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Abstract: The bumper beam is a crucial component of the automobile bumper system, responsible
for absorbing impact energy and enhancing the safety of passengers during collisions. This paper
presents the design and experimental analysis of a 3D-printed composite–plastic hybrid light struc-
ture, designed as a collapsible energy absorber. Exploratory testing was conducted using low-impact
tests to investigate the failure mechanism and energy absorption capacity of a spiral structure. The
design process involved optimizing the spiral diameter by testing specimens with varying diam-
eters between 0.5 cm and 2.5 cm, while keeping other geometric parameters constant. The study
employed three types of 3D composite structures, including printed thermoplastic, printed ther-
moplastic reinforced with Kevlar fiber composite, and printed thermoplastic filled with foam. The
thermoplastic–foam composite with nine spirals (diameter = 0.97 cm) yielded the best results. The
new design demonstrated high energy absorption capacity and a controlled and progressive failure
mechanism, making it a suitable candidate for energy absorption applications.

Keywords: crashworthiness; energy absorption capability; failures mechanism; bumper; spiral
structure; composite; plastic; automotive

1. Introduction

Frontal collisions are a leading cause of death and injury in road accidents. As such,
researchers in crashworthiness have been focusing on reducing the occurrence of such
accidents. According to the World Health Organization (WHO), road accidents are the
primary cause of death for young adults and children between the ages of 5 and 29 [1].
Given this alarming statistic, the development of automotive safety systems has become a
critical area of research. Crashworthiness refers to a vehicle’s ability to absorb energy and
provide adequate space for passengers to survive in the event of an accident. Therefore,
the development of efficient energy absorption systems can significantly enhance the
crashworthiness of cars [2–7]. In recent years, numerous studies have explored ways to
improve the crashworthiness of vehicles, including the development of advanced materials
and structures. Innovative energy absorption systems have also been designed to mitigate
the effects of frontal collisions. These systems absorb the impact energy and dissipate it
efficiently to prevent excessive deformation of the passenger compartment, while providing
adequate survival space for passengers in the event of an accident. Consequently, the
development of more efficient energy absorption systems can significantly enhance vehicle
safety on the road. One crucial automotive component that endures accidents and impact
stresses is the frontal bumper system [8–16]. As illustrated in Figure 1, this system comprises
three key elements: the bumper beam, the absorber, and the fascia [17–19]. Lightweight
materials have garnered significant attention in automotive applications, primarily due
to the trend of replacing heavy parts to conserve fuel and reduce carbon footprint [20–33].
However, it is worth noting that the energy required to propel a vehicle is more than ten

J. Compos. Sci. 2023, 7, 162. https://doi.org/10.3390/jcs7040162 https://www.mdpi.com/journal/jcs

https://doi.org/10.3390/jcs7040162
https://doi.org/10.3390/jcs7040162
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcs
https://www.mdpi.com
https://orcid.org/0000-0003-1957-2546
https://orcid.org/0000-0002-9301-297X
https://doi.org/10.3390/jcs7040162
https://www.mdpi.com/journal/jcs
https://www.mdpi.com/article/10.3390/jcs7040162?type=check_update&version=2


J. Compos. Sci. 2023, 7, 162 2 of 16

times the energy used in the manufacturing process [34]. Therefore, developing eco-friendly
cars is crucial, regardless of the energy consumed in producing lightweight materials.
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Abrupt acceleration, which refers to rapid changes in velocity, is a common occurrence
in vehicular crashes. However, the human body’s ability to withstand such acceleration
is limited, and exceeding these limits can result in severe injury or even death. Therefore,
understanding the extent to which humans can tolerate such acceleration is essential in
determining the necessary safety features and structural elements required to protect
occupants in foreseeable crashes [35–39]. By knowing the crash environment and the limits
of human tolerance to acceleration, designers can set crashworthiness design requirements
that will effectively safeguard passengers in a variety of collision scenarios. For instance,
if the crashworthiness design requirements are not set to adequately protect passengers
in a high-speed collision, the vehicle’s occupants may suffer severe injuries due to the
abrupt acceleration. Conversely, if the requirements are set too high, the vehicle’s weight
and cost may increase excessively, which can be detrimental to the overall performance
and affordability of the vehicle. Since this study focuses on automobile impact crashes,
we consider the acceleration tolerance limit in the +Gx and −Gx directions, which is 45 G.
Table 1 provides a summary of estimates of human tolerance in all axes. The bumper
beam is the key structure absorbing the kinetic energy from a high-impact collision [17,40].
Additionally, it provides bending resistance in a low-impact collision [17,41,42]. The
function of the bumper beam is to absorb the impact of collision energy in a controlled
way before the energy is transferred to the passengers. Many studies have been conducted
on thin-walled structures to determine their energy absorption capabilities. Common
examples of thin-walled structures studied include square tubes, circular tubes, sandwich
plates, and honeycombs [17]. Traditionally, steel has been the most common material used
to make bumper beams due to its strength and durability. However, in the mid-1980s,
polymer composite materials were introduced as an alternative to traditional materials
such as metal, plastic, and aluminum. Polymer composites offer several advantages over
conventional materials. One of the most significant benefits is their weight reduction [22].
In fact, polymer composites can offer up to 30% less weight than steel without sacrificing
the bumper beam’s bending strength [8,20,43]. This reduction in weight can have a positive
impact on the vehicle’s fuel efficiency and handling. In addition, it is easier to produce
complex shapes from polymer composites, allowing designers to create more aerodynamic
and stylish bumpers while maintaining their effectiveness [44,45]. Overall, the use of
polymer composite materials in bumper beams represents a significant advancement in
automotive safety technology. With their weight reduction, high energy absorption capacity,
and ability to produce complex shapes, polymer composites are an attractive alternative to
traditional materials, and their use is likely to continue to grow in the future.
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Table 1. Human tolerance limits of deceleration [2].

The Direction of the Accelerative Force Tolerance Level

Headward (+Gz) 20–25 G
Tailward (−Gz) 15 G

Lateral Right (+Gy) 20 G
Lateral Left (−Gy) 20 G

Back to Chest (+Gx) 45 G
Chest to Back (−Gx) 45 G

Moreover, natural fiber composite has gained significant attention in recent years.
These materials are composed of natural fibers, such as flax, hemp, or jute, embedded in a
polymer matrix [20,34,46–53]. The combination of these materials offers several advantages
over conventional materials, including low density, high stiffness, and specific strength. In
particular, sheet molding compound (SMC) bumper beams have been developed using nat-
ural fiber composites. These bumper beams have been found to be effective in maximizing
the elastic strain energy while minimizing the impact force, bumper beam deflection, and
stress distribution. This is due to the excellent properties of natural fiber composites, which
offer an optimal combination of high strength and low rigidity. The use of high-strength
materials leads to good impact behavior, which is crucial for safety in the automotive
industry. On the other hand, the use of materials with low Young’s modulus leads to low
rigidity, which is important for reducing weight and improving fuel efficiency [54].

There are several significant factors that affect the energy absorption capacity of
bumper beams, including their shape, cross-section, thickness, rib, and material. The cross-
section and thickness of the bumper beam play crucial roles in determining the amount
of energy that can be absorbed during a collision. In addition, the presence of reinforcing
ribs in the bumper beam can significantly increase its energy absorption capacity. The
use of rib-reinforced beams has been found to be more effective in absorbing energy than
foam-filled and empty square beams. Moreover, these strengthening ribs can enhance the
overall stabilization and rigidity of the bumper structure, which can contribute to better
performance in collision scenarios. Understanding the impact of these factors on the energy
absorption of bumper beams is crucial in the design and development of safer and more
effective vehicle bumpers [55,56].

According to a study by Zhang [57], tubes with graded thickness in the cross-section
can increase the energy absorption under axial loading by up to 30–35%. In [58], it has
been stated that a sheet with varying thickness improves crashworthiness. Moreover, func-
tionally graded structures with changing wall thickness along the longitudinal direction
offer sufficient absorption of crushing energy. A study by Zarei [59] showed that, for
aluminum structures, the wall thickness should be between 0.5 and 3.5 cm to maximize
specific energy absorption.

A study conducted by Sinha [60] investigated two major factors. The first is the
internal absorbed energy by the bumper beams, which they found can be kept high using
materials with a high modulus of elasticity and high yield strength. The second factor is
plastic deformation, which should be eliminated as much as possible during a low-speed
mode. They found that material M220 is the best for bumper beam manufacturing. By
using this material, the maximum stress of the bumper is kept below the material’s yield
stress, and the maximum beam deformation is kept within an acceptable limit.

Overall, it can be seen that the energy absorption capabilities of spiral structures have
not been investigated before. The present study investigated the dynamic impact test
responses of the different spiral structure composites using drop-weight impact equipment
at an energy level of 15 J. Three types of composite materials were produced. These are
3D-printed thermoplastic, 3D-printed thermoplastic covered with a Kevlar fiber composite,
and 3D-printed thermoplastic plastic filled with foam. All the samples were wrapped
with Kevlar to control the failure mechanism. Test characteristics and results, such as
energy absorption and damage modes, were evaluated. It is worth mentioning that Kevlar



J. Compos. Sci. 2023, 7, 162 4 of 16

fiber composite was used due to its well-known excellent impact and abrasion resistance
characteristics in comparison to other fiber composites [61,62]. Moreover, the foam was
added to enhance the axial stiffness and stability of the proposed design [63].

2. Experimental Program and Settings
2.1. Material Selection

ABS thermoplastic was chosen for producing the various spiral structures using 3D
printing techniques. Kevlar fiber and blue Styrofoam composites were added to the plastic
structures to create different specimens. The Kevlar fiber was fixed using EL2 epoxy
laminating resin and AT30 slow epoxy hardener with a 100-30 ratio, while the blue foam
was fixed using paper glue. Kevlar was used as a wrap for all specimens.

2.2. Specimen Preparation

The geometry and dimensions of the models are shown in Figure 2, which illustrates
the different spiral structures that were modeled using SOLIDWORKS software. The
geometric parameters of each structure are provided in Table 2. A total of four different
spiral structures were produced, and six samples of each structure were 3D printed using
ABS thermoplastic, resulting in a total of 24 specimens arranged in three groups.
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Table 2. The geometric parameters of the specimens.

Number of Spirals (N) Diameter (cm) Hight (cm) Thickness (cm)

5 1.84 10 0.1
7 1.29 10 0.1
9 0.97 10 0.1

11 0.78 10 0.1

Kevlar fiber composite was added to the first group of samples by wrapping two
layers on each side of the plastic specimen. Next, Styrofoam was used as a core for the
second group; the foam was cut by a CNC machine based on the dimensions of the spiral
structure and then glued to the structures with polyvinyl acetate. Finally, the third group
material was 3D-printed thermoplastic, used as a control. Two layers of Kevlar composite
were wrapped around each specimen to add some controllability to the failure mechanism
during the dynamic impact test (see Figure 3a).
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2.3. Low-Velocity Impact (LVI)

LVI tests were carried out partially in accordance with the standardized test, ASTM
D7136/D7136M [64], using the drop-weight impact testing machine from Imatek. The
specimen was fixed vertically at the center of the base by a double-sided tape to prevent
the samples from slipping (see Figure 3b).

Twenty-four impact tests were carried out. All impact conditions, such as the impactor
geometry and mass, incident energy, and height of the impactor, were the same for all
samples. The initial impact energy was set to 15 J (mass = 11.83 kg and velocity = 1.56 m/s)
for all composite specimens. Force and displacement as a function of time and initial impact
velocity were recorded by the machine’s automatic data acquisition system. Acceleration,
velocity, and energy were then automatically calculated. All impact tests were filmed using
a digital high-speed video camera with 3000 frames per second for slow-motion analysis.
In addition, pictures before and after the test were captured for all the specimens.

3. Results and Discussion

The impact response of each specimen was recorded as a function of time. The
recorded parameters are (1) force, (2) displacement, and (3) acceleration. The following
section is dedicated to showcasing and discussing the experimental results.

3.1. Impact Performance

Figure 4 shows the spiral hybrid composite structure’s typical force versus displace-
ment response. The initial drop in the load is a sign of crack initiation; a few fluctuations in
the curves represent the propagation of cracks, resulting in stiffness degradation. The plots’
peak force represents the load a structure can withstand before undergoing critical damage.

In case (A) N = 5, the Kevlar fiber composite has a very high peak force compared to
plastic and blue foam composites; after a displacement of around 2 cm, the resistance of the
composite started degrading, cracking down under the impactor. The plastic composite
showed very low resistance to load and failed almost immediately. In case (B) N = 7, the
blue foam composite has the highest peak force at around 2 cm displacement. The Kevlar
fiber composite started failing at approximately 1 cm displacement with a peak force of
less than 70 N than the Kevlar fiber composite. Cases (C) N = 9 and (D) N = 11 results are
close; there is a sudden drop in the impact force response after peak force at around 2 cm
displacement, and then the load oscillates as the structures fail down. Based on the force
resistance stability, the blue foam composite performed better than the others, regardless of
the number of spirals.
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Figure 5 shows the acceleration versus time response of the spiral hybrid composite
structures. The best performance is when the acceleration values are stable at around
0 m/s2. In cases (A), (B), (C), and (D), the blue foam composite has the best acceleration
stability. Compared to the human acceleration tolerance limit (45 g), the highest acceleration
in the plots shown in Figure 5 is around 12.5 m/s2, equal to 1.275 g, which is perfectly safe
for humans.
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Figure 6 shows a chart representing the hybrid composites’ energy absorption levels.
The blue foam composite achieved the highest energy absorption level of 11.7 J when N = 5.
The lower level was the plastic composite when N = 11 at 6.3 J. However, the performance
based on the energy-to-weight ratio was different, as shown in Figure 7. The highest
specific energy absorption of 1065 J/kg was achieved by the blue foam composite when
the number of spirals was 9, and similar specific energy absorptions were achieved by the
plastic composite when N = 5, 7, and 11 and by the blue foam composite when N = 11. The
lower level was achieved by the Kevlar fiber when N = 9 at 482.6 J/kg.
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Based on the observations above, these hybrid composites achieve the best perfor-
mance under dynamic impact: blue foam N = 9, Kevlar fiber N = 7, and plastic N = 11. The
failure mechanism and structure analyses were conducted for these three composites using
the videos recorded by a high-speed camera during the experiments.

3.2. Structure Recoverability

Table 3 shows the pictures of the specimens taken before and after each LVI test
to evaluate the recoverability of the hybrid composites. All the Kevlar fiber composite
structures fractured into pieces (8 to 12 pieces). The resin and epoxy hardener made the
structure hard but brittle; thus, it cracked during failure. The plastic composites also
have poor recoverability but are slightly better than Kevlar fiber. However, the blue
foam composite structures have the best recoverability; as seen in the photos in Table 3,
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all the plastic structures covered by the blue foam recovered without any breakage or
critical damage.

Table 3. The examined structures before and after the LVI test.

Material No. of Spirals Sample Picture before
the Test

Sample Picture after
the Test

ABS Plastic 5
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Table 3. Cont.
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different configuration (loading stage). 
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3.3. Structural Failure Analysis

Figure 8A shows the Kevlar fiber hybrid structure in the impact test machine. It can
be seen that the Kevlar composite is fixed to the structure on the right side and not the left.
Figure 8B shows that matrix cracking started; it is evident on the right side and not the
other side, initiating local buckling at the bottom half on the right side where the Kevlar is
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free to go inwards. In Figure 8C, as the compression progresses, the structure follows the
Kevlar buckling pattern, and the global buckling of mode one happens in the middle of
the structure. As the compression continues, it can be seen in Figure 8D that the structure
fractured in the middle because of the increasing bending. As the top of the structure goes
downward, multiple cracks at the spirals can be observed in Figure 8E. From the graph in
Figure 9, the deceleration is almost zero in the areas represented by Figure 8C–E because
there was no resistance as the structure bent down. However, at the end of the graph, the
force reached its maximum value when the top part of the structure contacted the bottom
part, in Figure 8F, due to increased resistance.
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Figure 9. Experimental impact force–displacement response for Kevlar fiber with N = 7.

Figure 10A shows the blue foam hybrid structure in the impact test machine. It can
be seen that the Kevlar composite is fixed on the right side and not on the left, similar
to the specimen with the Kevlar fiber. Figure 10B shows that matrix cracking started to
occur on the right side of the structure as global buckling happened. It can be seen that
Kevlar is getting free and going outwards. In Figure 10C, the structure falls following
the Kevlar buckling pattern as the compression continues. It can be seen in Figure 10D
that the foam in the structure started to fracture in the middle because of the increasing
bending. Figure 10C–E refer to the graph in Figure 11; it can be seen that the force applied
is almost constant, which means the structure absorbs energy at a stable rate, meaning the
deceleration is almost zero in this area. However, the force did not reach its maximum value
at the end of the graph as the foam mass still resists the impactor, as shown in Figure 10F.
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Figure 12A shows the plastic with the Kevlar composite hybrid structure in the impact
test machine. In Figure 12B, a light matrix cracking starts as the Kevlar separates from
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down to about 71 N and keeps fluctuating in the areas represented by Figure 12C–E.
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For an in-depth understanding of the performance of the proposed design, the design
should be investigated under fatigue loading conditions (see [65]). Furthermore, a virtual
test rig should be built for a more thorough investigation. For this purpose, the following
sophisticated models developed in [66–69] can be employed.

4. Variability Analysis: Energy Absorption Versus Composition Type

One-way analysis of variance (ANOVA) is a statistical technique used to evaluate
whether there are any significant differences between the means of two or more groups.
Herein, ANOVA was used to estimate how the average energy absorption changed de-
pending on the number of spirals and the composition type. To perform the ANOVA, the
data were first divided into groups based on the number of spirals and the composition
type. The average energy absorption for each group was then calculated and compared
to see if there are any significant differences between them. In this analysis, more weight
is given to the impact of the composition type, meaning that the effect of the composition
type on energy absorption is considered to be more important than the effect of the number
of spirals. Table 4 shows the settings of the two ANOVA tests.

Table 4. Energy absorption ANOVA settings.

Number of Spirals
Composition Type

Plastic Kevlar Fiber Foam

5 7.164 6.991 11.689
7 7.339 8.281 10.904
9 7.384 4.417 8.729
11 6.325 8.663 7.461

To continue, we formatted the problem as a hypothesis test, in which H0 states that
there is no significant difference between the treatments and H1 states that at least one
treatment has a significant impact. The level of significance (α) was set as equal to 0.1.
Table 5 reports the ANOVA results.

Table 5. ANOVA results.

Source of Variability DF Sum of Square Mean Square F Statistic p-Value

Spiral Number 3 8.0370 2.679 1.064 0.4315
Composition Type 2 18.380 9.191 3.650 0.0918

Error 6 15.106 2.518
Total 11 41.524 3.775
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Since the p-value (0.0918) < α (0.1), the null hypothesis, H0, is rejected (see Table 5).
Therefore, some of the composition-type averages are considered as being not equal. In
other words, the difference between the averages of composition type is large enough to be
statistically significant. The results show that the chance of a type I error (rejecting a correct
H0) is small (9.18%). The smaller the p-value, the more it supports H1. The results show
that the foam composition performs better than the other energy-absorbing types.

5. Conclusions

This paper presents the design and experimental analysis of a 3D composite plastic
hybrid light structure as a collapsible energy absorber. Exploratory testing was conducted
to investigate the failure mechanism and energy absorption capability of the spiral structure
under impact. Moreover, a structure analysis was performed for the composite structures
using high-speed camera videos recorded during the experiments. Based on the results, the
hybrid composites achieved the best performance under dynamic impact: blue foam N = 9,
Kevlar fiber N = 7, and plastic N = 11. The blue foam composite had the highest energy
absorption level at 11.7 J, indicating that this hybrid structure absorbed approximately 75%
of the impact energy.
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