring the model to the Solver dialog box with
setting the optimization criterion to minimum and choosing the simplex search method,
we almost immediately obtain the solution MWLC= {1_9, 9_10, 2_3, 4_6, 5_7, 7_8}, in which
the number of edges exceeds that previously obtained for MLC (6 vs. 5) (Figure 9), though
the total cost of them is the smallest possible. If the number of edges in line cover is to be
kept minimal, an additional constraint ∑T

k=1 aikxk = 5 is to be introduced similar to that
described for maximum weighted matching problem.

3.9. Maximum Clique Problem

As shown above, the maximum clique in graph G can be found as the maximum
independent set in the graph G** complement to G. The adjacency matrix M* of the
complement graph G** can be easily obtained in Excel by subtracting 1 from each element
of the adjacency matrix M of the original graph, with further multiplying it by −1 using
the “Special Paste” operations with options “subtract” and “multiply”. Then, it is enough
to construct the incidence matrix of the complement graph and solve the MVC problem or
the maximum independent set problem. The maximum independent vertex set on graph
G** will give the largest clique in graph G.

3.10. Shortest Path Problem

A model of this problem can be easily obtained based on the model for minimal edge
cover of a graph by denoting by xk the edges of the graph included in the minimal path
between vertices vl and vm of the graph G(V,U) with N vertices and T edges and employing,
as before, the extended incidence matrix A = {aik} of the graph to set the structure of the



J. Compos. Sci. 2023, 7, 299 16 of 21

original graph. Similarly to the previous cases, we obtain a mathematical model of the
minimal path problem as follows:

X = {xk}, k = 1, T, xk = 0∨ 1 (10)

∀i, i = l; i = m; k = 1, N;
T
∑

k=1
aikxk = 0

i = l; k = 1, N;
T
∑

k=1
aikxk =

T
∑

k=1
alkxk = 1

i = m; k = 1, N;
T
∑

k=1
aikxk =

T
∑

k=1
amkxk = −1

(11)

T

∑
k=1

xklk → min (12)

where lk is the length of the k-th edge.
A fundamental feature of this model is treating graph G(V,U) as a directed one, i.e.,

passing of each of the edges is possible only in one direction. That is what provides
connectedness of the path between the given vertices of the graph by setting constraints
(11) reflecting the pass-through character of all intermediate path vertices. If the graph is
undirected, additional dummy edges of opposite direction are introduced into the graph so
that each real edge gets a multiple edge of opposite direction, and the incidence matrix is
drawn for the resulting extended graph.

The form of a spreadsheet model of the problem of finding the shortest path between
two vertices of a graph G2 is shown in Table 11.

Table 11. MS Excel spreadsheet model of the shortest path problem for directed graph G2 (Figure 3)
as a BLP problem (10)–(12).

Cells Formulas or Initial Values Model Component

C20:R20 0
Vector of unknowns X = {xk}, corresponding to graph G2 edges. After
performing the solution search procedure xk takes values 0∨1; 1 refers

to edges included in the shortest path from vl to vm; l = 1; m = 10

C4:R13 0∧1 Incidence matrix of the original graph G2

C17:R17 Numerical values
Lengths of graph edges (lk is the k-th edge length; cell C17 contains the
length of the edge x1 ∈ X (cell C20); cell D17 contains the length of the

edge x2 ∈ X (cell D20) etc.)

C25 =SUMPRODUCT(C4:R4;C$20:R$20),
extended to C26:C34

∑T
k=1 aikxk—sum of values in the row of the graph incidence matrix;

after performing the solution search procedure it should take the value
of +1 for the initial vertex of the path, of −1 for the final one and 0 for

the intermediate vertices considering their transitive nature

D25:D34 0∧1∧−1 Right hand side of equations (11): +1 for the initial vertex of the path,
−1 for the final one and 0 for the intermediate ones

F25 =SUMPRODUCT (C17:R17;C20:R20) Objective function: F = ∑T
k=1 xklk → min : shortest path length

between graph G2 vertices v1 and v10

All model functions (Tables 11 and 12) are linear; therefore, after transferring the model
to the Solver dialog box, setting the optimization criterion to minimum and choosing the
simplex search method, we almost immediately obtain the shortest path
{1_9, 9_10, 10_5, 5_7, 7_8} with length L = 14 (Figure 10).



J. Compos. Sci. 2023, 7, 299 17 of 21

Table 12. MS Excel spreadsheet model of the shortest path problem constraints for the directed graph
G2 (Figure 3) based on (10) and (11).

Constraint Constraint Content

C20:R20=binary The Boolean character of variables in the matrix of unknowns X, xk = 0∨ 1

$C$25:C$34=$D$25:D$34 Condition (11) providing connectedness of the route between chosen vertices (v1 and
v10) of graph G2

J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 17 of 21 
 

 

Table 12. MS Excel spreadsheet model of the shortest path problem constraints for the directed 
graph G2 (Figure 3) based on (10) and (11). 

Constraint Constraint Content 

С20:R20=binary The Boolean character of variables in the matrix of unknowns X, x =0 ∨ 1 

$С$25:С$34=$D$25:D$34 Condition (11) providing connectedness of the route between chosen 
vertices (v1 and v10) of graph G2 

 
Figure 10. Spreadsheet model of the shortest path problem between vertices v1 and v10 of the ori-
ented graph G2 (Figure 3) as a BLP problem and its solution obtained by Solver simplex method. 

To find the minimal path between any other vertices of the graph, we have to assume 
one of them as initial and the other as final setting for them, ∑ a x = 1  and ∑ a x = −1, respectively. All other vertices are considered intermediate ones with 
setting ∑ a x = 0. Changes in the spreadsheet model and examples of obtained solu-
tions are given in Table 13. 

Table 13. Examples of constraint setting when exploring the shortest path between different graph 
nodes and the solutions found. 

Initial 
Vertex 

Final 
Vertex 

Constraint Cell Values 
Lmin Minimal Path 

D25 D26 D27 D28 D29 D30 D31 D32 D33 D34 

1 8 −1       1   14 
1_9, 9_10, 10_5, 5_7, 

7_8 
1 6 −1     1     11 1_9, 9_2, 2_6 
2 7  −1     1    7 2_10, 10_5, 5_7 
9 6      1   −1  9 9_2, 2_6 

If the graph is undirected, it is necessary to introduce into it additional dummy edges 
multiple to each real edge of the graph and having the same length, but opposite direction. 
In this case, the incidence matrix on the Excel sheet is expanded twice by inserting its copy 

Figure 10. Spreadsheet model of the shortest path problem between vertices v1 and v10 of the oriented
graph G2 (Figure 3) as a BLP problem and its solution obtained by Solver simplex method.

To find the minimal path between any other vertices of the graph, we have to as-
sume one of them as initial and the other as final setting for them, ∑T

k=1 aikxk = 1 and
∑T

k=1 aikxk = −1, respectively. All other vertices are considered intermediate ones with
setting ∑T

k=1 aikxk = 0. Changes in the spreadsheet model and examples of obtained
solutions are given in Table 13.

Table 13. Examples of constraint setting when exploring the shortest path between different graph
nodes and the solutions found.

Initial
Vertex

Final
Vertex

Constraint Cell Values
Lmin

Minimal
PathD25 D26 D27 D28 D29 D30 D31 D32 D33 D34

1 8 −1 1 14 1_9, 9_10,
10_5, 5_7, 7_8

1 6 −1 1 11 1_9, 9_2, 2_6

2 7 −1 1 7 2_10, 10_5,
5_7

9 6 1 −1 9 9_2, 2_6

If the graph is undirected, it is necessary to introduce into it additional dummy edges
multiple to each real edge of the graph and having the same length, but opposite direction.



J. Compos. Sci. 2023, 7, 299 18 of 21

In this case, the incidence matrix on the Excel sheet is expanded twice by inserting its copy
with inverted values, obtained by pasting a copy of the matrix into neighboring cells with
further multiplication by −1 (Paste Special option). The size of the vector of unknowns as
well as the associated set of cells and the set of cells with lengths of edges are also doubled.
The expansion of the matrices is reflected in changing the formulas of the objective function
and constraints (Figure 11).

J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 18 of 21 
 

 

with inverted values, obtained by pasting a copy of the matrix into neighboring cells with 
further multiplication by −1 (Paste Special option). The size of the vector of unknowns as 
well as the associated set of cells and the set of cells with lengths of edges are also doubled. 
The expansion of the matrices is reflected in changing the formulas of the objective func-
tion and constraints (Figure 11). 

 
Figure 11. Spreadsheet model of the shortest path problem between vertices v1 and v10 of undirected 
graph G2 (Figure 3) as a BLP problem and its solution obtained by Solver simplex method. 

If it is necessary to find not a minimum, but a maximum path on the graph, as is the 
case of calculating the work duration by the critical path (CP) network method, one needs 
to change the optimality criterion from minimum to maximum. Solution CP = {1_9, 9_2, 
2_10, 10_4, 4_6, 6_7, 7_8} and maximum path length L = 25 are obtained almost instantly. 

4. Discussion and Conclusions 
Solver is a optimization tool that has several advantages over other computer pro-

grams [44]. For example: 
− It is affordable and easy to use. Solver is integrated into MS Excel, which is a widely 

used and familiar software for many users. 
− It is quick and flexible. The simplex method is a fast and efficient algorithm that can 

handle problems with many variables and constraints. Additionally, it is a flexible 
tool that can handle a wide range of linear programming problems, including prob-
lems with nonlinear constraints, integer variables, and nonlinear objective functions. 

− It is interactive. Solver has an interactive interface that allows users to modify the 
problem formulation and constraints easily and see the impact of these changes on 
the optimal solution. 
It is worth noting that Solver has some limitations. For example, it may not be suitable 

for large-scale problems that require more sophisticated optimization algorithms or spe-
cialized software [45]. 

Representation of extreme problems on graphs as Boolean linear programming prob-
lems and spreadsheet models suggested for them, provide an opportunity to set and solve 
a wide range of practical problems in various fields, from marketing, logistics, and man-
agement to design of transport and telecommunication networks, optimization of compo-
nent allocation and PCB tracing, which are reducible to extreme problems on graphs with 
quite large strength. The main advantage of the suggested approach is the unified setting 
of a graph by its expanded incidence matrix and of a vector of unknowns by the vector of 

Figure 11. Spreadsheet model of the shortest path problem between vertices v1 and v10 of undirected
graph G2 (Figure 3) as a BLP problem and its solution obtained by Solver simplex method.

If it is necessary to find not a minimum, but a maximum path on the graph, as
is the case of calculating the work duration by the critical path (CP) network method,
one needs to change the optimality criterion from minimum to maximum. Solution
CP = {1_9, 9_2, 2_10, 10_4, 4_6, 6_7, 7_8} and maximum path length L = 25 are obtained
almost instantly.

4. Discussion and Conclusions

Solver is a optimization tool that has several advantages over other computer pro-
grams [44]. For example:

- It is affordable and easy to use. Solver is integrated into MS Excel, which is a widely
used and familiar software for many users.

- It is quick and flexible. The simplex method is a fast and efficient algorithm that can
handle problems with many variables and constraints. Additionally, it is a flexible tool
that can handle a wide range of linear programming problems, including problems
with nonlinear constraints, integer variables, and nonlinear objective functions.

- It is interactive. Solver has an interactive interface that allows users to modify the
problem formulation and constraints easily and see the impact of these changes on
the optimal solution.

It is worth noting that Solver has some limitations. For example, it may not be
suitable for large-scale problems that require more sophisticated optimization algorithms
or specialized software [45].

Representation of extreme problems on graphs as Boolean linear programming prob-
lems and spreadsheet models suggested for them, provide an opportunity to set and solve
a wide range of practical problems in various fields, from marketing, logistics, and manage-
ment to design of transport and telecommunication networks, optimization of component
allocation and PCB tracing, which are reducible to extreme problems on graphs with quite



J. Compos. Sci. 2023, 7, 299 19 of 21

large strength. The main advantage of the suggested approach is the unified setting of
a graph by its expanded incidence matrix and of a vector of unknowns by the vector of
binary variables associated with vertices or edges of the sought parts of the graph, which
makes it possible on the basis of actually just two templates to create spreadsheet models of
a number of extreme problems on graphs (minimum vertex and edge cover problems, max-
imum independent set, maximum matching and clique, critical path problems), differing
only in the extremum type and constraint sign.

The specificity of MS Excel built-in functions and MS Excel Solver options provide
modeling and solving of these problems as linear programming problems using the simplex
method without programming tools; the acceptable graph strength is limited by the number
of graph vertices/edges compared to the maximum possible number of Boolean variables
for MS Excel Solver (from 100 to 400 in different versions of MS Excel Solver). The obtained
models and procedures for solving the considered types of problems can be efficiently
applied when solving practical tasks in various fields.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jcs7070299/s1, File S1: Excel file for article Hlinenko et al.xlsx.

Author Contributions: Conceptualization, L.H., V.R., V.F., Y.Y., R.T., T.W., S.S., E.K., Y.D. and A.L.;
methodology, L.H., S.S., V.R., E.K. and R.T.; software, S.S. and R.T.; validation, E.K., L.H., Y.Y. and R.T.;
formal analysis, L.H., R.T., Y.Y., A.L., E.K., Y.D. and V.F.; investigation, L.H., T.W. and R.T.; resources,
L.H., V.R., T.W. and Y.Y.; data curation, Y.Y., V.F., A.L. and L.H.; writing—original draft preparation,
E.K., V.F., S.S., Y.D. and R.T.; writing—review and editing, S.S., E.K., Y.Y., A.L. and V.F.; visualization,
L.H. and Y.Y.; supervision, V.R. and R.T.; funding acquisition A.L., R.T., L.H., E.K., T.W., Y.D., Y.Y. and
V.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated and analyzed during the current study are
available from the authors upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Blanco, I. The Use of Composite Materials in 3D Printing. J. Compos. Sci. 2020, 4, 42. [CrossRef]
2. Alwattar, T.A.; Mian, A. Developing an Equivalent Solid Material Model for BCC Lattice Cell Structures Involving Vertical and

Horizontal Struts. J. Compos. Sci. 2020, 4, 74. [CrossRef]
3. Ma, Z.; Wan, W.; Song, L.; Liu, C.; Liu, H.; Wu, Y. An Approach of Path Optimization Algorithm for 3D Concrete Printing Based

on Graph Theory. Appl. Sci. 2022, 12, 11315. [CrossRef]
4. Hlinenko, L.; Fast, V. Application of superimposed properties cards for efficient 3D MID process choice. In Proceedings of

the 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering
(TCSET), Lviv-Slavske, Ukraine, 20–24 February 2018; Volume 579, p. 582. [CrossRef]

5. Hu, K.; Li, H.; Xi, K. A Toolpath Optimization Algorithm for Layered 3D Printings Based on Solving the TSP. J. Phys. Conf. Ser.
2023, 2456, 012039. [CrossRef]

6. Wang, T.; Li, N.; Link, G.; Jelonnek, J.; Fleischer, J.; Dittus, J.; Kupzik, D. Load-Dependent Path Planning Method for 3D Printing
of Continuous Fiber Reinforced Plastics. Compos. Part A Appl. Sci. Manuf. 2021, 140, 106181. [CrossRef]

7. Wu, Y.; Liu, C.; Liu, H.; Zhang, Z.; He, C.; Liu, S.; Zhang, R.; Wang, Y.; Bai, G. Study on the Rheology and Buildability of 3D
Printed Concrete with Recycled Coarse Aggregates. J. Build. Eng. 2021, 42, 103030. [CrossRef]

8. Li, Q.; Xie, F.; Zhao, J.; Xu, B.; Yang, J.; Liu, X.; Suo, H. FPS: Fast Path Planner Algorithm Based on Sparse Visibility Graph and
Bidirectional Breadth-First Search. Remote Sens. 2022, 14, 3720. [CrossRef]

9. Rathore, M.M.; Attique Shah, S.; Awad, A.; Shukla, D.; Vimal, S.; Paul, A. A Cyber-Physical System and Graph-Based Approach
for Transportation Management in Smart Cities. Sustainability 2021, 13, 7606. [CrossRef]

10. Thiele, G.; Johanni, T.; Sommer, D.; Krüger, J. Decomposition of a Cooling Plant for Energy Efficiency Optimization Using
OptTopo. Energies 2022, 15, 8387. [CrossRef]

11. Trach, R.; Polonski, M.; Hrytsiuk, P. Modelling of Efficiency Evaluation of Traditional Project Delivery Methods and Integrated
Project Delivery (IPD). IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 112043. [CrossRef]

https://www.mdpi.com/article/10.3390/jcs7070299/s1
https://www.mdpi.com/article/10.3390/jcs7070299/s1
https://doi.org/10.3390/jcs4020042
https://doi.org/10.3390/jcs4020074
https://doi.org/10.3390/app122211315
https://doi.org/10.1109/TCSET.2018.8336269
https://doi.org/10.1088/1742-6596/2456/1/012039
https://doi.org/10.1016/j.compositesa.2020.106181
https://doi.org/10.1016/j.jobe.2021.103030
https://doi.org/10.3390/rs14153720
https://doi.org/10.3390/su13147606
https://doi.org/10.3390/en15228387
https://doi.org/10.1088/1757-899X/471/11/112043


J. Compos. Sci. 2023, 7, 299 20 of 21

12. Trach, R.; Lendo-Siwicka, M. Centrality of a Communication Network of Construction Project Participants and Implications for
Improved Project Communication. Civ. Eng. Environ. Syst. 2021, 38, 145–160. [CrossRef]

13. Kurtoglu, T.; Tumer, I.Y. A Graph-Based Fault Identification and Propagation Framework for Functional Design of Complex
Systems. J. Mech. Des. 2008, 130, 051401. [CrossRef]

14. Burdett, R.L.; Kozan, E. A Disjunctive Graph Model and Framework for Constructing New Train Schedules. Eur. J. Oper. Res.
2010, 200, 85–98. [CrossRef]

15. Trach, R.; Lendo-Siwicka, M.; Pawluk, K.; Bilous, N. Assessment of the Effect of Integration Realisation in Construction Projects.
Teh. Glas. 2019, 13, 254–259. [CrossRef]

16. Carlone, L.; Aragues, R.; Castellanos, J.A.; Bona, B. A Fast and Accurate Approximation for Planar Pose Graph Optimization. Int.
J. Robot. Res. 2014, 33, 965–987. [CrossRef]

17. Kowalski, J.; Połoński, M.; Lendo-Siwicka, M.; Trach, R.; Wrzesiński, G. Method of Assessing the Risk of Implementing Railway
Investments in Terms of the Cost of Their Implementation. Sustainability 2021, 13, 13085. [CrossRef]

18. van Hoesel, S. Optimization in Telecommunication Networks. Stat. Neerl. 2005, 59, 180–205. [CrossRef]
19. Ighlin, S.P. Teorija ghrafiv [Graph theory]; NTU “KhPI”: Kharkiv, Ukraine, 2017; pp. 24–43.
20. Handbook of Optimization in Telecommunications; Resende, M.G.C.; Pardalos, P.M. (Eds.) Springer: New York, NY, USA, 2006;

ISBN 978-0-387-30662-9.
21. Wang, L.-Y.; Lai, Y.-T. Graph-Theory-Based Simplex Algorithm for VLSI Layout Spacing Problems with Multiple Variable

Constraints. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2001, 20, 967–979. [CrossRef]
22. Cieniawska, B.; Parafiniuk, S.; Kluza, P.A.; Otachel, Z. Matching the Liquid Atomization Model to Experimental Data Obtained

from Selected Nozzles. Appl. Sci. 2023, 13, 4433. [CrossRef]
23. Baker, K.R. Optimization Modeling with Spreadsheets, 3rd ed.; Wiley: Hoboken, NJ, USA, 2016; ISBN 978-1-118-93769-3.
24. Hlinenko, L.K.; Fast, V.M. Avtomatyzacija Rozv’jazannja Ekstremaljnykh Zadach Na Ghrafakh u Konstruktorsjkomu Proektu-

vanni’ [Automatization of Solving the Extremal Problems on Graphs in Radioelectronic Apparatus Design]. Visnyk NTU Ukrajiny
Kyjivsjkyj Politekh. Inst. Ser. Radiotekhnika. Radioaparatobuduvannja 2013, 54, 90–101.

25. Gelman, A.; Hill, J.; Yajima, M. Why We (Usually) Don’t Have to Worry about Multiple Comparisons. J. Res. Educ. Eff. 2012,
5, 189–211. [CrossRef]

26. Leonenkov, A.V. Reshenie Zadach Optimizacii v Srede Excel [Solving Optimisation Problems in the Excel Medium].
StPb: BHV-SPb. 2005.

27. Paschos, V.T. Applications of Combinatorial Optimization; John Wiley & Sons: Hoboken, NJ, USA, 2014; Volume 3, ISBN 1-84821-658-0.
28. Hlinenko, L.K.; Fast, V.M. Rozv’jazannja Zadach Kombinatornoji Optymizaciji Radioelektronnykh System u Seredovyshhi MS

EXCEL SOLVER. Visnyk Nac. Universytetu Ljvivsjka Politekh. Radioelektron. Ta Telekomun. 2013, 766, 167–172.
29. Cardone, L.; Quer, S. The Multi-Maximum and Quasi-Maximum Common Subgraph Problem. Computation 2023, 11, 69.

[CrossRef]
30. Boria, N.; Della Croce, F.; Paschos, V.T. On the Max Min Vertex Cover Problem. Discret. Appl. Math. 2015, 196, 62–71. [CrossRef]
31. Rahman, M.S. Basic Graph Theory; Springer: Berlin/Heidelberg, Germany, 2017; Volume 9.
32. Tutte, W.T. Graph Theory as I Have Known It; Oxford lecture series in mathematics and its applications; Clarendon Press: Oxford,

UK, 2012; ISBN 978-0-19-966055-1.
33. Wang, L.; Hu, S.; Li, M.; Zhou, J. An Exact Algorithm for Minimum Vertex Cover Problem. Mathematics 2019, 7, 603. [CrossRef]
34. Zakwan, M. Application of Excel Optimisation Tool in Solving and Teaching Water Resource Problems. Int. J. Hydrol. Sci. Technol.

2022, 14, 63–74. [CrossRef]
35. Balaji, S.; Swaminathan, V.; Kannan, K. A Simple Algorithm to Optimize Maximum Independent Set. Adv. Model. Optim. 2010,

12, 107–118.
36. Wu, Q.; Hao, J.-K. A Review on Algorithms for Maximum Clique Problems. Eur. J. Oper. Res. 2015, 242, 693–709. [CrossRef]
37. Grantson, M.; Levcopoulos, C. Covering a Set of Points with a Minimum Number of Lines; Springer: Berlin/Heidelberg, Germany,

2006; pp. 6–17.
38. Granato, G.; Martino, A.; Baiocchi, A.; Rizzi, A. Graph-Based Multi-Label Classification for WiFi Network Traffic Analysis. Appl.

Sci. 2022, 12, 11303. [CrossRef]
39. Kubicka, K.; Pawlak, U.; Radoń, U. Influence of the Thermal Insulation Type and Thickness on the Structure Mechanical Response

Under Fire Conditions. Appl. Sci. 2019, 9, 2606. [CrossRef]
40. Listrovoy, S.V.; Motsnyi, S.V. A heuristic approach to solving the minimum vertex cover problem using guaranteed predictions.

Inf. Kerujuchi Syst. Na Zaliznychnomu Transp. 2015, 3, 37–42.
41. Pelofske, E.; Hahn, G.; Djidjev, H. Solving Large Minimum Vertex Cover Problems on a Quantum Annealer. arXiv 2019,

arXiv:1904.00051.
42. Kozin, I.V.; Poljuga, S.I. ‘Fragmentarnye modeli dlja nekotoryh jekstremal’nyh zadach na grafah’ [Fragmentary models for some

extreme graph problems]. Mat. Mashyny Syst. 2014, 1, 143–150.
43. Feigenbaum, J.; Kannan, S.; McGregor, A.; Suri, S.; Zhang, J. On Graph Problems in a Semi-Streaming Model. Theor. Comput. Sci.

2005, 348, 207–216. [CrossRef]

https://doi.org/10.1080/10286608.2021.1925654
https://doi.org/10.1115/1.2885181
https://doi.org/10.1016/j.ejor.2008.12.005
https://doi.org/10.31803/tg-20180810113043
https://doi.org/10.1177/0278364914523689
https://doi.org/10.3390/su132313085
https://doi.org/10.1111/j.1467-9574.2005.00286.x
https://doi.org/10.1109/43.936378
https://doi.org/10.3390/app13074433
https://doi.org/10.1080/19345747.2011.618213
https://doi.org/10.3390/computation11040069
https://doi.org/10.1016/j.dam.2014.06.001
https://doi.org/10.3390/math7070603
https://doi.org/10.1504/IJHST.2022.123647
https://doi.org/10.1016/j.ejor.2014.09.064
https://doi.org/10.3390/app122111303
https://doi.org/10.3390/app9132606
https://doi.org/10.1016/j.tcs.2005.09.013


J. Compos. Sci. 2023, 7, 299 21 of 21

44. Bompadre, A.; Orlin, J.B. A Simple Method for Improving the Primal Simplex Method for the Multicommodity Flow Problem.
Networks 2008, 51, 63–77. [CrossRef]

45. Zhao, R.; Wang, Y.; Xiao, G.; Liu, C.; Hu, P.; Li, H. A Selfish Herd Optimization Algorithm Based on the Simplex Method for
Clustering Analysis. J. Supercomput. 2021, 77, 8840–8910. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/net.20196
https://doi.org/10.1007/s11227-020-03597-0

	Introduction 
	Methods 
	Extremal Graph Problems under Study: Definition and Relationship 
	Extremal Graph Problems under Study: Spreadsheet Modeling 

	Results 
	Minimum Vertex Cover Problem 
	Minimum Weighted Vertex Cover Problem 
	Maximum Inner Independent Vertex Set (MIVS) Problem 
	Minimum Weighted Inner Independent Vertex Set 
	Maximum Matching (Independent Edge Set, Edge Packing) Problem 
	Maximum Weighted Independent Set (Maximum Weighted Matching, MVM) Problem 
	Minimum Line Cover (MLC) Problem 
	Minimum Weighted Line Cover (MWLC) Problem 
	Maximum Clique Problem 
	Shortest Path Problem 

	Discussion and Conclusions 
	References

