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Abstract: The process of thermolysis of barium hydroxostannate BaSn(OH)6 as a precursor for
preparing barium stannate BaSnO3 has been investigated using the method of differential thermal
analysis. Thermal decomposition products of the precursor were characterized using X-ray diffrac-
tion, IR spectroscopy, low-temperature nitrogen adsorption, and scanning electron microscopy. It
was shown that dehydration at nearly 270 ◦C resulted in the formation of an X-ray amorphous
multiphase product, from which single-phase barium stannate crystallized at temperatures above
600 ◦C. The synthesized barium stannate was used as a functional additive to prepare composite
proton electrolytes in the CsHSO4-BaSnO3 system. The structural and transport properties of the
obtained system were investigated. It is shown that the highly conductive state of the salt is stabilized
in a wide range of temperatures. High conductivity values of composite solid electrolytes in the
medium temperature range create the possibility of their use as solid electrolyte membrane materials.

Keywords: barium hexahydroxostannate; barium stannate; composite proton solid electrolytes;
thermolysis of precursors

1. Introduction

Recently, materials based on tin dioxide SnO2 doped with various transition and
alkaline–earth metals have attracted increased interest and great attention from researchers,
which is associated with many promising areas of their application. Among the promising
materials based on tin dioxide and stannates are composites and nanocomposites such
as MSnO3-SnO2 and M2SnO4-SnO2 (M = Mg, Ca, Ba, Sr, Zn, Cd, Cu, Mn, Co, and Ni).
The latter are widely used as components for electronics, optoelectronics, gas sensors,
and various catalysts [1–27], as well as anode materials for Li-ion batteries and various
autonomous devices for energy storage and conversion [28–40].

Nanomaterials are known to have properties different from those of individual com-
pounds. In particular, nanocomposite solid electrolytes based on acidic salts have enhanced
proton conductivity. Among such salts, cesium hydrosulfate exhibits one of the highest
conductivity values in the high-temperature phase (10−2 S·cm−1). Cesium hydrosulphate
belongs to the solid acids MmHn(XO4)p family (where X = S, Se, P, As; M = Li, Na, K,
Rb, Cs, NH4; and n = 1.5, m = 1.5, p = 1.5). These salts undergo a “superprotonic” phase
transition at temperatures 50–230 ◦C accompanied by a sharp increase in the conductivity
up to 10−3–10−2 S·cm−1. CsHSO4 in the superprotonic phase is the most conductive salt
in this family. However, at the phase transition (414 K), it decreases by four orders of
magnitude to σ = 10−6–10−8 S·cm−1. Therefore, it would be desirable to find methods
to stabilize the highly conductive state of this compound in the low-temperature region.
For this purpose, proton conducting composites based on alkali metal hydrosulfates with
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various dispersed oxides (1 − x)MHSO4-xA, (M = Cs, Rb, K; A = SiO2, TiO2, Al2O3)
were synthesized and studied [41–43]. In addition, comprehensive studies of compos-
ite systems based on a number of acidic salts of MexHy(AO4)z: MeHSO4 (Me = Cs, Rb,
K), Cs5H3(SO4)4, (NH4)3H(SO4)2, CsH2PO4, and silicon dioxide with a different specific
surface area (10. . .580 m2/g) were carried out [44–48].

A number of interesting correlations were found between the concentration of the
components, nature, and morphology of the heterogeneous additive and physicochemical
properties of the ionic salt in the composite. It was shown that heterogeneous doping of salts
with highly dispersed oxide leads to a significant increase in low-temperature conductivity
(by orders of magnitude), a decrease in the superionic phase transition temperature, an
increase in mechanical strength, and in some cases, the thermal stability of composites.
High values of conductivity of composites based on acidic salts and increased mechanical
strength give reason to believe that these materials can be promising for use in various
kinds of electrochemical devices.

As highly dispersed additives for obtaining proton composite solid electrolytes, it
is possible to use stannates of alkali and transition metals MSnO3 (M = Mg, Ca, Sr, Ba,
Zn, Ni, etc.), which can be obtained via thermolysis of precursors, -hydroxostannates
of the MSn(OH)6 type. It should be noted that stannates obtained via thermolysis are
characterized by a relatively high specific surface area (within 10...100 m2/g) and can be
used as functional additives for obtaining composite materials [49].

One of the most reliable methods for obtaining compounds of the MSn(OH)6 type
(M = Mg, Ca, Sr, Ba, Zn, Ni, etc.) in the form of uniformly mixed powder compositions is
the method of co-precipitation of salts. It is based on the precipitation of poorly soluble
compounds in the form of hydroxides or metal salts from aqueous solutions of precursor
salts by a precipitant solution [50]. The precipitant reacts chemically with the salt solutions,
leading to the precipitation of new poorly soluble compounds. If the experiment is set up
correctly, a homogeneous mixture of salts with a given ratio of cations can be reproducibly
obtained. In the ideal case, the cations from the solution are precipitated simultaneously and
at the same rate. The advantages of the chemical precipitation method should be attributed
to the granulometric homogeneity of the resulting powders and the high rate of the process.
This method avoids the disadvantages inherent in powder technology. For example, it
eliminates the need to use the grinding procedure. As a result, the obtained powders are not
contaminated by the abrasion products. MSn(OH)6 compounds obtained via precipitation
under different conditions [51–58], and consequently their thermal decomposition products,
are characterized by a high homogeneity of chemical composition, which is important for
their application as functional additives in nanocomposite materials.

Previously, we have shown that the addition of MSn(OH)6 thermolysis products,
-nanocomposites based on MSnO3 (M = Mg, Ca, and Sr) with a small admixture of SnO2,
leads to an increase in the ionic conductivity of cesium nitrite by more than an order of
magnitude [53,59]. Recently, it was found that the addition of zinc stannate to cesium
dihydrophosphate leads to an increase in the proton conductivity of the salt in the low-
temperature region and an improvement in the stability of the proton electrolyte in the
high-temperature region [49]. It is also known that the introduction of oxides with proton
conductivity into acidic salts leads to an increase in their proton conductivity [48,60]. Unlike
zinc stannate, systems based on barium stannate BaSnO3 are high-temperature proton
electrolytes [61–63]. Consequently, it can be expected that composites based on acidic
salts with the addition of nanocrystalline barium stannate will have increased proton
conductivity.

Barium stannate can be obtained via thermolysis of the precursor BaSn(OH)6. It has
been found earlier [64,65] that BaSn(OH)6 crystallizes during precipitation as an array of
nanorods with a diameter of 20–50 nm and a length up to several micrometers, and the
microstructure of its thermolysis products remains unchanged. This makes it possible to
use barium stannate as an additive for the creation of composite proton solid electrolytes,
for example, on the basis of acidic hydrosulfates. The works on synthesis and investigation
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of transport properties of proton nanocomposite electrolytes based on acidic salts with the
addition of nanocrystalline BaSnO3 have not been carried out before. The aim of the present
work is to optimize the conditions for the synthesis of nanocrystalline barium stannate from
the BaSn(OH)6 precursor and to study the transport and structural properties of proton
composite solid electrolytes CsHSO4-BaSnO3.

2. Materials and Methods
2.1. Materials

The following reagents were used: BaCl2 × 2H2O (GOST 4108-72 “Barium chloride
2-water”, chemical pure, JSC “Reahim”, Donetsk), Na2SnO3 × 3H2O (metastannate 3-water,
TU 6-09-1506-76, pure, LLC “Spektr-chem SPb”, St. Petersburg, Russia), and NaOH (GOST
4328-77 “Sodium hydroxide”, chemical pure, LLC “Khimprom, Perm Region, Russia,).
CsHSO4 crystals were grown via isothermal evaporation from an aqueous solution of
cesium carbonate (99% purity, Rare Metals Plant, Novosibirsk, Russia) and sulfuric acid
(pure “ReaKhimLab”, Moscow, Russia) in a stoichiometric ratio. All chemicals were used
as received without additional purification. For the preparation of 1M solutions of salts
and sodium hydroxide, deionized water obtained using the purification system of the
laboratory deionizer BE-2 was used.

2.2. Synthesis of the Precursor BaSn(OH)6

Barium hexahydroxostannate BaSn(OH)6 was synthesized via hydrolytic co-precipitation
as follows: First, 0.1 mol of BaCl2 × 2H2O was dissolved in 100 mL of 1M hydrochloric acid
solution. To the resulting solution, a 26.67 g (0.1 mol) Na2SnO3 × 3H2O suspension was added,
which corresponds to the atomic ratio of Ba:Sn = 1:1. Then, a 1M NaOH solution was gradually
added, maintaining the pH of the medium within 8.9...9.4. The pH value was monitored using
a laboratory pH meter HI 2221. For complete quantitative co-precipitation of barium and tin
(IV), the mixture was stirred continuously for 12 h. The resulting white precipitate was filtered
from the mother liquor and washed with distilled water until a negative qualitative reaction to
the presence of Cl¯ ions in the solution was achieved and dried in a desiccator at 110 ◦C for 4 h.
The synthesis reaction of BaSn(OH)6 can be written as:

BaCl2 + Na2Sn(OH)6 + 2NaOH = BaSn(OH)6↓ + 2NaCl (1)

The scheme of BaSn(OH)6 precursor preparation is presented in Figure 1.

J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 3 of 16 
 

 

microstructure of its thermolysis products remains unchanged. This makes it possible to 
use barium stannate as an additive for the creation of composite proton solid electrolytes, 
for example, on the basis of acidic hydrosulfates. The works on synthesis and investiga-
tion of transport properties of proton nanocomposite electrolytes based on acidic salts 
with the addition of nanocrystalline BaSnO3 have not been carried out before. The aim of 
the present work is to optimize the conditions for the synthesis of nanocrystalline barium 
stannate from the BaSn(OH)6 precursor and to study the transport and structural prop-
erties of proton composite solid electrolytes CsHSO4-BaSnO3. 

2. Materials and Methods 
2.1. Materials 

The following reagents were used: BaCl2 × 2H2O (GOST 4108-72 “Barium chloride 
2-water”, chemical pure, JSC “Reahim”, Donetsk), Na2SnO3 × 3H2O (metastannate 
3-water, TU 6-09-1506-76, pure, LLC “Spektr-chem SPb”, St. Petersburg, Russia), and 
NaOH (GOST 4328-77 “Sodium hydroxide”, chemical pure, LLC “Khimprom, Perm Re-
gion, Russia,). CsHSO4 crystals were grown via isothermal evaporation from an aqueous 
solution of cesium carbonate (99% purity, Rare Metals Plant, Novosibirsk, Russia) and 
sulfuric acid (pure “ReaKhimLab”, Moscow, Russia) in a stoichiometric ratio. All chem-
icals were used as received without additional purification. For the preparation of 1M 
solutions of salts and sodium hydroxide, deionized water obtained using the purification 
system of the laboratory deionizer BE-2 was used. 

2.2. Synthesis of the Precursor BaSn(OH)6 
Barium hexahydroxostannate BaSn(OH)6 was synthesized via hydrolytic 

co-precipitation as follows: First, 0.1 mol of BaCl2 × 2H2O was dissolved in 100 mL of 1M 
hydrochloric acid solution. To the resulting solution, a 26.67 g (0.1 mol) Na2SnO3 × 3H2O 
suspension was added, which corresponds to the atomic ratio of Ba:Sn = 1:1. Then, a 1M 
NaOH solution was gradually added, maintaining the pH of the medium within 8.9...9.4. 
The pH value was monitored using a laboratory pH meter HI 2221. For complete quan-
titative co-precipitation of barium and tin (IV), the mixture was stirred continuously for 
12 h. The resulting white precipitate was filtered from the mother liquor and washed 
with distilled water until a negative qualitative reaction to the presence of Clˉ ions in the 
solution was achieved and dried in a desiccator at 110 °C for 4 h. The synthesis reaction of 
BaSn(OH)6 can be written as: 

BaCl2 + Na2Sn(OH)6 + 2NaOH = BaSn(OH)6↓ + 2NaCl (1)

The scheme of BaSn(OH)6 precursor preparation is presented in Figure 1. 

 
Figure 1. Synthesis scheme of the precursor. Figure 1. Synthesis scheme of the precursor.

2.3. Characterization

The microstructure and phase composition of the samples were determined using
X-ray diffraction (XRD). X-ray diffraction patterns were recorded at room temperature
using a Bruker D8 Advance diffractometer with CuKα radiation in the 2θ range from
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10 to 70◦. The phases formed in the system were identified using the Crystallographica
Search-Match, Version 2.1 program, and the PDF4 database. The average crystallite size
was estimated from the diffraction line broadening in X-ray diffraction patterns using the
Scherer formula.

d =
kλ

βcosθ
, (2)

where d is the average crystallite size, λ is the X-ray wavelength (1.54051 Å), β is the full
width at half maximum of the diffraction peak, θ is the diffraction angle, and k = 0.9. Ther-
mal analysis of the dried powders was performed on a NETZSCH Jupiter 449C STA syn-
chronous thermal analyzer coupled to a QMS 403C Aëolos (TG-QMS, Netzsch—Geratebau
GmbH, Berlin, Germany) mass spectrometer in an argon flow at temperatures in the range
of 20–700 ◦C at a heating rate of 10 K·min−1. Thermal treatment of the powder was carried
out in a SNOL 6.7/1300 muffle furnace at temperatures of 110, 270, 600, and 700 ◦C for
4 h at each temperature. The microstructure of the samples was studied via field emission
scanning electron microscopy (SEM) on a Hitachi SU8000 electron microscope (Hitachi,
Tokyo, Japan). The images were taken in the secondary electron mode at an accelerating
voltage of 2–30 kV and a working distance of 8–10 mm. The sample’s electron disper-
sion spectra (EDS) were analyzed using an Oxford Instruments X-max energy dispersive
spectrometer. Analytical measurements of the EDS were optimized using a previously
established method, as outlined in the references [66]. Prior to the measurements, the
samples were affixed to an aluminum mount with a 25 mm diameter and secured firmly
with conductive graphite adhesive tape. Additionally, the morphology of the unmodified
samples was studied to preclude any surface effects due to the application of the con-
ductive layer, as noted in [67]. The specific surface area values and the average pore size
were calculated using the Brunauer–Emmett–Teller (BET) method described in detail in
papers [68,69]. Infrared spectra were recorded on a Carry 660 FTIR (Fourier transform
infrared) spectrometer (Agilent Technologies, Santa Clara, CA, USA) with a PIKE Technolo-
gies Gladi ATR (diamond crystal) broken total internal reflection attachment in the range of
500–4000 cm−1. The samples were prepared as vacuum-pressed KBr pellets with an admix-
ture of the compound under study. The composites in the system (1 − x)CsHSO4-xBaSnO3
(where x = 0.2, 0.4-mol fraction of barium stannate) were synthesized by thoroughly mixing
the components in an agate mortar and heating the granulated samples for 10–20 min at
a temperature of 200–210 ◦C, close to the melting point of CsHSO4. The proton conduc-
tivity of the composites was measured using a two-electrode scheme on an alternating
current using an Instek LCR-821 Impedance Meter (frequency range 12 Hz–200 kHz) and a
precision electrochemical meter IPU-1RLK-1/2008 (CIT LLC, Moscow, Russia) (frequency
range 1 Hz–3.3 MHz). To measure the electrical conductivity, pellets with a diameter of
6 mm and a thickness of 1–1.5 mm were pressed from the samples under a pressure of
30–50 MPa. The electrical conductivity of the samples with silver or platinum electrodes
was measured under cooling at a rate of 1–2 ◦C/min in an air atmosphere at a relative
humidity of RH = 30%.

3. Results and Discussion
3.1. Synthesis of Precursor BaSn(OH)6

The X-ray diffraction patterns of the sample obtained as a result of co-deposition
and drying at 110 ◦C in air (Figure 2) show reflexes characteristic of barium hexahydrox-
ostannate BaSn(OH)6, which has a crystal structure with a monoclinic unit cell (space
group symmetry P21/n, PDF4, card no. 09-0053). Along with the BaSn(OH)6 phase, the
diffractogram of the sample shows reflexes related to the barium carbonate BaCO3 phase
with an orthorhombic unit cell of the witherite type (symmetry space group Pmcn, PDF4,
card no. 05-00378).
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Figure 2. Experimental X-ray diffractogram of the sample (black points) in comparison with the
diffractogram calculated using the Rietveld method (red line). The green line is a difference between
the experimental data and the calculated curve. Theoretical diffractograms of BaSn(OH)6 and BaCO3

are also presented for comparison.

The processing of diffractograms using the Rietveld method in the Topas v. 4.2 pro-
gram allowed us to determine the unit cell parameters of BaSn(OH)6 and BaCO3 phases
in the initial sample. The unit cell parameters of BaSn(OH)6 (a = 9.3892 ± 0.0004 Å,
b = 6.3400 ± 0.0003 Å, c = 10.5649 ± 0.0005 Å, β = 113.211 ± 0.003◦, α = γ = 90◦, Z = 4,
Vcell = 577.96 Å3, and ρ = 4.115 g/cm3) are close to the corresponding values for this
compound reported earlier [64]. A small difference in the values of the parameter a and
the angle β is observed. The best-fitting parameters are obtained under the assump-
tion that BaSn(OH)6 crystallites have a size of about 175 nm and a preferred (200) ori-
entation. The BaCO3 unit cell parameters (a = 5.205 ± 0.002 Å, b = 9.120 ± 0.004 Å,
c = 6.430 ± 0.002 Å, Vcell = 305.22 Å3, and ρ = 4.294 g/cm3) are consistent with the data
presented in the PDF database (PDF4, card no. 05-00378), and the particle size of the
witherite phase is 28 nm. Analysis of diffraction data using the Rietveld method shows that
the synthesized BaSn(OH)6 sample contains 33 weight % BaCO3. The presence of witherite
impurity can be explained by the reaction of BaSn(OH)6 with carbon dioxide contained in
the air:

BaSn(OH)6 + CO2 = BaCO3 + SnO2·xH2O + (3 − x)H2O (3)

Nanocrystalline BaCO3 and an equivalent amount of amorphous tin dioxide hydrate
SnO2 × xH2O, which does not give reflexes on X-ray diffractograms, are formed. Accord-
ing to the data of scanning electron microscopy (Figure 3a), a freshly deposited mixed
hydroxide BaSn(OH)6 sample consists of clearly visible rod-shaped particles 10–50 microns
in size, the surface of which is covered with a loose layer, apparently consisting of a mixture
of nanosized particles of barium carbonate and hydrated tin dioxide. According to the
results of chemical microanalysis carried out using energy dispersive spectroscopy, the
atomic ratio Ba:Sn:O lies in the range (10 ± 1):(12 ± 2):(65 ± 3), which is close to the
stoichiometric ratio for both BaSn(OH)6 and the mixture BaCO3–SnO2 × xH2O (at a molar
ratio of components 1:1). It was found that the amount of barium carbonate in the sample
increases when the freshly deposited BaSn(OH)6 precursor is stored in air (Figure 3b).
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3.2. Characteristics of Intermediate Products of Thermolysis and Final Sample of Barium Stannate

The processes occurring during the heating of the freshly deposited BaSn(OH)6 sample
were studied using the method of synchronous thermal analysis; the results obtained are
presented in Figure 4. The process of BaSn(OH)6 thermolysis includes two stages of
dehydration, which correspond to endothermic effects: a weak one with a maximum at
160 ◦C and a strong effect at Tmax = 270 ◦C. The dehydration reaction is indicated by a
change in the ionic current of the mass spectrometric sensor corresponding to the release
of water molecules with an atomic mass of 18 amu. The dehydration process is fully
completed at a temperature of nearly 500 ◦C and can be described by the equations:

BaSn(OH)6 → BaSnO3 + SnO2 + 3H2O (4)

SnO2 × xH2O = SnO2 + xH2O (5)
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Figure 4. The change in mass (TG) and thermal effects (DSC) observed when the initial BaSn(OH)6

sample is heated at a rate of 10 K·min−1. The ion current values of the mass spectrometric sensor
corresponding to the concentration of released water and CO2 molecules are shown by blue and light
green curves, respectively.

Taking into account that the initial sample contains BaSn(OH)6, BaCO3 (being in
weight ratio 0.67:0.33), and amorphous phase SnO2 × xH2O, the molar fraction of which is
equal to the molar fraction of BaCO3, it is possible to calculate the residual value of relative
mass after full dehydration. These values are 86.9 wt.% and 89.8 wt.% for the limiting
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values of the degree of hydration of tin dioxide x = 2 (tin acid) and x = 0 (anhydrous tin
dioxide), respectively. The experimentally found value of the residual mass fraction is
88 wt.%, which corresponds to the value x = 1.24 or the calculated formula of hydrated tin
dioxide SnO2 × 1.24H2O.

Upon further heating of the sample in the temperature range of 500–650 ◦C, an
exothermic peak is observed. The thermal effect is accompanied by a symbatic release of
carbon dioxide molecules with m/z of 44 amu, which is recorded using a mass spectrometric
sensor (Figure 4), which suggests that the thermal effect is caused by the occurrence of the
chemical reaction

BaCO3 + SnO2 → BaSnO3 + CO2, (6)

in which barium carbonate, formed as a result of reaction (3), reacts with tin dioxide as
the product of the amorphous SnO2 × xH2O dehydration. Taking into account the weight
fraction of barium carbonate in the initial mixture (33 wt.%) and the equality of molar
fractions of BaCO3 and SnO2, it is possible to calculate the limiting value of the relative
mass of the product after the dehydration reactions (4) and (5) and CO2 elimination (6). The
calculated value, 84.9 wt.%, is close to the experimental value of 85.3 wt.%, which indicates
the adequacy of the interpretation of the thermogravimetric analysis data.

The results of diffraction studies, shown in Figure 5, agree well with the data of
thermal analysis. On the diffractogram obtained after heating the sample at 500 ◦C, i.e.,
after complete dehydration of the sample, there are only reflections related to the BaCO3
witherite phase, which was initially contained in the sample (Figure 5, curve 2). Conse-
quently, the dehydration products, BaSnO3 and SnO2, formed as a result of reactions (4)
and (5) at this temperature are X-ray amorphous.
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After heating the sample at 600 ◦C, the reflections related to the crystalline BaSnO3
phase appear on the diffractogram, and the intensity of the diffraction peaks of the witherite
BaCO3 phase decreases significantly. According to the data of thermal analysis at this
temperature, the exothermic effect and chemical reaction (5) with the formation of CO2 are
observed. These processes are associated with the crystallization process, the transition of
the amorphous phase of barium stannate into the crystalline phase, and the formation of
a nanocomposite, which is a mixture of BaSnO3 with residual unreacted nanocrystalline
BaCO3 (Figure 5, curve 3). At further increase of the heating temperature up to 700 ◦C,
the reaction (6) comes to an end, and the diffractogram of the sample (Figure 5, curve
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4) corresponds to monophasic barium stannate with the structure of perovskite with a
cubic unit cell (symmetry space group Pm3m). The lattice parameter of the obtained
sample a = 4.1139 ± 0.0002 Å agrees with the literature data (PDF4, card no. 015-00780 and
03-00675) [64,70,71].

A comparison of electron microscopic images of the sample heated at 700 ◦C (Figure 6)
and the original sample (Figure 3) shows that heating the sample leads to an unusual
change in its morphology. Initially, aggregated particles covered with a rough film turn
into an array of nanorods with a thickness of 10–50 nm and a length of a few microns after
heating. This change in morphology can be explained by two processes: the formation of
pseudomorphosis with a preferred orientation of particles during the dehydration of the
initial BaSn(OH)6 crystallites and the subsequent selective crystallization of the amorphous
phases on the end surfaces of the pseudomorphosis. As a result, the impurity phases
BaCO3 and SnO2·xH2O localized on the surface of crystallites are removed from most of
the surface and recrystallize in the end region of the pseudomorphosis. Finally, the particles
of the pseudomorphosis become thinner and longer, forming nanorods.
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The analysis of FT spectra of the synthesized compounds allows us to confirm their
composition and some features of their structure. The characteristic bands in the spectra
were identified based on the literature data [72,73]. The FTIR spectra of the obtained sam-
ples of barium hydroxanthanate BaSn(OH)6 (Figure 7, curve 1) and barium stannate BaSnO3
(Figure 7, curve 2) agree with those obtained earlier [74]. The spectrum of BaSn(OH)6 clearly
shows a broad band in the region of ~562 cm−1 corresponding to the vibrations of Sn-O
bonds. The absorption band in the frequency region of ~750 cm−1 is characteristic of bonds
of more than one type of Ba-O and Sn-O-Ba groups. A series of bands in the 875–980 cm−1

region corresponds to deformation vibrations of Sn-OH groups having partially ionic char-
acter [73,75]. The appearance of bands at ~1475 and 1254 cm−1 indicates the presence of
carbonate impurities in the sample, and the presence of these peaks at different frequencies
can be explained by the conjugate motion of C-O and C=O bonds. Carbonates, mainly
BaCO3, can also be formed as a result of the absorption of carbon dioxide from the atmo-
sphere directly during FTIR spectra [76]. The broad absorption of medium intensity at
1630–1750 cm−1 definitely indicates the presence of water, while the broad band of valence
vibrations ν(OH) in the region at ~3410 cm−1 shows the presence of hydroxyl groups in
the composition of the obtained BaSn(OH)6 precursor (Figure 7, curve 1).
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In the FTIR spectrum of BaSnO3 (Figure 7, curve 2), a strong band at 715 cm−1 is
observed, related to the symmetric valence vibrations of Sn-O bonds. The presence of
physically adsorbed moisture (δ(OH) strain vibrations) is also recorded above 1630 cm−1.
These bands decrease their intensity as a result of the dehydration of the sample during heat
treatment at 600 ◦C, as evidenced by the mass loss from thermogravimetry results. It was
found that as a result of exposure of the BaSnO3 sample to air, a broad diffuse absorption
band in the region of ~3410 cm−1 corresponding to the valence vibrations of ν(H2O) is
again recorded in the IR spectrum.

Table 1 shows the results of studies of the textural properties of the obtained samples
calcined at different temperatures for 4 h. It can be seen that the pseudomorphosis formed
during the thermolysis of BaSn(OH)6 is characterized by high values of specific surface
area and the presence of mesopores with sizes in the range of 2–6 nm. With increasing
heating temperature, the values of specific surface area monotonically decrease.

Table 1. Values of specific surface area and pore size of samples as a function of heating temperature.

Heating
Temperature, ◦C 110 500 600 700

Phase
composition

BaSn(OH)6, BaCO3,
amorphous phase

SnO2 × xH2O

BaCO3,
amorphous phases
BaSnO3 and SnO2

BaSnO3,
BaCO3
(traces)

BaSnO3

Specific surface
area,

m2·g−1
59 43 23 15

Pore size, nm 4.4 5.8 3.3 2.6

The decrease in the specific surface area of composites during calcination is associated
with the growth of the grain size. The crystallite size L can be estimated from the known
values of specific surface area S′ using a simplified expression obtained for spherical or
cubic particles:

L =
6

ρ× S
,
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where ρ is the density of the substance (for BaSnO3 the value of ρ = 7.236 g·cm−3). The
evaluation shows that by increasing the heating temperature from 600 ◦C to 700 ◦C, the
size of BaSnO3 particles increases from 36 to 55 nm, which is close to the corresponding
values estimated from the broadening of diffraction peaks on diffractograms. Further, the
sample of barium stannate obtained by heating the initial sample at 700 ◦C was used as an
oxide additive for the preparation of proton composite solid electrolytes.

3.3. Study of Transport Properties of Composites

Cesium hydrosulphate exists in a low-temperature (LT) monoclinic phase (spacegroup
P21/m) at room temperature, which contains statistically symmetric hydrogen bonds orga-
nized in infinite (HSO4−)n chains. At 141 ◦C, CsHSO4 transforms to the high-temperature
superprononic tetragonal phase (I41/amd) with a conductivity change from 10−6 up to
3 × 10−2 S·cm−1 and proton transfer numbers equal to one [77]. Figure 8 shows temper-
ature dependences of the conductivity of pure CsHSO4 and composites (1 − x)CsHSO4-
xBaSnO3 of different compositions (where x-mole fraction). As seen, at low temperatures,
the introduction of a heterogeneous additive leads to a significant (up to 2.5 orders of
magnitude) conductivity rise with an increase in the BaSnO3 mole fraction up to x = 0.2
(13.2 vol.%). The conductivity enhancement depends markedly on the BaSnO3 additive
concentration.
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Accordingly, the magnitude of the conductivity jump at the phase transition de-
creases with increasing x; the conductivity jump due to the phase transition becomes
much smoother and shifts to the temperature region of ~85 ◦C. The shift of the phase
transition temperature indicates the stabilization of the high-temperature phase in the
low-temperature region. The proton conductivity of the composite 0.8CsHSO4-0.2BaSnO3
is 3 × 10−3 S/cm−1 at 160 ◦C. With further growth of the additive fraction up to x = 0.4
(28.3 vol.% of BaSnO3), the conductivity decreases both in the high-temperature and low-
temperature regions. The activation energy of conductivity decreases to 0.47 eV. The
superionic phase transition completely disappears, and there is only a slight change in the
slope at 85 ◦C on the temperature dependence. The conductivity of the high-temperature
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phase decreases with increasing additive fraction by an order of magnitude at x = 0.2 and
by about 1.5 orders of magnitude at x = 0.4 (see Figure 8). The observed composite effect is
similar to (1 − x)CsHSO4-xSiO2 (or TiO2) systems; however, the conductivity enhancement
is somewhat different [41–43].

X-ray diffraction data (Figure 9) show that the diffraction pattern of the composite may
be represented as a sum of contributions of individual phases. The structure of the CsHSO4
salt is preserved in the composite systems with a significant decrease in the intensity of
reflections and their significant broadening, which may be caused by the dispersion and
partial amorphization of the salt in (1 − x)CsHSO4-xBaSnO3 composites due to the surface
interaction between acid salt and the additive. With the increase in the additive fraction
in the composites, the X-ray diffraction contribution of BaSnO3 (marked with an asterisk)
becomes more pronounced.
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4. Conclusions

In this work, we have demonstrated the possibility of the preparation of nanocrys-
talline barium stannate BaSnO3 via the thermal decomposition of barium hexahydroxostan-
nate precursor BaSn(OH)6. The latter, characterized by rod morphology up to 10–50 µm in
size, was synthesized via hydrolytic precipitation from solutions of barium chloride BaCl2
and sodium stannate Na2SnO3. It was shown that thermolysis at a temperature of about
270 ◦C resulted in the formation of an X-ray amorphous multiphase product consisting of
amorphous phases of hydrated tin dioxide and barium stannate, as well as an impurity of
crystalline barium carbonate BaCO3. During thermal treatment of the sample at 600 ◦C,
barium stannate (with a specific surface area of 23 m2/g) with traces of barium carbonate is
formed. At temperatures of 600–700 ◦C, the BaSnO3 phase crystallizes with a particle size
of 36–55 nm. As a result of the study, it is shown that heating at temperatures of 600–700 ◦C
is the optimal condition for obtaining single phase and highly dispersed barium stannate.

The proton conductivity of composite systems of composition (1− x)CsHSO4-xBaSnO3
(x = 0.2–0.4) has been investigated. The crystal structure of CsHSO4 is preserved in the com-
posite systems with a significant decrease in the intensity of reflexes and their significant
broadening due to dispersion and partial amorphization of the salt in (1 − x)CsHSO4-
xBaSnO3. As a result of the conductivity study, it is shown that the introduction of the
heterophase BaSnO3 additive leads to a significant (up to 2.5 orders of magnitude) in-
crease in conductivity in the low-temperature region with an increasing mole fraction
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of BaSnO3 up to x = 0.2. An increase in the conductivity is accompanied by the shift of
the superionic phase transition to a lower temperature region and its practical disappear-
ance at x = 0.4. The proton conductivity of the composite 0.8CsHSO4-0.2BaSnO3 reaches
3 × 10−3 S·cm−1 at 160 ◦C. This will allow the use of this material in electrochemical appli-
cations. Thus, it is demonstrated that highly dispersed barium stannate BaSnO3 is a suitable
heterogeneous additive in composite solid electrolytes. CsHSO4-BaSnO3 composite solid
electrolytes can be used as solid electrolyte membrane materials for hydrogen production
in the medium-temperature region. This approach may prove to be competitive with
alternative technologies.
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