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Abstract: Multiple linear regression (MLR), adaptive network‑based fuzzy inference system–ant
colony optimization algorithm hybrid (ANFIS‑ACOR) and artificial neural network–multilayer per‑
ceptron (ANN‑MLP) were tested to model the bending strength of Glulam (glue‑laminated timber)
manufactured with a plane tree (Platanus orientalis L.) wood layer adhered with different weight
ratios (WR) of modified starch/urea formaldehyde (UF) adhesive containing different levels of nano‑
ZnO (NC) used at different levels of the press temperature (Tem) and time (Tim). According to X‑ray
diffraction (XRD) and stress–strain curves, some changes in the behavior of the product were seen.
After selecting the best model through determining statistics such as the determination coefficient
(R2) and root mean square error (RMSE), mean absolute error (MAE) and sum of squares error (SSE),
the production process was optimized to obtain the highest modulus of rupture (MOR) using the Ge‑
netic Algorithm (GA) combined with MLP. It was determined that the MLP had the best accuracy in
estimating the response. According to the MLP‑GA hybrid, the optimum input values for obtaining
the best response include: WR—49.1%, NC—3.385%, Tem—199.4 ◦C and Tim—19.974 min.

Keywords: Glulam; UF‑modified starch adhesive; ZnO nano particle; MLR; ANN‑MLP; ANFIS‑
ACOR

1. Introduction
Glulam is an engineered wood product used for construction. The main resins used

to produce these products are based on non‑renewable oil resources, and although they are
resistant to moisture and heat in terms of their efficiency and type of accessible material,
they release toxic compounds with a low molecular mass when they are applied [1].

Today, there is a strong desire to replace synthetic resins with renewable biopolymers.
Starch is one of the materials obtained from plants and is rather cheap, renewable and
degradable [2]. Its bondability capacity is not as high as wood adhesive. Hence, starch
must be modified to some extent using different methods [3] to meet the needs of different
consumptions.

Chemical modification is one of these methods that hydrolyzes first the amorphous
region and then the crystalline region, and separates the crystalline region. During this,
many active sites of bonding are generated so that the bond strength improves significantly
using the bond reaction [1]. The results indicate that the hydrolyzed starch adhesive has
viscosity stability and connection efficiency, and is resistant to water. However, the viscos‑
ity of the starch hydrolyzed by acid for a long time does not develop in the process, so that
it shows a different behavior in the grafting [4].

Different additives such as nanoparticles are used to improve the adhesion properties
of wood products [5]. The extent of the bond gap and the strong stimulating binding en‑
ergy have made zinc oxide important for scientific and industrial applications [6]. It was
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proven that the addition of these nanoparticles improved the resistance to scratching, abra‑
sion and corrosion in coatings [7]. When using ZnO nanoparticles with a suitable homo‑
geneous distribution in UF resin, the increase in the pores of the resin matrix is controlled
such that the physical properties of wood products bonded by UF resin are improved. In
addition, these materials lead to high efficiency due to fast curing and heat transfer of
resin [8]. When using nano‑ZnO to produce medium‑density fiberboard (MDF), it was
shown that the addition of ZnO nanoparticles at 0.5% offered better results, so that it was
proven that the excessive use of nanoparticles will not improve the product’s properties
necessarily [9]. However, in another study, it was shown that the addition of 1% ZnO
nanoparticles to the particleboard increases the mechanical and physical properties. This
is as a result of a better interaction between wood particles due to reaching the deforma‑
tion of particles at the steady point and a better interaction, and the acceleration of resin
curing [10].

When applying different ranges of press time and temperature, it was shown that at
lower press times and temperatures, sufficient heat is not transferred to the board, and
resin curing will not complete [11]. The results of temperature analysis show that prepoly‑
mer/starch adhesive cures at a rather low temperature, and thermal stability improves after
preparation [12].

Spending less time and money, finding the relationship between variables affecting
the mechanical properties such as the bending strength, and deriving predictable results
with a higher accuracy, by be achieved by finding reliable methods more logically. So far,
differentmethods such as artificial neural network (ANN), adaptive neuro‑fuzzy inference
system (ANFIS) and multiple linear regression (MLR) have been used in the context of
wood andwood products such as plywood [13,14], laminated veneer lumber [15], oriented
strand board [16,17], sandwich panel [18,19] and particleboard [20–22].

Previousmethods based on neural networks and semi‑empirical models are powerful
tools used to model complicated phenomena, including the processes of wood composite
products production, but the outputs of the methods have been different sometimes due
to the difference in the accuracy when estimating the response being studied.

Hence, in the present study, the accuracy in estimating the mechanical properties of
wood products is evaluated by comparing the outputs of the main modern models, in‑
cludingmultiple linear regression (MLR), artificial neural network–multi‑layer perceptron
(ANN‑MLP) and adaptive neuro‑fuzzy inference system–ant colony optimization (AN‑
FIS‑ACOR). The inputs of the models being studied are used as the independent variables,
including the modified starch to UF resin weight ratio (10%, 30%, 50%, 70%, and 90%),
nano‑ZnO content (0%, 1%, 2%, 3%, and 4%), press temperature (120, 140, 160, 189, and 200
◦C) and press time (14, 16, 18, 20, and 22 min), and the dependent variable is the modulus
of rapture (MOR) of glue‑laminated timber (Glulam). Due to the occasionally undesirable
effects of weight application on analyses when producing different models [23], the dif‑
ficulty of estimating the values of and drops in local minimum, and the decreases in the
probability of detecting the optimumpoint and in the convergence velocity ofmethods [23],
the Genetic algorithm (GA) was used combined with a previously developed model with
the highest accuracy to estimate the response.

2. Materials and Methods
2.1. Materials

The wood used was from a plane tree (Platanus orientalis L.). The UF resin used was
provided by SamedMfg. & Ind. Co., Mashhad, Iran with a density of 1.26 g/cm3, viscosity
350 cm, pH = 7, solid content 65% and gelation time 60 s. The corn starch was bought from
Tejarat Mehravaran Chemical Company. Nano‑zinc oxide was prepared by Nano Mavad
Gostaran Pars Co., Tehran, Iran with the density, dimensions, purity, molecular weight
and melting point of 5.6 g/cm3, 20–60 nm, 97–98%, 81.38 g/mol and 1975 ◦C, respectively.
When making Glulam, after sonicating nanoparticles according to the test design in the
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aquatic medium, they were added to the adhesive and mixed to obtain a homogeneous
suspension in a magnetic stirrer.

2.2. Methods
2.2.1. Modifying Starch and Making Starch Adhesive

The starch adhesive was made in two stages as in previous studies [24,25]. The first
stage involved the chemical modification of starch; the second stage involved making the
starch adhesive. First, 100 g corn starch powder was loaded in a flask containing 200 mL
distilled water. After adding 10 cc NaOCl to the mixture, putting it on the heater and
setting the temperature at 30 ◦C, it was mixed for 30 min. as its pH reached 9.5. After
adding some drops of sulfuric acid 20% (H2SO4) and reducing the solution’s pH to 7, then
mixing for 10 min. at the temperature 30 ◦C, the resulting mixture was put in four 100 cc
falcons. After placing these in a centrifuge at 2000 rpm for 30min, themedium’s water was
separated. After washing the deposited starch with distilled water and placing it on filter
paper on a Buchner funnel connected to a vacuum pump, the moisture of the mixture was
removed. Due to the high concentration and the possibility that the deposited starch had
coagulated, it was washed on the filter paper several times with distilled water and dried
at room temperature.

In the second stage, to make the starch adhesive, after loading 50 g modified starch
into a beaker and putting it inside a bainmarie bath, then adding 100mL hydrochloric acid
(HCl with the concentration 2%) drop by drop to the starch and increasing the bath tem‑
perature gradually, the mixture’s temperature reached 65 ◦C, and it was mixed for 12 min.
(before reaching complete coagulation (dilatant‑plastic)) [9]. After removing the mixture
and measuring its pH, which was 1.5, and then adding 0.5 mol NaOH drop by drop, its
pH reached 7–7.5. In this stage, the adhesion of the adhesive was observed visually and
sensually. After neutralizing the pH, the mixture’s temperature was set to 90–95 ◦C in the
bain marie bath and it was mixed for 10 to 15 min. until it reached a suitable concentration.
Then, the adhesive was put in an aluminum foil to dry at room temperature. Afterwards,
it was ground in a ball mill, powdered, and was added to the UF resin.

2.2.2. Making the UF‑OS Adhesive
According to the concentration of the adhesive used (65%), first, a certain amount of

nano‑ZnO was put in a beaker containing distilled water according to the test design (Ta‑
bles 1 and 2), and after putting the beaker in an ultrasonic machine, a suitable distribution
of nanoparticles was maintained in the aquatic medium for 30 min. Then, the prepared
suspension was added to the UF resin, and after mixing manually and ensuring complete
dissolution, while preparing a homogeneous solution, a certain amount of the modified
starch was added to the resin according to the test design. It was mixed with a magnetic
stirrer for 10 min. to ensure complete mixture within the aquatic medium and the forming
of a homogeneous solution, until the adhesive was ready to use.

Table 1. Coded and actual values of independent variable.

Variable Unit Coded Values of Variables Actual Values of Variables

WR %

−2 −1 0 1 2

10 30 50 70 90
NC % 0 1 2 3 4
Tem ◦C 120 140 160 180 200
Tim min 14 16 18 20 22
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Table 2. Combinations of conditions of making the test samples.

Treatment WR (%) NC (%) Tem (◦C) Tim
(min.) Treatment WR (%) NC (%) Tem (◦C) Tim

(min)

1 30 1 180 16 40 30 1 140 16
2 70 3 140 20 41 10 2 160 18
3 30 3 140 20 42 50 2 160 18
4 70 1 140 16 43 50 2 160 18
5 50 4 160 18 44 50 2 160 22
6 50 2 120 18 45 50 2 200 18
7 30 1 180 20 46 70 3 180 20
8 30 3 180 20 47 50 0 160 18
9 50 0 160 18 48 70 1 140 16
10 30 1 180 20 49 50 2 120 18
11 90 2 160 18 50 70 1 180 20
12 10 2 160 18 51 50 2 160 18
13 30 1 140 20 52 70 1 140 20
14 30 3 140 20 53 30 3 180 16
15 50 2 160 14 54 50 2 120 18
16 30 3 180 20 55 70 3 140 20
17 30 1 180 20 56 70 1 180 16
18 50 4 160 18 57 50 2 160 18
19 90 2 160 18 58 70 3 180 20
20 90 2 160 18 59 30 1 180 16
21 70 3 180 16 60 30 3 140 16
22 50 2 160 22 61 70 1 180 16
23 30 3 180 16 62 30 1 140 20
24 30 3 180 16 63 70 3 180 16
25 10 2 160 18 64 30 3 180 20
26 30 1 140 16 65 30 1 180 16
27 70 1 140 20 66 50 2 160 14
28 50 4 160 18 67 70 1 180 20
29 70 1 180 16 68 50 2 200 18
30 70 3 180 16 69 70 3 140 16
31 30 3 140 20 70 70 1 180 20
32 50 2 160 22 71 70 1 140 20
33 70 3 140 16 72 50 2 200 18
34 70 3 180 20 73 50 0 160 18
35 70 3 140 16 74 70 1 140 16
36 30 1 140 16 75 50 2 160 14
37 50 2 160 18 76 70 3 140 20
38 30 1 140 20 77 30 3 140 16
39 50 2 160 18 78 30 3 140 16

2.2.3. XRD Analysis
X‑ray diffraction (XRD) patternswere recorded for the samples of natural starch, mod‑

ified starch, adhesive made of 70% starch and 30% UF resin, and 30% starch with 70% UF
resin (after complete coagulation at the temperature of 160 ◦C) (as index adhesives) us‑
ing an STOE‑STADV wide‑angle X‑ray diffractometer (Germany) with a CuKα radiation
source and a wavelength of λ = 0.154 nm.

2.2.4. Making Glulam
According to the EN standard, usually, 4 classes of bending strength are defined in

relation to Glulam as it is one of themost well‑knownwood‑laminated products, including
GL24, GL28, GL32 and GL36, which range 24 to 36 MPa. After initial experiments, plane
tree (Platanus Orientalis L.) was used as the most suitable wood layer to make three‑layer
Glulam and then determine the effects of the variables (Table 1).

For this purpose, and after cutting the tree and decreasing its moisture in the labora‑
tory, layers with a thickness 7mm, width 70mm and length 350mmwere cut radially with
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a band saw. Under the laboratory conditions, the boards were piled crosswise to prevent
their warping and dried for two weeks. Then, the boards were put in an oven at a temper‑
ature of 140 ◦C for 5 h until their moisture reached 8%. Then, adhesives (150 g/m2, based
on the dry content) with different WR values (according to Table 2) were rubbed on. Then,
the layers were pressed in the press at a certain temperature for a certain time at a pressure
of 15 kg/cm2. After removing the Glulam, it was air‑conditioned for 72 h. After cutting the
boards in such a way that the samples’ width was equal to the thickness of the produced
boards, the flat‑wise bending test was performed in a Universal Mechanical tester with a
loading speed of 5 mm/min, using the EN 310 Standard [26]. The combinations of making
conditions and levels used to make the Glulam are given in Table 2.

2.3. Statistical Analysis
The data obtained from the test samplesmade based on the second‑order designwere

derived in a factory environment, in which the number of variables at five levels was 4, and
there were 24 axial and factorial points with three repetitions (72 samples) and 6 central
points derived from the three separate boards in each treatment. The upper limits of the
levels of every factor were coded as +2, and the lower limit was coded as −2.

Based on the factorial design used, the number of iterations at the central point of the
matrix cube of the coordinate (0,0,0) was 6. The specimens were used to obtain the four
main variablesmentioned above by the relation 2n + (2× n) + Cwith three iterations for the
factorial and axial points. Hence, the total number of test specimens usedwas 78 ((24 + (2×
4) × 3) + 6 = 78) in testing the bending strength, using the Design‑Expert Software Version
6 (Stat‑Ease 6 Minneapolis, MN). The obtained responses were derived by applying three
prediction methods, including the MLR, ANN‑MLP and ANFIS‑ACOR, and comparing
their outputs with the real values in order to choose the best modeling method.

2.3.1. The Multiple Linear Regression (MLR) Method
Multiple linear regression (MLR) is a statistical technique used to predict the output of

a variable based on the values of one or more input variables. The variable to be predicted
is known as the dependent variable, while the variables used to predict the dependent
variable are known as the independent variables. MLR is based on the least squares ap‑
proach. The model is developed in such a way that the square sum of the differences of
the observed and estimated values is minimized. The MLR equation is given as follows:

Y = a1x1 + a2x2 + a3x3 + a4x4 . . . + anxn + C (1)

where Y is the dependent variable (MOR); x1, x2, x3 and x4 are independent variables (WR,
NC, Tem and Tim, respectively) and a1, a2, a3 and a4 are regression coefficients, while C is
a constant (intercept).

2.3.2. The Artificial Neural Network–Multilayer Perceptron (MLP‑ANN) Methods
The neural network is one of the most important branches of computational‑based

modeling, and is based on biological neural systems. Two types of neural networks, the
radial basis function (RBF) and multilayer perceptron (MLP), are the dominant forms of
ANNs. Various algorithms are used in combinationwith theMLP,with one common exam‑
ple being the back‑propagation learning algorithm, which is used extensively to analyze
various classifications and predict problems. The common structure of the MLPwith Back
Propagation comprises three input, hidden and output layers, in which the input layer
is equal to the number of independent variables (WR, NC, Tem, Tim), the output layer
is equal to the number of dependent variables (MOR), and the number of hidden layers
is dependent on the nature of inputs and outputs and the accuracy of the response esti‑
mation, which is the most critical stage of an optimum MLP structure [27]. The neurons
were determined by collecting the inputs weighed using the related bias (Equation (2)) and
directing the input data toward a more nonlinear system. In this process, the number of
middle‑layer neurons was determined by testing the neural network to the extent that the
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mean square error (MSE) of the output was minimized. When examining the effects of the
independent variables on the response and evaluating the MLP’s performance in predict‑
ing the response, all data were first normalized and divided into three sets, including the
training (70% of all data), testing (15% of all data) and validation (15% of all data) data sets.
After testing different algorithms expressed as mathematical formulae and modifying the
error function to optimize the link weight, Levenberg–Marquardt Back Propagation (LM)
was used. According to the outputs of the model derived when applying different forms
of activation functions, the Sigmoid function (Equation (3)) and tansig function (Equation
(4)) were used for the hidden layers and the purelin function (Equation (5)) was used for
the output layer.

Xj =
p

∑
i=1

yiwin
ji + bin

j (2)

where Xj is the network input into node j in the hidden layer, yi is the input into a neuron,
win

ji is the weight accompanied by each input link from the i‑th neuron to the j‑th neuron
in the hidden layer, and binj is the bias of the j‑th neuron in the hidden layer.

Sigmoid =
1

1 + e−x (3)

Tansig = Tanh =
2

1 + e−2x − 1 (4)

Linear = Purelin = x (5)

Taking the MLP model with two hidden layers, with the tansig and logsig activation
functions for the first and second hidden layers and purelin function for the output layer,
the output can be computed as follows (Equation (6)) [28]:

Output = purelin(w3 × (Sigmoid(w2 × (Tansig(w1) + b1)) + b2) + b3) (6)

where b1 and b2 denote the bias vectors of the first and second hidden layers and b3 denotes
the bias vector of the output layer. w1 and w2 are also the weight matrices of the first and
second hidden layers, respectively, and w3 is the weight matrix of the output layer.

The optimization algorithmobtained byLevenberg–Marquardt BackPropagation, which
shows improved MLP performance, is shown schematically in Figure 1.
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2.3.3. The Adaptive Neuro‑Fuzzy Inference System–Ant Colony Optimization
(ANFIS‑ACOR) Methods

The ANFIS is a feed‑forward multi‑layer neural network. The system uses neural
network training algorithms together with fuzzy logic to develop a nonlinear design for
the input–output relation. To describe the ANFIS structure, a system including two inputs
(x1, x2), two Sugeno‑type and fuzzy Takagi if–then rules, and an output (y) is normally set
up as follows (Equations (7) and (8)):

Rule 1 : i f (x1 is A1)and (x2 is B1)then f1 = p1x1 + q1x2 + r1 (7)
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Rule 2 : i f (x1is A2)and (x2is B2)then f2 = p2x1 + q2x2 + r2 (8)

where A and B are fuzzy sets, and q, p and r are the resultant parameters of the model
evaluated in the training stage.

The ANFIS structure contains 5 layers. The first layer includes the input variables
of the fuzzy sets, in which all nodes adapt to a function parameter, which is normally
Gaussian. In the second layer, two members multiplied by the fuzzy set are taken into
account. In the third layer, each node is either fixed or non‑adaptive. In the fourth layer,
each node is an adaptive node with one output. In the fifth layer, there is only one node,
which is either non‑adaptive or fixed. This node computes the output as the sum of all
incoming signals from the previous overall node.

Here, 70% and 30% of the data are used randomly for training and testing purposes,
respectively. The number of epochs in the ANFIS is simple, and the number of replications
in the used algorithms is 500. The optimum number of replications for all models is 500,
and as this value is exceeded, no significant effects are observed on the accuracy of the
model’s performance. Additionally, the optimum values of the initial step‑size, the step‑
size decrease and the initial increase are 0.01, 0.95 and 1.05, respectively. The training
algorithms attempt to insert X into Equation (9) so as to minimize the difference between
both sides of Equation (7).

n

∑
i=1

P =
n

∑
i=1

(
X × P′) (9)

Finally, the error between both sides of Equation (9) is calculated using Equation (10).
If the result meets the requirements, the optimization is finished. Otherwise, the training
must be performed again.

n

∑
i=1

E =
n

∑
i=1

(VTarget − VModel) (10)

whereVTarget is the observed result, VModel is the value predicted by themodel, and E shows
the difference between the observed and predicted values. After optimization, the pre‑
dicted hybrid model acts like a classical ANFIS.

Subsequently, three ANFIS methods, including the grid partition, subtracting cluster‑
ing and fuzzy c‑means clustering, were used to generate a basic FIS. The results indicate
that fuzzy c‑means clustering achieved a better performance than the others, meaning the
results of the method give the performance of the classical ANFIS, which can then be ap‑
plied to the ACOR algorithm.

The ACOR algorithm is a good option for the ANFIS, because it is suitable for solving
complicated problems. In addition, the algorithm is never trapped in local optima. The
algorithm normally tries to minimize E in Equation (10). After the algorithm completes its
steps, othermodeling steps follow, such as a simple ANFIS. In this algorithm, a continuous
function, Gaussian, is used instead of a discrete function to distribute the ants inside the
solution domain (Equation (11)).

Gi
(x) =

n

∑
l=1

wl gi
l(x) =

n

∑
l=1

wl
1

σi
l

√
2π

e2

(x−µi
l )

2

(σi
l )2 (11)

where wl, σi
l and n are the weight of the Gaussian function, the standard deviation vector,

and the mean vector and effective parameter, respectively.

2.3.4. The Evaluation Criteria
Data were used to determine the performance of the MLR, ANFIS‑ACOR and ANN

methods. MATLAB (MATLAB software, version R2015a, The MathWorks, Inc., Natick,
MA, USA) was used to analyze the three methods. Before the methods can produce mod‑
els, the noisy data (irrelevant or too far from normal values) are cleared [29]. Accordingly,
model training results in a better performance and faster convergence if it is accompanied
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by data normalization, although the advantages change as the network size and sample
size increase [30]. Before training the models, both input and output variables are normal‑
ized in the ranges from −1 to +1 as follows (Equation (12)):

Xnorm =
Xi − Xmin

Xmax − Xmin
(12)

where Xi is the input data, Xnorm is the normalized value of Xi, and Xmax and Xmin are the
maximum and minimum data, respectively.

The accuracy of the MLR, ANN and ANFIS‑ACOR models was evaluated using the
determination coefficients (R2) (Equation (13)), root mean square error (RMSE) (Equation
(14)), mean absolute error (MAE) (Equation (15)) and sumof squares errors (SSE) (Equation
(16)) between the measured and estimated values of the MOR parameter.

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (13)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(14)

MAE =
∑|yi − ŷi|

n
(15)

SSE =
n

∑
i=1

(yi − ŷi)
2 (16)

where n is the number of observations, ŷi is the predicted value, yi is the observed value
and yi is the average observations.

2.3.5. Combination of the ANN with the GA Algorithm
After the training process, the developedANNmodel is used in additional implemen‑

tations via the GA to find the optimum values of the input variables (WR, NC, Tem, and
Tim), so as to maximize the MOR according to the multi‑objective function and the nonlin‑
ear constraint function for the actual values in the first stage, and for the values estimated
by the ANN in the second stage. The GA was treated using a four‑step cycle, including
the initialization of solution populations, fitness computation based on objective function,
the selection of the best chromosomes, and the genetic propagation of the parent chromo‑
somes chosen using the genetic operators, such as the crossover and mutation, to create
the new population of chromosomes [31]. All processes continued until the most suitable
result was obtained. The initial population was fixed at 50, the number of generations
was 500, the mutation rate was 0.1 and the crossover rate was 0.85, all of which helped
to achieve the best fitness. The generation process repeated for as long as the number of
generations developed. When implementing the GA, the search for an optimum solution
was constrained among the input ranges used in the experimental design by the nonlinear
constraint function.

3. Results and Discussion
In Table 3, the results regarding the bending strength of Glulam made under differ‑

ent conditions (Table 2) are given, along with the values predicted by the models being
examined, including the MLR, ANFIS‑ACOR and ANN‑MLP.
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Table 3. The actual values and values estimated by the MLR, ACOR and MLP approaches.

Treatment
Actual
Value
(MPa)

MLR
Value
(MPa)

ACOR
Value
(MPa)

MLP
Value
(MPa)

Treatment
Actual
Value
(MPa)

MLR
Value
(MPa)

ACOR
Value
(MPa)

MLP
Value
(MPa)

1 94.31 96.89 86.77134 93.97804 40 88.48 80.98 89.13896 89.45788
2 135.75 112.3 103.4225 137.6192 41 97.02 80.34 125.6724 97.93634
3 105.19 96.64 104.9268 105.3898 42 105.08 91.23 105.7902 111.5015
4 100.16 117.6 89.13896 97.16088 43 98.9 90.45 106.6536 111.5015
5 116.06 124.5 103.7676 117.7255 44 115.29 101.34 85.90795 115.9854
6 90.2 105.62 103.4225 91.1306 45 82.61 91.34 104.9268 80.60807
7 90.97 96.64 124.809 89.23929 46 120.26 112.45 100.5366 118.7506
8 94.57 96.64 91.16155 92.78109 47 90.77 81.34 92.02495 88.25368
9 87.68 105 108.6761 88.25368 48 95.17 84.56 106.6536 97.16088
10 90.55 96.6 105.7902 89.23929 49 90.83 97.56 109.0212 91.1306
11 140.63 87.3 108.6761 139.5276 50 100.59 89.98 92.02495 101.2069
12 99.83 94.25 108.1578 97.93634 51 99.4 84.44 102.9042 111.5015
13 100.99 111.6 105.7902 104.5311 52 108.29 100.34 102.5591 111.4828
14 106.71 97.85 92.02495 105.3898 53 92.87 84.44 120.4188 102.8141
15 110.61 105.45 89.13896 109.4889 54 90.36 88.45 124.809 91.1306
16 94.21 90.34 85.90795 92.78109 55 140.81 123.34 122.7864 137.6192
17 86.88 92.34 106.6536 89.23929 56 94.89 88.33 122.7864 103.5971
18 119.81 111.34 122.4414 117.7255 57 100.1 89.99 119.5554 111.5015
19 140.4 123.44 111.0438 139.5276 58 119.18 132.23 105.7902 118.7506
20 140.54 124.56 125.6724 139.5276 59 93.28 88.88 122.4414 93.97804
21 131.9 132.45 111.0438 130.2227 60 100.16 88.47 107.8127 100.6346
22 118.2 104.4 86.77134 115.9854 61 112.06 104.56 102.5591 103.5971
23 114.8 105.55 88.79393 102.8141 62 107.65 101.34 108.6761 104.5311
24 105.05 113.4 107.8127 102.8141 63 136.56 114.56 85.90795 130.2227
25 100.77 108.45 108.1578 97.93634 64 90.99 81.34 119.5554 92.78109
26 90.15 95.68 103.7676 89.45788 65 93.19 88.94 102.9042 93.97804
27 112.16 105.67 120.4188 111.4828 66 108.63 104.56 107.8127 109.4889
28 114.9 109.34 109.0212 117.7255 67 100.92 89.99 109.0212 101.2069
29 105.13 115.34 122.7864 103.5971 68 80.05 77.67 108.1578 80.60807
30 129.54 112.34 125.6724 130.2227 69 129.1 121.34 91.16155 111.6252
31 109.5 107.56 122.4414 105.3898 70 101.78 98.34 103.4225 101.2069
32 117.09 104.56 105.7902 115.9854 71 115.3 103.45 100.5366 111.4828
33 95.1 90.76 86.77134 111.6252 72 80.17 87.5 102.9042 80.60807
34 118.18 114.89 104.9268 118.7506 73 85.62 94.56 105.7902 88.25368
35 97.63 88.57 88.79393 111.6252 74 95.29 100.34 103.7676 97.16088
36 88.92 93.56 124.809 89.45788 75 110.77 103.45 88.79393 109.4889
37 109.67 100.9 120.4188 111.5015 76 140.66 112.45 111.0438 137.6192
38 102.38 93.45 100.5366 104.5311 77 97.07 101.45 102.5591 100.6346
39 138.63 123.44 119.5554 111.5015 78 96.12 87.78 91.16155 100.6346

Selection of the Best Modeling Method
Several methods can be used to evaluate the effectiveness and accuracy of a certain

model, and to compare two ormoremodels, as shown in Table 4. The general predictability
of a model is normally determined by R2. However, the performance of a model may not
be determined by R2 alone. The value of R2 must approach one. According to Table 4 and
Figure 2, theMLPmethod gives themaximumR2 value for the testing, training and all data
sets, which are equal to 0.9105, 0.8589 and 0.8659, respectively, while the minimum values
are given by ACOR and MLR, which are equal to 0.2907, 0.6065, 0.5275, 0.4759, 0.4934 and
0.4941, respectively.
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Table 4. The statistics resulting from the testing, training and all data sets based on the MLR, ACOR
and MLP approaches.

Source
Test Data Set Training Data Set All Data Set

R2 RMSE MAE SSE R2 RMSE MAE SSE R2 RMSE MAE SSE

MLR 0.2907 12.87 10.17 3811 0.6065 10.55 8.64 6125 0.5275 12.15 9.8 11528
ACOR 0.4759 10.88 8.80 2723 0.4934 11.52 9.12 7309 0.4941 19.82 16.09 30665
MLP 0.9105 5.16 3.59 319 0.8589 6.31 3.58 2152 0.8659 5.83 3.44 2660
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using (A) MLR, (B) ACOR and (C) MLP.
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The R2 results of theMLP show that the developedmodel’s data match at least 91% of
themeasuredMORdata. Additionally, theMLR andACOR have a lower R2 value, indicat‑
ing that 52.75% and 49.41% of the changes inMOR can be explained by theMLR andACOR
models. Hence, the analysis of the data given in Figure 2 shows that theMORprediction of
MLP achieves a higher accuracy compared to the MLR and ACOR. The high R2 values of
the MLP emphasize the excellent agreement between the measured and predicted outputs
of the MOR, and the high validity of the MLP in this study. Based on the MLR and ACOR,
we see that the models achieve a rather weak performance.

High R2 values do not always mean that the regression model is efficient. Other val‑
ues, such as RMSE, MAE and SSE, are also used to validate and compare more than one
model. In a good model, the MAE and SSE must be as small as possible, while the RMSE
must be close to zero. Higher RMSE, MAE and SSE values mean a larger probability of er‑
ror in the prediction. The RMSE values are 5.16, 6.31 and 5.83, respectively, for the testing,
training and all data sets. However, in MLR and ACOR modeling, the RMSE values are 2‑
to 3‑fold greater than the values of the MLP method for all three items. The MAE values
of the testing, training and all data sets obtained by MLP modeling (3.59, 3.58 and 3.44, re‑
spectively) are significantly lower than those obtained by the MLR and ACOR models. At
the same time, it is observed that the SSE values of the MLP model are significantly lower
(2660, 2152 and 319, respectively, for the testing, training and all data sets) than those ob‑
tained by MLR and ACOR modeling. Hence, the statistics indicate that, according to its
stronger ability to predict the response, the MLP can be used for modeling and estimating
the response with the greatest accuracy and reliability.

Figure 3 shows the residual error percentage of the MLR, ACOR and MLP models. It
is observed that the error of theMLPmodel is the minimum, and the model estimating the
MLR achieves the maximum error. In the MLP model, about 96.15% of the errors range
from −0.01 to 0.1, while in the MLR model, 73.02% of the errors are in this range; equally,
79.48% of the errors are in this range when using the ACOR, indicating the higher accuracy
of the MLP model when estimating the response.
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Figure 3. The comparison of the error values estimated by the MLR, ACOR and MLP.

The equations concerning the interaction of the variables, including F(x1x2), F(x1x3),
F(x1x4), F(x2x3), F(x2x4) and F(x3x4), in terms of both the actual values and the values es‑
timated by the MLP using the multiple objective function and the nonlinear constraint
function, had the highest accuracy according to the statistics given in Table 5, where x1 is
WR, x2 is NC, x3 is Tem and x4 is Tim. The comparison of the SSE, R2, Adj.R2 and RMSE
values of the functions of the interactions of the variables for both sets of actual values
with the values estimated by the MLP shows that the estimated values achieved lower SSE
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and RMSE values, and higher R2. Hence, the values obtained by combining the MLP with
the GA offer a suitable estimate of the effects of every type of combination of variables
on the response being examined. Using the obtained equations, the intensity of the effect
of changes in each variable (including the direct, interactive and quadratic effect) can be
evaluated on the response according to the (polynomial) optimized equation. It is observed
that when using the equations for predicting Glulam’s behavior, the regression coefficients
were very close to those given by the actual equations in all estimations. Additionally, it is
observed that the direct effects of the variables x1, x2, x3 and x4 (with the coefficients 2.425,
0.7444, 1.057, and 2.11, respectively), the interactive effects x1x2, x1x3, x1x4, x2x3, x2x4 and
x3x4 (with the coefficients 1.766, 0.7738, 3.395, 0.4731, 2.724, and 0.8525, respectively) and
the quadratic effects x12, x22, x32, and x42 (with the coefficients 3.709, 0.2929, 0.7099 and
0.5224, respectively) are different. According to the values and signs of the coefficients of
every change source, we see that the interaction of x2x4 causes the greatest increase in the
size of the response surface, while the greatest decrement in strength is related to x4 with
a negative sign. Furthermore, the function F(x1x2) gives the best estimate in predicting the
response according to its highest R2 and adj.R2 values (0.9444 and 0.9119, respectively) and
its lowest errors (SSE = 1481 and RMSE = 4.34).

Table 5. The statistical criteria values of different interactions during the MLP analysis.

Source Function Equation SSE R2 Adj. R2 RMSE

Actual value

F(x1x2) 102 + 9.018x1 + 7.025x2 + 4.243x12 + 3.613x1x2 − 0.1053x22 8341 0.5785 0.5493 10.76

F(x1x3) 108.3 + 9.0181x1 − 1.433x3 + 2.932x12 + 1.192x1x3 − 5.608x32 9001 0.4944 0.4593 11.79

F(x1x4) 97.87 + 9.018x1 + 2.204x4 + 5.099x12 + 1.357x1x4 + 3.49x42 9119 0.4344 0.3952 12.47

F(x2x3) 114.8 + 7.025x2 − 1.433x3 − 2.774x22 + 0.7229x2x3 − 6.967x32 7242 0.3726 0.329 13.13

F(x2x4) 104.4 + 7.025x3 + 2.204x4 − 0.6079x32 − 0.3608x3x4 + 2.132x42 5454 0.2192 0.165 14.65

F(x3x4) 110.7+ −1.433x3 + 2.204x4 − 6.111x32 − 6.386x3x4 + 0.8215x42 4204 0.2824 0.2325 14.04

Estimated value

F(x1x2) 102.8 + 2.425x1 − 0.7444x2 + 3.709x12 − 1.766x1x2 − 0.2929x22 1481 0.9444 0.9119 4.34

F(x1x3) 102.4 + 2.425x1 − 1.057x3 + 3.705x12 − 0.7738x1x3 + 0.07066x32 1494 0.816 0.8361 10.38

F(x1x4) 103 + 2.425x1 − 2.111x4 + 3.654x12 + 3.395x1x4 − 0.5224x42 1494 0.816 0.8035 11

F(x2x3) 108.4 − 0.7444x2 − 1.057x3 − 1.457x22 + 4.731x2x3 − 1.18x32 1513 0.787 0.7213 9.5

F(x2x4) 109 − 0.7444x2 − 2.111x4 − 1.598x22 −2.724x2x4 − 1.773x42 1548 0.9173 0.9012 8.66

F(x3x4) 108.6 − 1.057x3 − 2.111x4 − 1.235x32 − 0.8525x3x4 − 1.686x42 1584 0.7021 0.6631 4.83

Note: x1: WR, x2: NC, x3: Tem, x4: Tim.

Table 6 gives the optimum values derived after determining which MOR estimation
methods offered the strongest precision based on the statistics, including RMSE, MAE,
SSE and R2. In this regard, using the MLP approach combined with the GA as well as
the nonlinear constraint function, the optimum input values and the highest estimate of
MOR can be derived according to the interactive effect of every input. It is observed that
when using aWR equal to 49.1% (−0.045 based on the coded value), anNC equal to 3.385%
(1.385 based on the coded value), a Tem equal to 199.4 ◦C (1.975 based on the coded value)
and a Tim equal to 19.974 min. (1.987 based on the coded value), the highest MOR value
can be obtained for the functions F(x1x2), F(x1x3), F(x1x4), F(x2x3), F(x2x4) and F(x3x4),with
values equal to 110.89 MPa, 83.54 MPa, 115.54 MPa, 91.68 MPa, 124.76 MPa and 86.23 MPa,
respectively. It is observed that the interactive effect of x2x4 was strongest on the response
surface (function), with the highest estimate.
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Table 6. Optimized value of the response (MOR) corresponding to each interactive effect of the
variables obtained by the MLP.

Source Function MOR
(MPa) x1 x2 x3 x4

MLP

F(x1x2) 110.89

−0.045
(49.1%)

1.385
(3.385%)

1.957
(199.4◦C)

1.987
(19.974)

F(x1x3) 83.54
F(x1x4) 115.50
F(x2x3) 91.68
F(x2x4) 124.76
F(x3x4) 86.23

Figure 4 shows the direct effects of the independent factors on the response (MOR). It
is observed that asWR, NC and Tim increase, the MOR increases, while the increase in the
MORdue to the increase inWR is significantly greater than the increasing effects ofNC and
Tim. Moreover, the effect of the press temperature increases up to a certain extent (to the
middle level, i.e., 160 ◦C), while as the press temperature increases further beyond this, its
effect onMOR decreases. It can also be observed in the figure that the experimental values
ofMOR in relation to the effects of each factor agree very well with the values estimated by
theMLP. This agreement can be confirmed by the R2 values (Figure 2) and errors (Figure 3).
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Nano‑ZnO is an additive used to improve the adhesive’s properties due to the small
size of its particles, its high surface activity, and the unsaturated chemical bonds on its
surface. Adding ZnO leads to the creation of an inter‑chain network in the starch ma‑
trix formed by hydroxyl groups on the particles’ surfaces. This arrangement decreases
the movement of the polymer chains due to the cross‑linking network created by the in‑
teraction between the starch matrix and hydroxyl groups of ZnO nanoparticles. There‑
fore, a more rigid structure should form, and the mechanical properties should improve.
This phenomenon produces a significant effect on the moisture content of the bioplastic
because the mechanical properties of starch, as a bioplastic, are largely affected by mois‑
ture [32]. The hydrogen bonds between the starch matrix and ZnO reduce the access of
the hydroxyl groups in the matrix to the water molecules. As a nano‑filler, ZnO creates a
tortuous path for water or moisture to penetrate into the starch matrix [33,34]. Hence, the
moisture around the bioplastic cannot enter into the bioplastic matrices. In addition, it is
speculated that the strength increases and a good interfacial connection is created between
ZnO and the starch matrix.
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While the interfacial connection is an important aspect affecting the mechanical prop‑
erties, the strong interaction between the starch matrix and ZnO nano‑filler may be due to
the homogeneous distribution of ZnO in the starch matrix. Hence, the stress transfer can
be optimized and the mechanical properties can increase correspondingly. As more nano‑
ZnO is added and the starch increases, the viscosity is reduced, and this results in a homo‑
geneous distribution of nanoparticles; due to the possible interactions between starch and
urea and between starch and nano‑ZnO, the stress can be transferred onto a larger surface,
and the strength thus improves. Moreover, although adding starch increases elongation
due to the plastic properties, during the bending test, it was observed that as starch content
increases, the elongation increases, but at the same time, by adding more ZnO nano‑filler,
the elongation is controlled due to the strong interfacial interaction between the starch ma‑
trix and the ZnO nano‑filler (biocomposite flexibility), such that the increase in strength
continues. However, at high contents of starch and low contents of ZnO, the elongation is
at its maximum.

The interactive effects of the factors on the MOR are given in Figure 5. In Figure 5a,
we see that as the MR and NC increase simultaneously, the MOR reaches its maximum,
such that as these two factors are reduced simultaneously, the MOR reaches its minimum.
The interactive effect of WR × Tem on the MOR (Figure 5b) indicates that as WR reaches
its maximum when the press temperature and NC are at their middle values (160 ◦C and
2%, respectively), the MOR attains its maximum. Figure 5c indicates that as WR and Tim
increase simultaneously, while the other factors are held at their middle level, the MOR
reaches its maximum, while the minimumMOR value is achieved when the WR and Tim
are at their minimum. Figure 5d shows the interactive effect of NC× Tem on the response.
It is evident that whenWR and Tim are at their middle level, the NC is at its maximum and
the press temperature is set at the middle level, the MOR reaches its maximum. Figure 5e
shows that as NC and Tim increase and the other factors being examined are set at their
middle levels, the MOR reaches its maximum. When NC and Tim reach their minimum
values, the MOR does so too. Figure 5f shows the interactive effects of Tem and Tim when
other factors are kept constant at their middle level. It is observed that as either of the
variables increase and the other variable decreases, the MOR reaches its maximum, such
that when the press time is at its maximum and the press temperature is at its minimum,
the MOR reaches it maximum. There is an inverse relation between Tem and Tim.

It is shown that when low OS is added to the UF resin, the functional groups are
mainly found in a typical UF resin. However, as more OS is used in the UF resin, the pres‑
ence of –CH2 groups, COO–R ester groups, aldehyde hydroxyl groups and ether connec‑
tions increases. Due to this, the interaction between the functional groups of the modified
starch and the C=O amide group in the UF resin increases [35–37].

Due to the destruction of the polymer chain and the mass loss change of nano‑ZnO in
the starch, the maximum decomposition of starch occurs at a higher temperature [32]. Si‑
multaneously, ZnO has a shielding effect on the starchmatrix, which reduces themass loss
rate of starch destruction [38]. Due to the inverse relationship between the therapeutic tem‑
perature and absorption of ZnO nanoparticles, the increase in ZnO absorption decreases
the aeration temperature, while the total heat content increases as the concentration of ZnO
nanoparticles increases simultaneously. As ZnO nanoparticles aggregate during starch
mixing and nano‑crystals form, both the aggregates and ZnO nanoparticles are coated by
starch [34]. While polysaccharides can form a complex with bivalent metal ions due to the
high number of coordinating functional groups (hydroxyl and glycoside groups) [39], the
dissolved starch can improve the ZnO’s stability in the aquatic medium (similar to resin)
and prevent more aggregation of ZnO, which leads to the formation of ZnO nanoparticles
capsulated by dissolved starch as a means of preparing ZnO nanopatricles.
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During the complete polycondensation of the UF resin, functional groups such as –
CO, –NH and –CH are generated [40]. Due to the Lewis basic nature of the NH‑CO‑NH
group [41], urea interacts with the Lewis acid ZnO and the cross‑link density increases in
the CH chain. At the same time, the chemical interaction results in the stabilization of ZnO
nanoparticles in the polymermatrix. Under the effect of the addition of ZnO nanoparticles,
strong forces resulting from the internal bonding and Van der Waals force form between
the functional groups of the coagulated resin, which leads to high thermal stability [8], i.e.,
the curing rate and heat transfer increase. The reaction with the UF formaldehyde leads to
a heterogeneous morphology with non‑uniform surfaces coated by needle‑shape crystals,
as determined by the U/F fraction when the agglomerated particles combine with urea
with dimensions more than 200 µm. Because ZnO nanoparticles have differently oriented
needle‑shape crystals [42], and due to their high specific area creating active surfaces for
unsaturated chemical bonds [43,44], they can be used effectively in the adhesive. They can
interact with the resin matrix and convert the stress distribution simultaneously, so that
the stress concentrated on the tip of the needle is transferred to other needles [37,45]. ZnO
nanoparticles should be distributed homogeneously inside the resin, because otherwise,
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agglomerations can increase the stress concentration and local effects [46]. Hence, needle‑
shaped nanoparticles can offer stronger mechanical properties when combined with the
resin matrix compared to other nanoparticles with different shapes.

In UF resin, the formation of cross‑links starts at 80 ◦C. However, at this temperature,
the rate of cross‑link formation is low. As the temperature increases, the rate of network for‑
mation increases [47]. This increases the shear strength. As the press temperature increases
further and reaches 200 ◦C, the strength decreases. It was determined that a considerable
mass loss occurred at 175 ◦C, such that beyond this temperature, the curve was descend‑
ing due to starch decomposition [47]. This means that the optimum curing temperature
is in the middle‑range of the press temperature, according to the press time. At the same
time, as the press time increases, the strength increases. A longer hot press time means a
greater requirement for cross‑linking energy. This shows the improvement of mechanical
properties as the press time increases.

It can be seen clearly in Figure 6 that Glulamswith different combinations of resin and
starch, together with different levels of nanoparticles at different press times and temper‑
atures, show different behaviors. The maximum application of starch at the middle levels
of nanoparticle presence, maximum press temperature and time results in the maximum
bending strength, while even in other similar conditions, such as equal levels of nanoparti‑
cles, press temperature and time, the bending strength decreases considerably as the starch
content decreases. According to the stress–deflection relationship offered in Figure 6, im‑
provements in the ductile behavior may also be a reason for this. Generally, the complete
stress–strain curve model can be described as rectilinear until it reaches the failure force;
then, it continues with a decline in cross‑section strengthening. However, a ductility in‑
crease can be seen in the samples enriched with more starch, which is determined by the
expansion of the cross‑section pressure region, while in all of these components, no signif‑
icant cross‑section strengthening is observed after they reach the maximum force and they
are exposed to a sudden decreasing destruction.
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Figure 6. Load versus deflection curves for the selected samples.

The beam can fail under two patterns of tensile and shear stress. During the flat po‑
sition test, the failure is mainly tensile. While the wood layers bear compressive or tensile
stresses, the glue line layer bears the shear stress, creating delamination. In the bending
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test, visual observations indicated that when using optimum values of the independent
variables, the form of failure is tensile. However, as one moves away from the optimum
values, the failure changes from tensile failure to the delaminationmode. The reason is that
the share of the glue line bending strength out of the wood layers’ own strength is reduced,
such that delamination mode failure mainly occurs. Therefore, the maximum bending
stress does not exceed the maximum bending strength in the flatwise position, but when
delamination occurs, the bending stress reaches the maximum bending strength. Hence,
the shear strength causingdelaminationduring bending, which can bedistinguished based
on the failure mode, offers a key insight into the determination of the optimum levels of
application of the independent variables.

The XRD patterns of the natural starch and the starch modified with NaOCl are given
in Figure 7. The diffractogram of the natural starch X‑ray indicates the presence of peaks
at 2θ = 15◦, 17◦, 17.5◦, 19.9◦ and 22.8◦, showing the presence of an a‑type crystalline struc‑
ture [48]. However, the oxidation changes the XRD pattern in starch completely.
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The peak at 15◦ is very weak, and has destroyed other peaks, showing the presence
of a complete crystalline structure in the starch molecule. The steep peaks indicate that
the sample contains crystallinities that are wider in the starch compared to the modified
starch, and in the UF‑OS compared to the UF. The shape of the general spectra in (c) is
more similar to that in (d) compared to the modified starch, and especially the raw starch.
The diffraction of the mixture of the modified starch and the UF resin (d) is much weaker
than the modified starch (b) and the UF resin, to some extent, which may be due to the fact
that the UF‑OS resin has a lower concentration and viscosity, due to the breaking of the
glycoside bridges in the starch in (b) and (c). In addition, the decrease in the intensity of
the peak (d) may be due to the polymerization of the oxidized starch, which decreases the
mobility of the resinmolecules and facilitates urea branching in the resin system as a result
of themodified starch. After the polycondensation reaction of the oxidized starch and urea,
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the original crystalline peaks of the natural starch disappear in the U‑OS completely, and
strong new crystal peaks are produced instead at 37◦, 37.7◦, and 32◦, indicating that the
modified starch and urea are transferred to the U‑OS adhesive.

4. Conclusions
In the present research, the MLR, ANFIS‑ACOR and ANN‑LMPmethodologies were

compared in terms of their ability to generalize and predict the bending strength (MOR)
of Glulam made of a plane tree (Platanus orientalis L.) wood layer with different weight
ratios of the modified starch to the UF resin, and containing different levels of nano‑ZnO
pressed under different time and temperature conditions. The performances of themodels
produced by the three methods were evaluated by different statistics. Accordingly:
• The ANN‑MLP model had the best ability to offer an accurate prediction compared

to the other two methods;
• After determining the ANN‑MLP as the most precise method in estimating the re‑

sponse, and combining it with the GA, the interactive effects of the variables were
derived using the multiple objective and nonlinear constraint functions, respectively,
on the actual and estimated values. It was observed that the difference between the
functions’ factors was very slight, indicating the accurate estimation of the combined
ANN‑GA method used to evaluate the mechanical properties of the laminated prod‑
ucts;

• Based on the XRD analysis, it can be observed that the chemical treatment of starch
and its addition to the UF resin changes the crystallization and the chemical reactivity
significantly;

• It was determined that as a result of increasing the consumption of themodified starch
in the resin, together with relatively increasing the nano‑ZnO in the adhesive, the
behavior of the stress–strain curve improved due to the change in the ductility level.
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