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Abstract: Laminated metal-composite structures, also known as fibre metal laminates (FMLs), have
emerged as prominent engineering materials in various industries, particularly in the domains of
aircraft and automobile manufacturing. These materials are sought after due to their enhanced impact
and fatigue resistance capabilities. The machining of FMLs plays a crucial role in achieving near-net
shapes for the purpose of joining and assembling components. Delamination is a prevalent issue
encountered during the process of conventional machining, thus rendering FMLs are challenging
materials to machine. This study aims to investigate the cutting process of novel fibre intermetallic
laminates (FILs) using the abrasive water jet (AWJ) cutting technique. The FILs consists of carbon
and aramid fibers that are adhesively bonded with a resin matrix filled with reduced graphene
oxide (r-GO) nano fillers. Moreover, these laminates contain embedded Nitinol shape memory
alloy sheets as the skin materials. Specifically, the study aims to investigate the impact of different
factors, such as the addition of reduced graphene oxide (r-GO) in the laminates (ranging from
0 to 2 wt%), traverse speed (ranging from 400 to 600 mm/min), waterjet pressure (ranging from
200 to 300 MPa), and nozzle height (ranging from 2 to 4 mm), on the material removal rate (MRR),
delamination factor (FD), and kerf deviation (KD). ANOVA was used in the statistical analysis to
determine the most influential parameters and their effects on the selected responses. The optimal
AWJC parameters are determined using a metaheuristic-based moth–flame optimization (MFO)
algorithm in order to enhance cut quality. The efficacy of MFO is subsequently compared with
similar well-established metaheuristics such as the genetic algorithm, particle swarm algorithm,
dragonfly algorithm, and grey-wolf algorithm. MFO was found to outperform in terms of several
performance indices, including rapid divergence, diversity, spacing, and hypervolume values, among
the algorithms compared.

Keywords: fibre metal laminates; optimization; metaheuristics; moth–flame optimization; statistical
analysis; abrasive waterjet cutting

1. Introduction

Fibre metal laminates, often known as FMLs, are a pioneering kind of advanced com-
posite material that has spurred a revolution in the use of composite materials in aerospace
and structural engineering applications. FMLs have emerged as a viable alternative to
fulfil the ever-growing need for lightweight, high-strength materials [1]. By combining
the great mechanical capabilities of both metal alloys and high-performance fibers, FMLs
have been able to combine the exceptional mechanical properties of both types of materials.
The mechanical properties of FMLs are considerably improved with the addition of nano
fillers into the polymer matrix materials. Recently, several researchers have studied the
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impact of incorporating nano fillers such as nano clay, carbon nano tubes (CNTs), tita-
nium oxide (TiO2), graphene oxides (GO and r-GO), and silicon oxide (SiO2), and their
concentrations, on the mechanical properties of FMLs. Among the various nano fillers,
reduced graphene oxide (r-GO), a novel two-dimensional derived member of nanocarbon,
has gained significant attention from researchers due to its outstanding properties, such
as higher surface area, exceptional elastic modulus, and improved electrical conductiv-
ity [2–4]. Because of the one-of-a-kind synergy that exists between metallic layers and
fibre-reinforced composites, FMLs provide a harmonic balance of stiffness, strength, and
damage tolerance. As a result, FMLs are very helpful in a variety of important sectors [5].
The inherent complexity of FMLs results in a challenging set of problems that must be
overcome before FMLs can be considered successful for end-use applications. One of the
most significant obstacles is the heterogeneity of FMLs, which occurs when alternating
layers of metal and fibre-reinforced composites display significantly different mechanical
characteristics. This heterogeneity frequently leads to concerns such as differential wear on
cutting tools and uneven material removal rates, both of which may impact the dimensional
accuracy of machined components [6]. Furthermore, the abrasive nature of the reinforcing
fibers inside FMLs may result in quick tool wear and delamination, which poses substantial
challenges to obtaining the necessary surface finish and limiting damage to the material.
As FMLs continue to gain popularity in aerospace and structural applications, a more
in-depth knowledge of these machining issues becomes important. This drives the need for
creative machining processes and tactics to unleash the full potential of these sophisticated
materials [7].

Abrasive waterjet (AWJ) machining has emerged as a promising unconventional ma-
chining process for the precise shaping and trimming of FMLs. FMLs consist of alternating
layers of metal and fibre-reinforced composites, requiring machining processes that can
effectively minimize delamination and fibre damage while preserving the structural in-
tegrity of the metallic layers. AWJ machining, known for its non-thermal and non-contact
characteristics, has demonstrated significant advantages, such as precision and versatility
for intricate designs and shapes, which reduce the need for secondary finishing processes.
Additionally, it is environmentally friendly, as it produces minimal waste and does not
emit harmful fumes or gases, setting it apart as a sustainable choice for modern manu-
facturing when compared with other non-traditional machining processes. By utilizing a
high-velocity flow of water mixed with abrasive particles, AWJ machining enables precise
cutting and trimming of FMLs while minimizing the formation of heat-affected zones and
reducing the risk of mechanical damage [8]. The versatility of this technique allows for the
machining of intricate geometries with exceptional accuracy, making it highly suitable for
the complex structures and architectures commonly encountered in FMLs. On the other
hand, achieving effective cut quality characteristics in AWJ cutting of novel engineering
materials, especially in stacked composite laminates, is still difficult due to the abundance
of process related variables and the dominance of quality deficiencies such as delamination,
fibre pull-out, a higher kerf ratio, and inferior surface quality [9]. Therefore, in order to
achieve defect-free components that fulfil functional requirements, particularly for FMLs,
it is necessary to conduct in-depth research into the effects of AWJ cutting parameters on
these response properties.

In the recent past, several researchers have extensively investigated the impact of AWJ
cutting on composite laminates. The AWJ cutting characteristics of a composite consisting
of lanthanum phosphate and yttria were investigated by K. Balamurugan et al. [10] using a
response surface approach. The impacts of kerf taper, surface quality, and material removal
rate, along with cutting speed, stand-off distance, and water pressure, have been taken into
consideration as input factors. The results of their study indicate that the cutting speed has a
detrimental effect on surface quality, while water pressure has a beneficial effect on both kerf
taper and material removal rate. The effects of significant parameters of AWJ cutting on the
kerf taper and surface roughness of a hybrid composite made of glass and coconut fibre were
investigated by Kalirasu et al. [11] using the Taguchi methodology. Based on the findings of
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the investigation, it can be concluded that the chosen response characteristics are primarily
influenced by the size of the abrasive particles. Alberdi et al. [12] conducted a drilling
operation through AWJ machining on Ti/CFRP stacked composite laminates to investigate
their qualitative traits. The research findings indicate that the arrangement of stacks, water
pressure, and traverse speed of the focusing tube play a crucial role in determining the
taper of drilling and surface quality. Hutyrová et al. [13] conducted an experimental
investigation to examine the surface topography of wood plastic composites machined
using AWJ. Based on their findings, the utilization of AWJ cutting was determined to be an
effective method for machining plastic composites while avoiding the melting of the matrix
materials. Kalirasu et al. [14] employed an analytical technique known as response surface
methodology (RSM) and multi-objective optimization based on ratio analysis (MOORA) to
evaluate the performance of jute/polyester composites in terms of AWJ cutting assessment.
An investigation was conducted to examine the impact of stand-off distance, cutting
speed, and jet pressure on the kerf taper and surface roughness of machined surfaces. The
results indicate that the proposed method is capable of effectively handling fibre-reinforced
composites with a maximum thickness of 3 mm. Pahuja et al. [15] conducted experimental
and statistical analyses to investigate the surface and kerf characteristics of stacked titanium
(Ti) and carbon fibre reinforced polymer (CFRP) fibre metal laminates (FMLs) using AWJ
cutting. It has been asserted that the uppermost layer of the skin is the site where micro
buckling and fractures initiate the erosion mechanism of FMLs. Furthermore, the influence
of the metal skin and polymer composite designs on the failures of the FML interface is
significant. Ramulu [16] conducted an analytical investigation of the influence of AWJ
cutting factors on the kerf quality of machined Ti/CFRP composite stacks. An empirical
model was developed to predict the depth of penetration and material removal mechanism
resulting from water jet pressure. It was found that this model can effectively guide the
adjustment of parameters in AWJ cutting to achieve defect-free cutting zones. However,
only a few research studies are available on the multi-response optimization of AWJ cutting
on FMLs, especially when adopting metaheuristic algorithms.

This study focuses on the analysis of the AWJ cutting capabilities of a newly developed
fibre intermetallic laminate (FIL). The FIL is composed of reduced graphene oxide (r-GO)-
filled epoxy prepregs, which are reinforced with a combination of carbon and aramid
fibres. Additionally, Nitinol shape memory alloy sheets are incorporated as the skin
materials in the FIL structure. The independent variables considered in this research
include traverse speed, waterjet pressure, and nozzle height, along with different wt%
values of r-GO nano fillers. The influence of these independent variables on three response
characteristics, namely material removal rate, delamination factor, and kerf deviation,
were investigated through statistical analysis and response surface plots. A metaheuristic-
based moth–flame optimization (MFO) algorithm was used to optimize the AWJ cutting
parameters to improve the cut quality features, with its results compared to those of other,
more well-known metaheuristic algorithms, such as the genetic algorithm (GA), particle
swarm algorithm (PSO), grey-wolf algorithm (GWO), and dragonfly algorithm (DFO).

2. Methodologies
2.1. Response Surface Methodology

This study investigates the effects of selected AWJ cutting variables and the incorpora-
tion of r-GO in FILs on selected quality and performance characteristics including MRR, FD,
and KD. Since there are numerous process-related parameters that are dynamically engaged
in the material removal mechanism, the AWJ cutting process has become exceedingly com-
plicated. Thus, the experimentation and prediction of optimal process variables requires a
viable and systematic experimental plan in order to minimize the number of experimen-
tal trials, and thereby reduce processing costs and time consumption. Response surface
methodology (RSM) has been found to be an effective technique for designing experiments
with a minimum number of experimental trials in order to determine the interaction be-
tween dependent and predictor variables of complex processes such as machining, additive
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manufacturing, and thermo-mechanical systems [17]. In order to construct higher-order
mathematical models for optimization, the current study employs Box–Behnken design
(BBD), a subset of RSM, to design and conduct AWJ cutting experiments. The formulation
of quadratic polynomial models by means of RSM is as follows:

R = β0

k

∑
i=1

βixi +
k

∑
i=1

βiix2
i + ∑

i
∑

j
βijxixj + ε (1)

where R is the response and xi is the value of the ith AWJ cutting parameter; β0 is the model
constant; βi, βij, βii represent the linear, interaction, and quadratic coefficients, respectively;
and ε indicates the statistical distribution error. The relevant data are typically acquired
through the design of experiments, followed by the statistical multiple regression approach,
to develop the empirical models. To explain the relevance of the empirical model, a more
popular statistical method such as analysis of variance (ANOVA) is used.

2.2. Moth–Flame Optimization Algorithm

The moth–flame optimization (MFO) algorithm is a novel stochastic population-based
approach which is primarily inspired by moths’ natural transverse orientation navigational
strategy [18]. Moths can only migrate in a straight line using this strategy when the light
source is far away. The moth’s objective is to get to the flame. The flame’s objective is to
achieve its ideal location and improve flame density. According to the flowchart shown in
Figure 1, MFO begins by creating moths at random in the solution space, calculates each
moth’s fitness values (i.e., location), and tags the ideal position with a flame. The next
step is to update the moths’ positions using a spiral movement function to obtain better
positions that are tagged by a flame, update the new best individual positions, and then
repeat the previous steps (updating the moths’ positions and generating new positions)
until the termination criteria are satisfied.

The overall structure of the MFO algorithm consists of three stages, namely initial-
ization, iteration, and the stopping criterion. The step-by-step implementation of MFO
algorithms is as follows:

2.2.1. Stage 1: Initializing the Population of Moths

The location of the moth in space must be solved as a variable in the MFO algorithm,
which assumes that the moth represents a potential solution to the considered problem.
Moths can fly in one, two, three, and hyperdimensional space by modifying their position
vectors. Given that MFO is basically a swarm intelligence optimization technique, the moth
population can be represented as follows:

M =


m11 m12 · · · · · ·
m21 m22 · · · · · ·

...
...

...
...

mn1 mn2 · · · · · ·

m1d
m2d

...
mnd

 (2)

where the number of moths can be denoted as n and the number of process parameters
(dimensions of the problem) can be represented as d. The corresponding fitness values for
the selected number of moths can be represented and memorized in an array as follows:

OM =


Om1
Om2

...
Omn

 (3)

where the fitness function value of the corresponding moth is denoted as Omi, which is
determined according to the actual situation.
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The remaining elements in MFO are flames, which can be denoted in D-dimensional
space as a matrix [F] followed by its fitness function vector [OF].

F =


f11 f12 · · · · · ·
f21 f22 · · · · · ·
...

...
...

...
fn1 fn2 · · · · · ·

f1d
f2d
...

fnd

 (4)

OF =


O f1
O f2

...
O fn

 (5)



J. Compos. Sci. 2023, 7, 462 6 of 26

It must be noted that the MFO algorithm provides solutions for both moths and flames.
The way they are handled and updated in each iteration is what makes them different from
one another. The moths are the real searchers; they travel around the search area, and their
current best position is among the flames. In other words, flames may be thought of as
flags or pins that moths drop while scouring the search area. In order to update a flag
(flame) if a better solution is discovered, each moth examines the area surrounding it. A
moth never loses its ideal solution with this process.

2.2.2. Stage 2: Updating the Position of Moths

To obtain the global optimal solutions of the optimization problems, MFO uses three
distinct functions. The following is a definition of these functions:

MFO = (I, P, T) (6)

where I indicates the first random locations of the moths, P indicates the movement of the
moths in the search area, T indicates the end of the search process. The populations of MFO
are initialized as follows:

M(i, j) = (u(i)− l(j))× (rand() + l(i)) (7)

where the upper and lower bounds of the algorithm parameters are defined as u&l, re-
spectively. The moths fly in a transverse direction in the search area, as was previously
indicated. When using a logarithmic spiral, the following three requirements must be met:

• The initial point of the spiral should start from the moth;
• The end point of the spiral should be at the position of the flame;
• The movement of the spiral should not exceed the search space.

To fulfil the above conditions, the logarithmic spiral for the MFO algorithm can be
defines as follows:

S
(

Mi, Fj
)
= Di.ebt. cos(2πt) + Fj (8)

where the distance between the moth and flame
(∣∣Fj −Mi

∣∣) is defined by Di, the shape of
the logarithmic spiral is denoted by b, and a random number between −1 to 1 is defined
by t. The spiraling motion of the moth towards the flame in the search space ensures that
exploitation and exploration are balanced in MFO. Furthermore, utilizing the OF and OM
matrices, the moths fly around the flames (i.e., each moth flies encircling the closest flame)
in order to avoid the probability of obtaining a local optimum.

2.2.3. Stage 3: Updating the Number of flames

The number of flames should be less during the iteration for obtaining the global
optimal solutions. Hence, an adaptive mechanism has been selected for enhancing the
exploitation of the MFO algorithm by simultaneously reducing the number of flames. The
mathematical expression for updating the number of flames can be represented as follows:

fNo = round
(
(N − l)×

(
N − l

T

))
(9)

where the maximum number of flames can be represented as N, and the present iteration
number and the maximum number of iterations are denoted as l and T, respectively.

3. Experimentation and Measurements
3.1. Fabrication of Fibre Intermetallic Laminates

The AWJ cutting experiments were conducted using FILs. These laminates were com-
posed of Nitinol foils as the skin materials, epoxy resin as the matrix, and carbon/Kevlar
as the prepreg materials. To fabricate these laminates, a vacuum-assisted resin infusion
process was employed. Three different weight percentages of r-GO nano fillers (0%, 1%,
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and 2%) were incorporated into the laminates. The r-GO fillers with varying weight per-
centages were evenly distributed into the acetone-diluted epoxy resin using mechanical
stirring. The stirring process lasted for approximately 15 min at a probe speed of 120 rpm.
To achieve a homogeneous mixture, a sonication process was conducted using an ultrasonic
bath (Model: Sonoplus HD 2000, manufactured by Bandelin Electronic GmbH & Co. KG,
Germany). The process lasted for a duration of 45 min, with a power output of 70 W. The
temperature of resin and r-GO mixtures was reduced during the sonication process by
placing the vessel in an ice water bath. Following the sonication process, the acetone present
in the resin mixture was removed by subjecting the mixture to heat in a vacuum oven at a
temperature of 70 ◦C for a duration of 60 min. The hardener was combined with the resin
in a ratio of 10:1 using a magnetic stirrer set at a stirring speed of 180 rpm for a duration
of 15 min. This process ensures improved dispersion of r-GO particles and the removal of
any trapped air voids within the mixture. The r-GO-reinforced FILs were produced using a
vacuum-assisted resin infusion process. This involves stacking woven carbon and aramid
fibers in an alternating pattern, with two layers of outer-skinned Nitinol foils. The stacking
sequence is as follows: NiTi/[carbon/epoxy/aramid]8/NiTi. The fabricated laminates
underwent a curing process at an ambient temperature for a duration of 24 h, while being
subjected to a pressure of 6 bar. The fabricated FIL had cross-sectional dimensions of
300 × 300 × 3.5 ± 0.3 mm3.

3.2. Abrasive Waterjet Cutting of FILs

Using a high-precision cantilever type computer-numerical-controlled AWJ cutting
machine (Model: S3015, Waterjet Germany, India), the cutting experiments were carried out
on three different kinds of FILs made with 0, 1, and 2 wt% of r-GO nano fillers. To facilitate
effective machining operations, the AWJ machine was outfitted with a high-pressure
intensifier pump with an operating pressure of up to 450 MPa and a 0.76 mm diameter
carbide nozzle. Throughout the studies, the machining parameters, including the abrasive
flow rate of 200 g/min, the abrasive particle size of 177 µm, and the jet impact angle of 90◦,
were held constant. For the investigation of material removal rate, delamination factor, and
kerf deviation, a total of 29 straight parallel slots with a cutting length of 50 mm were made
in the various FILs in accordance with the RSM-BBD experimental design strategy for four
dependent variables with three levels (Table 1). Figure 2 illustrates the AWJC experimental
setup and the processed FIL samples. The AWJ cutting system has many process-related
dependent variables, but the most important ones, such TS, WP, and NH, were chosen for
the present study, and were obtained from exhaustive pilot studies based on the capability
of the system and the available existing studies. Following the execution of the AWJ
cutting experiments, the response variables MRR, FD, and KD were measured three times
for each cut, and their mean values were considered for further studies to eliminate the
statistical prediction errors. MRR represents the mass loss of substrate material during each
experimental run and is calculated as follows:

MRR(g/s) =
(

Material removal f or each cut× cutting speed
Length o f cut

)
(10)

Table 1. Process parameters for AWJ cutting experimentation.

S. No. Dependent Variables Code
Levels

Low Medium High

1 Weight percentage of r-GO (wt%) r-GO 0 1 2
2 Traverse speed (mm/min) TS 400 500 600
3 Waterjet Pressure (MPa) WP 200 250 300
4 Nozzle height (mm) NH 2 3 4
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A video measuring system (made by Accurate Gauge, India) outfitted with a high-
resolution scanning system and M2-2D software was used to measure the delamination
factor (FD), which is defined as the peel-up and push-out delamination along the slot of
through cuts. The ratio between the maximum width of the delaminated area and the
actual width of the cut along its length is used to calculate the delamination factor. The
top kerf width of the cut surface was measured using a table top co-ordinate measuring
machine. The measured response characteristics for the proposed experimental design are
presented in Table 2.

Table 2. Experiment details based on RSM-BBD and their measured responses.

Exp. No.

Dependent Variables Output Responses

r-GO (wt%)
Traverse

Speed
(mm/min)

Waterjet
Pressure

(MPa)

Nozzle
Height (mm)

Material
Removal
Rate (g/s)

Delamination
Factor

Kerf
Deviation

(mm)

1 0 400 250 3 3.089 2.141 1.857
2 2 400 250 3 3.338 2.132 1.937
3 0 600 250 3 3.105 1.822 1.825
4 2 600 250 3 3.115 2.317 1.851
5 1 500 200 2 3.233 2.09 2.148
6 1 500 300 2 2.993 2.048 2.136
7 1 500 200 4 3.323 2.157 2.196
8 1 500 300 4 3.136 2.248 1.897
9 0 500 250 2 2.994 1.902 1.857
10 2 500 250 2 2.945 2.006 2.201
11 0 500 250 4 2.937 1.924 2.057
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Table 2. Cont.

Exp. No.

Dependent Variables Output Responses

r-GO (wt%)
Traverse

Speed
(mm/min)

Waterjet
Pressure

(MPa)

Nozzle
Height (mm)

Material
Removal
Rate (g/s)

Delamination
Factor

Kerf
Deviation

(mm)

12 2 500 250 4 3.173 2.301 1.802
13 1 400 200 3 3.389 2.196 2.094
14 1 600 200 3 3.457 2.217 2.019
15 1 400 300 3 3.329 2.322 1.937
16 1 600 300 3 3.081 2.153 1.889
17 0 500 200 3 3.329 1.9 1.977
18 2 500 200 3 3.396 2.175 2.245
19 0 500 300 3 3.058 1.942 2.057
20 2 500 300 3 3.233 2.196 1.884
21 1 400 250 2 3.009 2.193 1.977
22 1 600 250 2 3.073 2.006 1.958
23 1 400 250 4 3.245 2.259 1.912
24 1 600 250 4 2.977 2.28 1.826
25 1 500 250 3 3.045 2.18 2.126
26 1 500 250 3 3.057 2.19 2.117
27 1 500 250 3 3.059 2.213 2.116
28 1 500 250 3 3.073 2.204 2.112
29 1 500 250 3 3.079 2.188 2.122

4. Results and Discussion

In order to assess the effectiveness of the experimental approach, it was necessary to
undertake statistical analysis on the conducted experiments and the resulting response
variables. The study used a multi-parametric analysis of variance (ANOVA) to examine
several statistical measures, including the coefficient of determination, sum of squares,
lack of fit, individual, interaction, quadratic effects, and F-statistics. This analysis was
conducted on chosen response features, namely MRR, FD, and KD, of the test samples
processed using the AWJ cutting process. The investigation was carried out in three distinct
phases. Initially, ANOVA was used to assess the statistical significance and the impact
of selected independent parameters on the performance and quality characteristics of cut
specimens. The subsequent phase included the formulation of second-order polynomial
equations for each response feature, with the aim of establishing the correlation between
the selected dependent variables and the features of the response. During the third step, the
metaheuristic algorithms were used to identify the most optimal parametric combinations.

4.1. Statistical Analysis of Developed Polynomial Models

Multi-parametric ANOVA is used to conduct comprehensive investigations on the sta-
tistical implications of response characteristics acquired from experimental data. Tables 3–5
provide the findings of the ANOVA for selected output responses, including MRR, FD, and
KD. With a 95% level of confidence, the AWJ cutting experiments were carried out, and
Design Expert™ 13 software was used to perform the statistical analysis. The development
of quadratic polynomial models for subsequent studies followed an analysis of statistical
indicators such individual and interaction effects, coefficient of determination, lack of
fit, and sum of squares. The stated AWJ cutting variables have a considerable influence
on the response features, according to the statistical results from ANOVA. The lack-of-fit
values were also found to be statistically significant within the chosen range of processing
parameters, indicating the significance of the experiments that were carried out. In addi-
tion, the backward elimination technique was used to exclude the insignificant parametric
terms with probabilities greater than 0.05 from the ANOVA in order to develop polyno-
mial models. Multiple-regression coefficients (R2) of 0.9955, 0.9954, and 0.9992 for MRR,
FD, and KD, respectively, indicate the closeness of the derived models to the actual data.
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Equations (11)–(13) represent the obtained polynomial regression models following the
elimination of insignificant parameter combinations. Residual plots were used in addition
to ANOVA to statistically confirm the results of the accomplished AWJ cutting experimental
trials. Figure 3a–c provide a summary of the statistical analysis conducted for each response
characteristic. Based on the summary reports, it has been observed that the distribution
of data points along the center line provides evidence of the statistical significance of the
developed models, as demonstrated by the normal probability plots. Additionally, the
distributional frequency of data, as depicted by the histogram, shows that the measured
responses are well constructed at a 95% confidence level. These findings indicate that the
measured experimental data can be effectively utilized for further investigations.

MRR(g/s) = 6.433− 0.028× A− 0.0014× B− 0.0302× C + 0.721× D
−0.0006× AB + 0.0005× AC + 0.0712× AD− 0.00002× BC− 0.0008× BD
+0.0178× A2 + 7.97× 10−6 × B2 + 0.00007× C2 − 0.067× D2

(11)

FD = 2.877− 0.434× A− 0.004× B + 0.006× C− 0.161× D + 0.001× AB
+0.068× AD− 0.000009× BC + 0.0005× BD + 0.0007× CD− 0.125× A2

+3.529× 10−6 × B2 − 5.583× 10−6 × C2 − 0.0427× D2
(12)

KD (mm) = −3.345 + 1.285× A + 0.015× B + 0.00041× C + 0.8086× D
−0.0001× AB− 0.002× AC− 0.149× AD + 1.35× 10−6 × BC− 0.0002× BD
−0.001× CD− 0.096× A2 − 1.548× 10−5 × B2 + 7.91× 10−6 × C2 − 0.044× D2

(13)

Table 3. Statistical analysis of MRR.

Sources SS DF MS F Prob > F

Model 0.6130 14 0.04379 224.815 <0.0001 Significant
A-r-GO 0.03944 1 0.03944 202.510 <0.0001
B-TS 0.02910 1 0.02910 149.432 <0.0001
C-WP 0.14018 1 0.14018 719.696 <0.0001
D-NH 0.02466 1 0.02466 126.609 <0.0001
AB 0.01428 1 0.01428 73.313 <0.0001
AC 0.00291 1 0.00291 14.970 0.0017
AD 0.02030 1 0.02030 104.251 <0.0001
BC 0.02496 1 0.02496 128.163 <0.0001
BD 0.02755 1 0.02755 141.470 <0.0001
A2 0.00206 1 0.00206 10.580 0.0058
B2 0.04120 1 0.04120 211.532 <0.0001
C2 0.19514 1 0.19514 1001.864 <0.0001
D2 0.02862 1 0.02862 146.934 <0.0001
Residual 0.00272 14 0.00019
Lack of Fit 0.00199 10 0.00019 1.091 0.5085 Insignificant
Pure Error 0.00073 4 0.00018
R2 99.55% Adj. R2 99.11%
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Table 4. Statistical analysis of FD.

Sources SS DF MS F Prob > F

Model 0.51333 14 0.03666 223.756 <0.0001 Significant
A-r-GO 0.18650 1 0.18650 1138.112 <0.0001
B-TS 0.01672 1 0.01672 102.065 <0.0001
C-WP 0.00252 1 0.00252 15.396 0.0015
D-NH 0.07114 1 0.07114 434.175 <0.0001
AB 0.06350 1 0.06350 387.528 <0.0001
AD 0.01863 1 0.01863 113.702 <0.0001
BC 0.00902 1 0.00902 55.074 <0.0001
BD 0.01081 1 0.01081 66.003 <0.0001
CD 0.00442 1 0.00442 26.986 0.0001
A2 0.10087 1 0.10087 615.606 <0.0001
B2 0.00807 1 0.00807 49.301 <0.0001
C2 0.00126 1 0.00126 7.712 0.0148
D2 0.01183 1 0.01183 72.200 <0.0001
Residual 0.00229 14 0.00016
Lack of Fit 0.00159 10 0.00015 0.9035 0.5945 Insignificant
Pure Error 0.00070 4 0.000176
R2 99.54% Adj. R2 99.12%

Table 5. Statistical analysis of KD.

Sources SS DF MS F Prob > F

Model 0.48251 14 0.03446 1343.006 <0.0001 Significant
A-r-GO 0.00700 1 0.00700 273.089 <0.0001
B-TS 0.00997 1 0.00997 388.742 <0.0001
C-WP 0.06438 1 0.06438 2508.923 <0.0001
D-NH 0.02871 1 0.02871 1118.886 <0.0001
AB 0.00072 1 0.00072 28.406 0.0001
AC 0.04862 1 0.04862 1894.559 <0.0001
AD 0.08970 1 0.08970 3495.301 <0.0001
BC 0.00018 1 0.00018 7.101 0.0185
BD 0.00112 1 0.00112 43.730 <0.0001
CD 0.02059 1 0.02059 802.407 <0.0001
A2 0.06020 1 0.06020 2346.004 <0.0001
B2 0.15551 1 0.15551 6060.049 <0.0001
C2 0.00253 1 0.00253 98.923 <0.0001
D2 0.01268 1 0.01268 494.165 <0.0001
Residual 0.00035 14 2.5 × 10−5

Lack of Fit 0.00024 10 2.4 × 10−5 0.805 0.6457 Insignificant
Pure Error 0.00011 4 0.00002
R2 99.92% Adj. R2 99.85%

4.2. Influence of AWJ Cutting Parameters on Response Characteristics

Increased MRR with reduced FD and KD are desirable during the mechanical-based
AWJ cutting process to enhance cutting quality. An enhanced MRR is often sought by man-
ufacturing industries to improve the production rate while also reducing manufacturing
costs, and FD and KD are quality indices of processed end-use components that should be
decreased. The refining of the delamination factor and the reduction in kerf deviation have
considerably improved the precision of the cutting process, reducing inaccuracy during
assembly and decreasing substrate material depletion. From the statistical investigation
results, the considered AWJ cutting parameters and the addition of r-GO nano fillers to the
fabrication of FILs has a significance influence on the cut quality characteristics.

Figure 4a–f provide valuable insights into the intricate relationship between the AWJ
cutting parameters and the cut quality characteristics, where two variables are varied while
the other two variables are kept unchanged. From the statistical investigation, it is found
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that all the selected process parameters have a significant influence on MRR (Table 3). The
influence of the addition of r-GO and the nozzle height on the MRR is indicated in Figure 4a.
From the response surface plot, the maximized MRR was attained at an augmented nozzle
height (4 mm) and r-GO addition (2 wt%). An increase in nozzle height causes depth
craters by increasing the momentum of hard abrasive particles that contact the substrate.
In turn, this increases substrate surface erosion, allowing for the recovery of increased
MRR [19]. The impact of traverse speed and the waterjet pressure on the MRR is indicated
in Figure 4b. The surface plot indicates that the MRR was increased linearly by increasing
the traverse speed as well as the waterjet pressure. However, the maximized MRR was
attained at higher traverse speed (600 mm/min) or higher waterjet pressure (200 MPa).
This may be attributed to the hard erosion of abrasive particles at higher jet pressure, along
with maximized cutting speed, which leads to an improved removal of substrate [14].
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Figure 4c,d shows the influence of AWJ parameters on the delamination factor of the
machined FILs at different cutting conditions. From the plots, it is perceived that the FD
was increased with an increase in all the selected parameters, whereas the quantified FD
was seen at lower waterjet pressure, nozzle height, and unreinforced FILs. This may be
attributed to the complete fracture and debonding of plies in FILs due to higher energy
levels associated with the pressurized waterjet, which leads to an augmented delami-
nation [20]. Furthermore, it is noted that the waterjet bends at greater traverse speeds,
which produces a curved cutting front that results in the highest normal force. As a result,
the metal-composite interface sustains significant damage, which increases the factor of
delamination [21].

The effects of AWJ cutting parameters on the kerf deviation are shown in response
surface plots (Figure 4e,f). The kerf deviation is found linear increase with an increase
in traverse speed and addition of r-GO fillers up to a certain level, and then decreasing,
whereas it is found to linearly increase with an increase in nozzle height and waterjet
pressure. A faster traverse speed during the AWJ cutting process permits abrasive particles
to travel swiftly across the substrate, resulting in an incorrect cutting kerf and decreased
quality characteristics. Therefore, keeping a consistent traverse speed is critical to achieve
a lower kerf variation [22]. Moreover, the peak velocity of the waterjet expands (the jet
diverges) when it leaves the mixing chamber at a greater nozzle height. When the jet
swerves, kinetic energy is lost during penetration of the substrate surface, and it may not
have enough force on its visible surface to cut effectively. This effect causes kerf deviation
to rise as nozzle height increases [23].

4.3. Optimization of AWJ Cutting Process

The objective of this study is to address an optimization problem that involves the
simultaneous optimization of multiple objectives; specifically, to maximize the MRR while
minimizing the FD and KD. To achieve this, the decision variables associated with the AWJ
cutting process, including traverse speed, waterjet pressure, and nozzle height, along with
the impact of incorporating reduced graphene oxide (r-GO) in the composite laminates,
were considered for optimization. In general, a process parameter set for one objective
function cannot be used for any other objective functions. Since the objective functions
chosen for this study conflict with each other, the optimization process is difficult. Usually,
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there are two ways to solve such complicated optimization problems. The first is to turn
multiple objectives into a single objective by giving each objective a weight or a utility
function. The second is to find non-dominated Pareto optimum settings for the decision
variables [24]. This study utilizes non-dominated solutions for each response characteristic
to obtain the optimal processing parameters.

J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 14 of 27 
 

 

augmented nozzle height (4 mm) and r-GO addition (2 wt%). An increase in nozzle height 
causes depth craters by increasing the momentum of hard abrasive particles that contact 
the substrate. In turn, this increases substrate surface erosion, allowing for the recovery of 
increased MRR [19]. The impact of traverse speed and the waterjet pressure on the MRR 
is indicated in Figure 4b. The surface plot indicates that the MRR was increased linearly 
by increasing the traverse speed as well as the waterjet pressure. However, the maximized 
MRR was attained at higher traverse speed (600 mm/min) or higher waterjet pressure (200 
MPa). This may be attributed to the hard erosion of abrasive particles at higher jet pres-
sure, along with maximized cutting speed, which leads to an improved removal of sub-
strate [14]. 

  

  

  

Figure 4. Effect of AWJ cutting parameters and wt% of r-GO on the response characteristics: (a,b) 
MRR, (c,d) FD, and (e,f) KD. 

Figure 4c,d shows the influence of AWJ parameters on the delamination factor of the 
machined FILs at different cutting conditions. From the plots, it is perceived that the FD 
was increased with an increase in all the selected parameters, whereas the quantified FD 
was seen at lower waterjet pressure, nozzle height, and unreinforced FILs. This may be 
attributed to the complete fracture and debonding of plies in FILs due to higher energy 
levels associated with the pressurized waterjet, which leads to an augmented 

Figure 4. Effect of AWJ cutting parameters and wt% of r-GO on the response characteristics:
(a,b) MRR, (c,d) FD, and (e,f) KD.

The objective functions for the present optimization work are formulated
using the second-order polynomial equations obtained through the statistical analysis
(Equations (11)–(13)) and the boundary conditions of the selected processing parameters
(Table 1). For the multi-objective optimization, a highly versatile metaheuristic-based
moth–flame optimization (MFO) algorithm was considered to simultaneously improve
the MRR and minimize the FD and KD of AWJ-processed FILs. In order to assess the
performance characteristics of the proposed MFO algorithm, several established meta-
heuristic algorithms were taken into consideration. These algorithms include the genetic
algorithm (GA), particle swarm optimization (PSO) algorithm, dragonfly algorithm (DFO),
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and grey-wolf optimization algorithm (GWO). By comparing various performance features,
such as convergence plot, diversity, spacing, and hypervolume values, a comprehensive
evaluation of the MFO algorithm can be achieved.

The proposed optimization algorithms were executed in a MATLAB 2022b™ environ-
ment with a population size and number of iterations of 30 and 100, respectively, for each
algorithm. The parameters used for executing different optimization algorithms to obtain
non-dominated Pareto optimal solutions are shown in Table 6. Each optimization algorithm
was executed thirty-six times to obtain the number of Pareto optimal solutions. For each
execution, an optimal combination of process parameters and their corresponding response
values were determined and considered as the best solution for that execution. Similarly,
each algorithm yielded thirty-six sets of optimal parameters for each response charac-
teristic, which were considered for further investigations. Figure 5a–c depict a sample
convergence plot derived for each response characteristic using various algorithms. Among
the obtained thirty-six non-dominated Pareto optimal solutions, Deng’s similarity-based
analytical hierarchy approach [25] was adopted for each algorithm to obtain the optimal
solution based on the overall performance index. The optimal AWJ cutting parameters and
their corresponding response characteristics, such as MRR, FD, and KD, achieved through
Deng’s approach, are listed in Table 7.

Table 6. Parameters and their values used in GA, PSO, MFO, DFO, and GWO.

Algorithm Parameters Value/Range of Parameters

GA

Method of Selection for Reproduction Roulette Wheel Selection Method

Cross over probability 0.5

Cross over operator Single Point Cross Over Technique

Mutation probability 0.04

Mutation operator Right-side swapping

Replacement strategy 100% replacement Strategy

PSO
Learning factors (C1 and C2) 2 and 2

Inertia weight (ω) 0.9

MFO
Position of moth close to the flame (t) −1 to −2

Update mechanism Logarithmic spiral

DFO

Inertia weight (IW) 0.2

Separation weight sw = 0.1− 0.1 ∗ itr
nitr

Alignment weight aw = 0.1− 0.1 ∗ itr
nitr

Cohesion weight aw = 0.1− 0.1 ∗ itr
nitr

Food factor f f = 2 ∗ rand

Enemy factor e f = 0.1− 0.1 ∗ itr
nitr

GWO Scale Factor (SF) 2

Table 7. Optimal AWJ cutting parameter achieved through different algorithms.

Algorithms r-GO TS JP NH MRR FD KD

GA 0.004 561.74 277.89 2.02 2.963 1.945 1.972
PSO 0.038 592.68 261.92 2.07 3.045 1.951 1.893
MFO 0.000 600.00 253.36 2.00 3.096 1.928 1.833
GWO 0.026 595.67 255.66 2.04 3.074 1.947 1.865
DFO 0.000 600.00 246.80 2.00 3.127 1.935 1.819
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4.4. Comparison of MFOA Performance with State-of-the-Art Metaheuristic Algorithms

In this section, the effectiveness of MFO is compared to that of other metaheuristic
strategies such as GA, PSO, GWO, and DFO. The results of this comparison analysis show
how MFO is more efficient than other algorithms in AWJ cutting applications. From the
convergence plots shown in Figure 5a–c, MFO is found to outperform the similar algorithms
in terms of the convergence with minimal iterations. MFO converges quickly (i.e., the
number of iterations for MRR is 5, that for FD is 12, and that for KD is 3) to obtain the
optimal solutions; hence, the execution time of MFO can be significantly minimized for
such complex optimization problems relative to the compared metaheuristics.

4.4.1. Diversity Values

Diversity values are used to quantify the difference or similarity of the solutions
produced by each algorithm throughout the optimization or decision-making process.
Diversity values not only help to determine which strategy is best for a particular opti-
mization problem, but also provide insight into the flexibility and resilience of certain
algorithms in situations when complicated decisions must be made [26]. The diversity
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values between the two successive optimal solutions were calculated based on the following
mathematical relation:

D =

√√√√ k

∑
j=1

(
f max
j − f min

j

)2
(14)

The diversity values for selected algorithms are depicted in Table 8. The diversity
values for all the algorithms exhibited a high degree of similarity. The statistical analysis,
including the Anderson–Darling normality test, normal probability analysis, and analysis of
variance, was conducted on the diversity values obtained in order to assess the performance
of the algorithms. Based on the data presented in Table 9, it can be observed that the
statistical indicators of MFO algorithms demonstrate superior performance compared to
other optimization algorithms. Traditionally, diversity values have been evaluated using
a higher-the-better approach. The p-value for the MFO algorithm is determined to be
lower (0.006) in comparison to that of other metaheuristic algorithms. Therefore, the MFO
algorithm demonstrates superior performance in optimizing the AWJ cutting parameters.
The significance of the proposed algorithms is confirmed by the normal probability plots
depicted in Figure 6a–e at a 95% confidence interval. Furthermore, the statistical significance
of the proposed algorithms was confirmed by Friedman’s ANOVA, as depicted in Figure 7,
with a probability of less than 0.05.
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Table 8. Diversity values for different algorithms.

R. No. GA PSO MFO GWO DFO

1 2.168649 2.304893 2.499654 2.043835 2.375572
2 2.213475 2.218671 2.479363 2.228079 2.171757
3 1.969053 2.217624 2.495559 2.009252 2.135089
4 2.181977 2.228235 2.463419 2.014581 2.228036
5 1.955133 2.289423 2.495492 2.186953 1.928915
6 2.01437 2.262722 2.450018 1.998452 2.443005
7 2.227546 2.289307 2.49616 2.197105 2.282027
8 2.358251 2.08906 2.499123 2.237759 2.282308
9 2.201808 2.325128 2.471608 2.18695 2.29433
10 2.170561 2.223838 2.493166 2.262642 2.189975
11 2.368679 2.361817 2.502011 2.214497 2.388704
12 2.149618 2.217916 2.465304 2.126008 1.981838
13 2.267597 2.316509 2.48331 2.125932 2.184926
14 2.100045 2.280508 2.504573 2.155223 2.269794
15 2.231728 2.303261 2.492761 2.319721 2.492793
16 2.150087 2.06787 2.490507 2.260906 2.452572
17 2.154984 2.2825 2.491626 2.28224 2.437811
18 2.1229 2.257634 2.49007 2.072323 2.236772
19 2.248569 2.176258 2.487019 2.21459 2.217735
20 1.959028 2.182378 2.496555 2.249677 2.430681
21 2.176041 2.219705 2.513995 2.099185 2.336751
22 2.182276 2.24678 2.50539 2.04243 2.468178
23 2.152185 2.299786 2.494864 2.242218 2.505339
24 2.222158 2.174597 2.505402 2.221646 2.289126
25 2.058078 2.222779 2.515658 2.318232 2.426425
26 2.14218 2.195657 2.499704 2.079501 2.412103
27 2.018371 2.308123 2.499831 2.113446 2.262402
28 2.275256 2.166078 2.490278 2.17957 1.997895
29 2.129946 2.110984 2.509637 2.114911 2.247057
30 2.182925 2.273363 2.49827 1.982684 2.411676
31 2.045438 2.17486 2.5008 2.184017 2.274243
32 2.049843 2.220535 2.511027 2.096799 2.042195
33 2.265088 2.224345 2.491387 2.20141 2.337978
34 2.115209 2.110337 2.498101 2.144963 2.450462
35 2.449285 2.177214 2.486478 2.107356 2.183684
36 1.986994 2.196914 2.505473 2.345533 2.080497

Table 9. Statistical analysis results for diversity values (the higher the better).

Mean Median StDev p-Value A-Squared

GA 2.1574 2.1618 0.1152 0.443 0.35
PSO 2.2283 2.2233 0.0693 0.302 0.42
MFO 2.4937 2.4959 0.014 0.006 1.11
GWO 2.1628 2.1818 0.0958 0.772 0.24
DFO 2.282 2.2822 0.1517 0.165 0.53

4.4.2. Spacing Values

The evaluation of the algorithms’ performance via the adjustment of spacing values
is an essential process in enhancing their efficiency and efficacy. This research assessed
five algorithms, and the findings provided insights into the individual strengths and
limitations of each algorithm. The spacing values, which denote the distance between data
points or items inside the algorithmic process, were significant in influencing the resulting
performances. The spacing values can be calculated by the following relation [27]:

Spacing =

√
1

nr− 1

nr

∑
i=1

(
S− Si

)2 (15)
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where Si denotes the minimum value of the sum of the absolute difference between the
ith run and all other runs, S indicates the mean value of Si, and nr indicates the number of
runs. Si and S can be calculated as follows:

Si = min
i=1,2...nr

{
no

∑
j=1

abs
(

Oij −Okj

)}
k=i+1,...nr

(16)

S =
∑nr

i=1 Si

nr
(17)

Table 10 illustrates the spacing values for selected algorithms. It is observed that the
spacing values for all the algorithms were close to each other. Hence, the statistical analysis,
such as the Anderson–Darling normality test, normal probability analysis, and analysis
of variance, was performed for the obtained spacing values to identify the performance
of the algorithms. From Table 11, it is perceived that the statistical indicators of the MFO
algorithms are found to be better than those of the other optimization algorithms. In
general, lower spacing values are considered to be better. The p-value of MFO is found to
be less (0.077) that that of the compared similar metaheuristics. Hence, the MFO algorithms
outperform when optimizing the AWJ cutting parameters. Moreover, the normal probability
plots, as shown in Figure 8a–e, at a 95% confidence interval, confirm the significance of the
proposed algorithms. In addition to these indicators, Friedman’s ANOVA, as shown in
Figure 9, proved the statistical significance of the proposed algorithms with a probability
of less than 0.05.
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4.4.3. Hypervolume Values

The hypervolume metric has significant importance within the field of optimization
techniques, especially in the context of multi-objective optimization. It measures how well
an algorithm can explore and cover the Pareto front, which is a collection of non-dominated
solutions that reflect the best trade-offs between many competing goals. It is a key indicator
of the quality of a solution. One may evaluate the coverage, variety, and effectiveness of an
algorithm’s solutions by computing the hypervolume. A more thorough examination of the
goal space is indicated by higher hypervolume values, which also indicate better solution
quality performance [28]. The mathematical expression for calculating the hypervolume
can be defined as follows:

HV(PF) = Λ
(
∪

s∈PF

{
S′ : S ≺ S′ ≺ Snadir

})
(18)

where PF is defined as the Pareto front, the point of approximation of PF can be expressed
as S, the generalization of a volume is defined by Λ, and the domination relation may
be defined by ≺. Table 12 presents the hypervolume values corresponding to the chosen
algorithms. The hypervolume values for all the algorithms exhibited a high degree of
similarity. The statistical analysis included the Anderson–Darling normality test, nor-
mal probability analysis, and analysis of variance. These tests were conducted on the
obtained hypervolume values in order to assess the performance of the algorithms. Based
on the data presented in Table 13, it can be observed that the statistical indicators of GA
and DFO algorithms demonstrate superior performance compared to other optimization
algorithms. Traditionally, the higher-the-better approach has been favored when evalu-
ating hypervolume values. The p-values for GA and DFO were determined to be lower
(0.022 and 0.024, respectively) when compared to those of other metaheuristics of a similar
nature. Therefore, when evaluating the performance metric as the hypervolume, the GA
and DFO algorithms were surpassed. The significance of the proposed algorithms was
confirmed by the normal probability plots, as depicted in Figure 10a–e, at a 95% confidence
interval. Furthermore, the statistical significance of the proposed algorithms was confirmed
by Friedman’s ANOVA, as depicted in Figure 11, with a probability of less than 0.05.
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Table 12. Hypervolume values for different algorithms.

R. No. GA PSO MFO GWO DFO

1 0.002 0.007 0.003 0.012 0.004
2 0.001 0.006 0.003 0.004 0.003
3 0.001 0.004 0.003 0.005 0.002
4 0.004 0.008 0.004 0.002 0.006
5 0.003 0.003 0.005 0.002 0.006
6 0.002 0.001 0.002 0.004 0.004
7 0.003 0.005 0.007 0.006 0.005
8 0.002 0.003 0.004 0.005 0.006
9 0.001 0.001 0.006 0.007 0.001
10 0.002 0.001 0.004 0.005 0.001
11 0.003 0.002 0.003 0.003 0.008
12 0.004 0.001 0.007 0 0.002
13 0.004 0.002 0.006 0.003 0.002
14 0.003 0.005 0.007 0.002 0
15 0.003 0.003 0.002 0.003 0.005
16 0.002 0.004 0.004 0.005 0.003
17 0 0.002 0.003 0.005 0.009
18 0.004 0.006 0.002 0.003 0.003
19 0.004 0.006 0.004 0.006 0.002
20 0.003 0.006 0.005 0.003 0.003
21 0.002 0.003 0.005 0.007 0.005
22 0.002 0.005 0.009 0.003 0.007
23 0.001 0.004 0.004 0.004 0.002
24 0.001 0.003 0.007 0.007 0.003
25 0.002 0.007 0.004 0.004 0.004
26 0.006 0.004 0.001 0.005 0.003
27 0.006 0.004 0.005 0.004 0.002
28 0 0.002 0.003 0.005 0.003
29 0.004 0.004 0.007 0.007 0.002
30 0.002 0.001 0.001 0.005 0.006
31 0.003 0.003 0.007 0.004 0.007
32 0.001 0 0 0.004 0.006
33 0.002 0.004 0.01 0.003 0.01
34 0 0.001 0.005 0.001 0.004
35 0.002 0.006 0.004 0.006 0.001
36 0 0.002 0.009 0.002 0.002

Table 13. Statistical analysis results for hypervolume values (the higher the better).

Mean Median StDev p-Value A-Squared

GA 0.002361 0.002 0.001515 0.022 0.88
PSO 0.003583 0.0035 0.002048 0.108 0.6
MFO 0.004583 0.004 0.002347 0.125 0.58
GWO 0.004333 0.004 0.002165 0.046 0.75
DFO 0.003944 0.003 0.00239 0.024 0.86
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The mean rank values of the optimization algorithms were assessed based on the
performance indices, such as diversity, spacing, and hypervolume values, by conducting
Friedman’s statistical analysis [29]. To summarize the performance of distinct metaheuris-
tics, the mean rank values were determined. The table displays the mean rank values for
selected algorithms, and the MFO algorithm was found to provide higher performance
index values, such as 4.9444 for diversity and 2.5833 for spacing, whereas GWO exhibits
an improved hypervolume value of 3.5. When comparing the overall performance index,
it can be inferred that the MFO algorithm exhibits superior performance in comparison
to GA, PSO, GWO, and DFO while optimizing the AWJ cutting process based on the
selected matrices, except for the hypervolume. Among the optimized parameters and their
corresponding response characteristics obtained through different optimization algorithms,
as shown in Table 14, the MFO algorithm’s optimal values were considered as the best
set of parameters to improve the cut quality and performance features of the AWJ cutting
process. The corresponding optimal parameters were unreinforced laminate (i.e., 0 wt%
r-GO), traverse speed of 600 mm/min, jet pressure of 253.36 MPa, and nozzle height of
2 mm, for improved response features, namely the corresponding MRR, FD, and KD values
are 3.096 g/s, 1.928, and 1.833 mm, respectively. The optimal parameters show that the
inclusion of nano fillers does not provide any significance regarding the selected cutting
responses, whereas the lower nozzle height with the combination of higher traverse speed
and medium jet pressure may enhance the selected cutting characteristics within the range
of selected parameters.

Table 14. Mean rank values of different algorithms in Friedman’s statistical analysis.

Performance
Indicators GA PSO MFO GWO DFO

Diversity 2.0833 2.7500 4.9444 2.0278 3.1944
Spacing 2.6667 2.5833 2.5833 2.7778 4.3889
Hypervolume 2.1111 2.9167 3.4306 3.5000 3.0417

4.5. Confirmation Experiments

In order to evaluate the rationality of the proposed optimization approach, a series
of confirmation experiments were conducted. These experiments aimed to validate the
effectiveness and efficiency of the proposed approach. The confirmation experiments were
conducted thrice using the optimal AWJ cutting parameters obtained through the MFO
algorithm. The average values of these experiments are shown in Table 15. The presented
table demonstrates a relatively strong correlation between the predicted and experimentally
measured response values. The average error for MRR is found to be 1.94%, while the
average errors for FD and KD are 2.75% and 3.33%, respectively. These results indicate a
satisfactory level of accuracy in the prediction of the response values.

Table 15. Confirmation experimental results of AWJ cutting responses at optimal parameters obtained
through the MFO algorithm.

Responses Predicted Experimental Error %

MRR (g/s) 3.096 3.156 1.94
FD 1.928 1.981 2.75
KD (mm) 1.833 1.772 3.33

5. Conclusions

In the present study, novel fiber intermetallic laminates were cut using AWJ by mod-
ifying the wt% of reduced graphene oxide in the laminates, traverse speed, jet pressure,
and nozzle height. The influence of AWJ parameters on the cut quality characteristics
was investigated, and multi-response optimization using five distinct metaheuristic algo-
rithms, i.e., GA, PSO, MFO, GWO, and DFO, was accomplished. The performance features
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of the algorithms were also investigated. The findings of this study are summarized
as follows.

• The statistical analysis reveals that JP and r-GO addition have a significant influence
on MRR, followed by TS, whereas r-GO addition and NH have a substantial impact on
FD. In addition, it was observed that KD is significantly influenced by WP and NH.

• MRR is found to increase with an increase in NH and JP due to the increased mo-
mentum of hard abrasive particles that contact the substrate, which in turn increases
substrate surface erosion, whereas it leads to augmented FD and KD, which deterio-
rate the cut quality. Therefore, it is necessary to maintain a consistent traverse speed,
nozzle height, and jet pressure to achieve improved cut quality features.

• From the convergence plots, the MFO algorithm is found to converge more rapidly
than similar metaheuristic algorithms due to its simplicity and the presence of minimal
control parameters. Therefore, the space and time complexity can be significantly
reduced by the MFO algorithm for optimizing such complex engineering problems.

• The optimal AWJ cutting parameters for improved quality features of FILs are un-
reinforced composite laminates (0 wt% of r-GO), 600 mm/min of TS, 253.36 MPa of
JP, and 2 mm of NH. These parameter values were achieved using the moth–flame
optimization algorithm.

• The suggested MFO algorithm also showed its efficacy in improving the quality and
performance features of AWJ cutting by predicting appropriate parameter settings
because the error variation between predicted and experimental measures was deter-
mined to be less than 3.5% for all the response characteristics of the cut specimens.

• The effectiveness of MFO was evaluated against GA, PSO, GWO, and DFO using the
most widely used key metric indicators, including diversity, spacing, and hypervolume
values. The comparative analysis results showed that the MFO algorithm produced
lower spacing values and higher diversity and hypervolume values, which shows the
efficiency of the algorithm.

The present work encompassed multi-response optimization of AWJ cutting param-
eters via different metaheuristic optimization algorithms with their standard control pa-
rameters. Future works may concentrate on tuning the algorithm parameters to improve
their efficiency for better exploration and exploitation of similar optimization problems.
Moreover, the effectiveness of the proposed algorithms may be improved by considering a
range of workpiece materials, AWJ cutting parameters, and performance characteristics.
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