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Abstract: The paper presents a reliable technology combining sol–gel synthesis and spark plasma
sintering (SPS) to obtain SrTiO3 perovskite-type ceramics with excellent physicomechanical prop-
erties and hydrolytic stability for the long-term retention of radioactive strontium radionuclides.
The Pechini sol–gel method was used to synthesize SrTiO3 powder from Sr(NO3)2 and TiCl3 (15%)
precursors. Ceramic matrix samples were fabricated by SPS in the temperature range of 900–1200 ◦C.
The perovskite structure of the synthesized initial SrTiO3 powder was confirmed by X-ray diffrac-
tion and thermal analysis results. Scanning electron microscopy revealed agglomeration of the
nanoparticles and a pronounced tendency for densification in the sintered compact with increas-
ing sintering temperature. Chemical homogeneity of ceramics was confirmed by energy disper-
sive X-ray analysis. Physicochemical characteristic studies included density measurement results
(3.11–4.80 g·cm−3), dilatometric dependencies, Vickers microhardness (20–900 HV), and hydrolytic
stability (10−6–10−7 g·cm−2·day−2), exceeding GOST R 50926-96 and ISO 6961:1982 requirements
for solid-state matrices. Ceramic sintered at 1200 ◦C demonstrated the lowest strontium leaching rate
of 10−7 g/cm2·day, optimal for radioactive waste (RAW) isolation. The proposed approach can be
used to fabricate mineral-like forms suitable for RAW handling.

Keywords: ceramics; perovskite; radionuclides; radioactive waste management; sol–gel synthesis;
SPS

1. Introduction

The present stage of nuclear industry development inevitably leads to increasing
amount of produced radioactive waste (RAW). The optimal way of utilizing spent radionu-
clides remains undetermined, stemming from the complexity of developing a safe and
environmentally sound system of long-term RAW storage. This issue arises from several
factors. Chiefly, the high radioactivity of much waste renders it hazardous to the sur-
rounding environment for extraordinarily protracted durations. Secondarily, technologies
capable of reliably isolating radionuclides from the biosphere for sustained periods are
lacking. Furthermore, establishing systems of enduring disposal or reprocessing of RAW
is associated with considerable financial and technological costs. An important factor
also includes potential ecological and social risks under any scenario for RAW handling,
engendered by the possibility of compromising the integrity of storage containers’ isolating
barriers [1,2]. The aforementioned difficulties, as well as a plethora of diverse approaches to
their resolution, have heretofore prevented a consensus from emerging within the scientific
community regarding an optimal model of waste treatment.
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Further fundamental research is necessary to resolve the issue of RAW treatment.
Contemporary science delineates principal directions for development concerning RAW
synthesis and compaction. Specifically, methods have been proposed and tested, and
they are thus intensely studied for producing materials meeting established standards
regarding composition and form. This approach entails preparing initial RAW containing
various nuclides and their subsequent thermal consolidation into a dense matrix [3–5]. The
methodology allows for the extraction of radionuclides from primary wastes and their
incorporation into an inert structure to ensure long-term isolation. Similar studies aim to
develop technologies enabling transformation of RAW into a stable form, meeting safety
requirements for transport and enduring storage. This approach could become one of the
promising avenues for addressing challenges surrounding handling hazardous RAW.

A wide range of materials have been developed for the effective immobilization
of radionuclides, including SYNROC-type composites [6–8]. SYNROC (an acronym for
“synthetic rock”) is a specially designed material for containing radioactive waste. SYNROC
constitutes a mineral composite synthesized to mimic natural high-temperature minerals.
The basis of SYNROC comprises perovskites, titanates, and zirconias capable of absorbing
and enduringly retaining radionuclides. The structure afforded these SYNROC materials
confers important advantages. Primarily, they exhibit high chemical stability, allowing the
matrices to avoid breakdown due to water or other agents. Secondarily, SYNROC materials
can accommodate a broad spectrum of radioactive elements. Tertiarily, these materials
demonstrate high resistance to high temperatures and radiation effects.

It bears noting that perovskites have seen extensive and active investigation as ma-
trices for radionuclide isolation [9–11]. The presence of perovskite structures in natural
minerals stable over wide geochemical conditions for millions of years indicates the high
hydrothermal stability of such compounds. This bodes well for the long-term safety of
radioactive waste storage. The enhanced strength and density properties of perovskites
are also of interest. Perovskites demonstrate considerable promise as durable containment
media, building upon their proven longevity under demanding subsurface conditions
comparable to anticipated repository environments. Further research seeks to optimize
SYNROC–perovskite formulations and processing techniques to fully realize this potential
for effective immobilization of diverse radionuclides in a minimal-impact form.

Perovskites can be of the simple ABO3 type or more complex compositions depend-
ing on the A and B cations [12]. Examples of A cations include Ce4+, Nd3+, Sm4+, La3+,
Yb3+, and Gd3+, while B cations comprise Al3+, Cr3+, Fe3+, and Ga3+. The ideal perovskite
(SrTiO3) possesses a cubic lattice structure, though this is only stable for a limited number
of compositions. Cation substitutions within the lattice distort the structure, lowering
symmetry and giving rise to tetragonal, orthorhombic, and monoclinic variations. Op-
timization of perovskite formulations for immobilizing diverse radionuclides requires
consideration of these structural changes resulting from alterations in stoichiometry and
cation selection/concentration. Further studies are exploring composition–property rela-
tionships to delineate formulations exhibiting enhanced durability under specialized waste
storage conditions.

Among the recognized synthetic methods (mechanical activation/sintering, solu-
tion deposition, high-temperature gas or liquid plasma synthesis, molecular conductor
synthesis, solid-state synthesis, etc.), the sol–gel technique stands out as a particularly
promising approach, owing to its versatility in producing both nanocomposites and matrix
materials [13,14]. The applicability of this technology spans a wide area—from inorganic
matrices of varied constitution [15–18] to hybrid composites [19] and inorganic thin film
structures [20]. The solution-based nature of sol–gel processing confers advantages such as
scalability, precise control of composition, and capacity for synthesizing tailored nanostruc-
tured forms. Further exploration of this flexible methodology could consequently yield
perovskite and composite formulations optimized for the stable immobilization of diverse
radionuclides.
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One development of the sol–gel technique is the Pechini method. Notably, this ap-
proach is used to synthesize perovskite metal oxides [11,21–24]. The process involves
preparing solutions of target metal salts in ethylene glycol using an excess of a chelating
agent (citric, glycolic, or lactic acid, EDTA). Heating the solution to 150 ◦C causes ester-
ification and formation of an internal polymeric gel network. The gel is then converted
to a powder by heating to 300 ◦C to remove most of the organic component, followed by
calcination from 500 to 900 ◦C to yield the target oxide [25]. Dispersing the initial substances
within the polymeric matrix ensures homogeneity and prevents phase segregation in the
final product. Hence, the Pechini method enables efficient synthesis of perovskite oxides
with tailored properties.

The final stage in forming solidified RAW is obtaining a rigid ceramic matrix. Im-
mobilized within the matrix, RAW has qualified radionuclide isolation and prevention of
environmental migration. This substantially heightens RAW stability over the long term,
decreases thermogenicity, and simplifies transportation and storage. Beyond enhancing ra-
diation safety, RAW compaction into such matrices opens avenues for utilizing the resultant
material as an ionizing radiation source (IRS) across diverse domains, including nuclear
physics, medicine, industry, defense, energy, and more. Continued investigation of matrix
formulation and processing optimization remains vital to fully realize these benefits. Ad-
vanced techniques may allow tailoring matrices for specialized applications while ensuring
radionuclides remain inertly fixed under all anticipated usage and disposal scenarios. With
prudent development, immobilized IRS technology could thus offer promising solutions to
numerous applications and to the overriding RAW remediation issue.

It is important to note that in obtaining compact ceramic blocks, efforts should aim
to minimize their resultant volume compared to the original waste volume, i.e., achieve
maximum possible densification of the solid substance structure. A dense matrix structure
precludes dispersal of radioactive particles into the environment, ensuring long-term
stability and impermeability. This allows the matrix as a stable RAW form to fix radioactive
materials without degradation over extended timeframes. Thus, the sintering process
plays a uniquely decisive and critically important role in matrix fabrication. Continued
optimization of sintering parameters such as temperature, atmosphere, heating/cooling
profiles, and additive composition represents a key research focus. Advancing sintering
techniques could drive further matrix densification for enhanced radionuclide containment
and durability suited for the demands of long-term waste storage and disposal.

Spark plasma sintering (SPS) has gained widespread use for sintering powder com-
posites [26–33]. This technique involves pulsed electrical current heating of a sample
under applied pressure. SPS was previously successfully utilized for SrTiO3 synthesis
aimed at strontium immobilization [34–36]. In these works applying SPS, we (i) developed
a novel sintering–reaction synthesis method for SrTiO3 perovskite ceramics immobiliz-
ing Sr-90; (ii) studied phase transformation kinetics in the SrCO3-TiO2 system from 20 to
1000 ◦C; (iii) determined optimal parameters for synthesizing SrTiO3 ceramic with a den-
sity of 4.49 g/cm3, hardness of 6.2 GPa, strength of 279 MPa, and Sr leaching rate of
10−5−10−6 g/(cm2·day); (iv) developed a synthesis method for SrTiO3 ceramic immo-
bilizing Sr-90 with a density of 95.6%, hardness of 1010 HV, and strength of 283 MPa;
(v) obtained biphasic SrTiO3–TiO2 ceramic exhibiting quantum effects, prospective for
thermoelectrics. SPS thus demonstrates potential for further optimizing immobilization
matrices through enhanced densification.

In the present study, SPS was coupled with the Pechini synthesis method to pre-
pare SrTiO3 perovskite ceramics. The research aims included synthesizing powder via
a sol–gel route from inorganic metal salt precursors, followed by sintering the resultant
powder via SPS at various temperatures. Determination of physicomechanical properties
and hydrolytic stability was also performed. Comparison with prior works will enable
evaluation of qualitative characteristics of materials derived through different methods,
identifying a preferable synthesis technique. The results may prove useful for solidifying
RAW and developing immobilization matrices, as well as provide a basis for IRS. Con-
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tinued refinement of the integration between Pechini and SPS processing has potential
to optimize microstructure control and properties attainment conducive to radionuclide
confinement functions.

2. Materials and Methods
2.1. Materials

The precursors used for sample synthesis were Sigma-Aldrich (St. Louis, MI, USA)
reagents: strontium nitrate ACS reagent, ≥99.0% Sr(NO3)2, titanium(III) chloride solution
≥ 15% TiCl3, monoethylene glycol ((CH2OH)2), and citric acid (HOC(CO2H)(CH2CO2H)2).

2.2. Sol–Gel Synthesis

The powder was synthesized via the Pechini method as follows:
A total of 5.76 g of strontium nitrate (Sr(NO3)2) was dissolved in 20 mL of water. Then,

27.99 g of titanium(III) chloride solution ≥ 15% was added. The solution was heated to
90 ◦C and evaporated. After 30 min with stirring, 35.36 g of citric acid and 12.56 mL of
monoethylene glycol were added. The resulting mixture was evaporated with stirring for
1 hour at 90 ◦C until a viscous gel formed. The gel was then heat treated in air for 2 h at
400 ◦C to remove the organic component, followed by calcination in air for 2 h at 800 ◦C to
remove residual carbon (heating for 1 h).

2.3. Material Characterization Methods

The ceramic samples were prepared by SPS using a “Dr. Sinter·LABTM” SPS-515S
unit at temperatures of 900, 1000, 1100, and 1200 ◦C. The starting raw material was SrTiO3
powder synthesized by the above-described method. The pressing pressure was 21.5 MPa,
with a heating rate of 50 ◦C·min−1. After holding for 5 min, the samples were allowed to
cool uncontrolled to room temperature over half an hour.

Strontium concentration in leachate solutions was determined using a Shimadzu EDX-
7000 (Kyoto, Japan) atomic absorption spectrophotometer. Scanning electron microscopy
(SEM) was performed on a CrossBeam 1540 XB “Carl Zeiss” (Jena, Germany) microscope
equipped with a Bruker (Mannheim, Germany) energy-dispersive X-ray spectroscopy
(EDX) add-on. X-ray diffraction (XRD) was carried out using a “COLIBRI” diffractometer
(Moscow, Russia). Vickers microhardness (HV) was determined at 0.2 N load using HMV-G-
FA-D microhardness tester from Shimadzu (Kyoto, Japan). Experimental density (ED) was
measured by hydrostatic weighing on an AdventurerTM balance from OHAUS Corporation
(Parsippany, NJ, USA). Relative density (RD) was calculated as the ratio of experimental
density (ED) to theoretical density (TD). Thermogravimetric analysis curves were recorded
on a DTG-60H thermogravimetric analyzer from Shimadzu using platinum crucibles under
dry argon flow at a heating rate of 10 ◦C/min from 35 to 1300 ◦C.

Evaluation of hydrolytic stability of SrTiO3 matrices. Hydrolytic stability was assessed
by monitoring the strontium leaching rate during long-term contact (30 days) of the matrix
with distilled water (pH 6.8) at 25 ◦C under static conditions according to GOST R 52126-
2003 (international analog ANSI/ANS 16.1). In particular, a cylinder-shaped ceramics
sample (diameter 15 mm, height 4 mm) was placed into 55 mL of distilled water, and after
a certain time period (1–30 days), the concentration of Sr in the supernatant was measured,
while the pellet was removed, washed with distilled water, and put into the fresh portion
of distilled water. The leaching rates were calculated according to the following equation:

RSr
n =

mSr
n

MSr
o × tn × S

(1)

where RSr
n —Sr leaching rate (g/cm2 day); mSr

n —Sr mass, leached for nth time interval,
g; MSr

0 —Sr mass concentration in the matrix, g/g; S—the sample’s surface area, cm2;
tn—duration of the nth time interval, days.
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The calculation of the effective diffusion coefficient (De) was performed by mathe-
matical transformations of the second Fick law according to the method described in the
paper [37]:

∑ m
M0

= 2
(

De

π

) 1
2
×
(

S
V

)
t

1
2 + α (2)

where m—strontium weight, mg; t—leaching time, s; M0—initial cesium content in the
sample, mg; De—effective diffusion coefficient, cm2/s; S—the surface area of the sample,
cm2; V—a volume of sample, cm3; α—parameter that takes into account the initial leaching
of strontium, not related to diffusion (strontium leaches out at the initial contact of the
leaching solution with the sample surface).

In the calculation, this equation was reduced to a linear form by introducing the
coefficient K, which represents the tangent of the slope of the straight-line dependence of
strontium leaching from the sample on the square root of the contact time of the material
with the leaching agent:

K = 2
(

De

π

)0.5
×
(

S
V

)
(3)

The effective diffusion coefficient was calculated:

De =
K2 × π

4
×
(

V
S

)2
(4)

The leaching index (L) was calculated as the decimal logarithm of the inverse diffu-
sion value:

L = lg
1

De
(5)

Estimation of the dominant leaching mechanism based on the dependence of the
decimal logarithm of the accumulated fraction of leached radionuclide (Bt, mg/m2) on the
decimal logarithm of the leaching time t, s:

lg(Bt) =
1
2

lgt + lg

[
Umaxd

√
De

π

]
(6)

where is Umax—the maximum amount of leached radionuclide, mg/kg, and d—matrix
density, kg/m3.

The leaching depth of the matrix characterizes the destruction of the matrix.
Matrix when it is in aqueous medium and is calculated according to Equation (7):

Li
t =

n

∑
i

(
Wi

n
tn

d

)
(7)

where Li
t—the leaching depth of the matrix reached during the time interval tn, cm, and

d—density of the sample, g/cm3.

3. Results and Discussion
3.1. Preparation of Starting Mixtures

The results of the investigation of the mixture obtained by the sol–gel method are
presented in Figure 1.

XRD patterns of the synthesized SrTiO3 powder are shown in Figure 1a. The diffraction
peaks of SrTiO3 can be indexed to the (100), (110), (111), (200), (210), (211), (220), and (310)
planes of the cubic crystal structure (JCPDS card no. 065089). This result indicates that
the crystalline phase of the SrTiO3 nanopowder did not contain any impurities. The
average crystallite size was estimated to be 22 nm using the Debye–Scherrer formula.
Rietveld refinement analysis was performed with profile reliability factors Rp= 8.42% and
Rwp = 11.57%. The refinement parameters were as follows: weighted sum of squares
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(WSSR) = 15,074.9, degrees of freedom (DoF) = 13,612, sum of squares SSR = 1.27845×106,
and determination coefficient R2 = 0.99042. This indicates a good correspondence between
the refined results and the experimental data. SEM images (Figure 1b) show that the
powder particles ranged in size from 10 to 100 µm and consisted of agglomerates of
20–30 nm nanoscale primary particles, consistent with the Debye–Scherrer equation.
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at 800 ◦C.

3.2. Characterization of Sintered Ceramics
3.2.1. Dilatometric Analysis

Dilatometric analysis indicated a single-stage powder compaction process (Figure 2).
The onset of shrinkage was detected between 750 and 800 ◦C. Complete shrinkage was
achieved at around 1100 ◦C, confirmed by the shrinkage curve plateauing. The single-stage
behavior confirms the purity and homogeneity of the starting sol–gel powder.
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This dilatometric curve differed from previous reports [27,28], likely due to the absence
of chemical interaction between reactive components. The thermal compaction temperature
range was also lower by 200–250 ◦C compared to previous studies. This is attributed to the
high homogeneity and dispersion of the starting sol–gel SrTiO3 powder.

3.2.2. Phase Composition and Structure

The XRD analysis results indicate that the ceramic obtained is composed of strontium
titanate SrTiO3 phase (ICSD 065089). Comparison with the XRD pattern of the sol–gel
powder (Figure 3) shows no phase transformations or structural changes occurred. The
intensity of the diffraction maxima increased with increasing sintering temperature. No
additional phases were detected within the limits of XRD, indicating that the high-purity
perovskite SrTiO3 phase was formed after sintering. The increase in intensity with temper-
ature suggests better crystallinity and grain growth at higher sintering temperatures.

J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 8 of 15 
 

 

 

Figure 3. XRD patterns of the ceramic samples derived thereof at various SPS temperatures. 

XRD analysis showed that increasing the temperature in the range of 900–1200 °C 

during sintering did not lead to changes in crystallographic composition. As seen in Fig-

ure 3a, three typical diffraction peaks of the perovskite structure were observed at 2θ = 

22.758° (100), 32.391° (110), and 39.948° (111) in the sintered SrTiO3 (STO) sample, indicat-

ing the presence of a cubic perovskite structure with space group Pm-3m, a = b = c = 3.904 

Å, and 59.5 Å3 volume. Moreover, only diffraction peaks of the STO phase were present 

in the STO sample, demonstrating the possibility of obtaining a single-phase SrTiO3 round 

sample by sol–gel and cold pressing methods. The nanocrystalline SrTiO3 sample after 

pressing at 21.5 MPa and sintering at 1200 °C for 5 min had a uniform perovskite structure 

that can be used for solidification of radioactive waste. 

3.2.3. Morphology and Chemical Composition 

The surface morphology and EDX analysis results of the sintered ceramics are pre-

sented in Figures 4 and 5. 

Figure 3. XRD patterns of the ceramic samples derived thereof at various SPS temperatures.

XRD analysis showed that increasing the temperature in the range of 900–1200 ◦C
during sintering did not lead to changes in crystallographic composition. As seen in
Figure 3a, three typical diffraction peaks of the perovskite structure were observed at
2θ = 22.758◦ (100), 32.391◦ (110), and 39.948◦ (111) in the sintered SrTiO3 (STO) sam-
ple, indicating the presence of a cubic perovskite structure with space group Pm-3m,
a = b = c = 3.904 Å, and 59.5 Å3 volume. Moreover, only diffraction peaks of the STO
phase were present in the STO sample, demonstrating the possibility of obtaining a single-
phase SrTiO3 round sample by sol–gel and cold pressing methods. The nanocrystalline
SrTiO3 sample after pressing at 21.5 MPa and sintering at 1200 ◦C for 5 min had a uniform
perovskite structure that can be used for solidification of radioactive waste.

3.2.3. Morphology and Chemical Composition

The surface morphology and EDX analysis results of the sintered ceramics are pre-
sented in Figures 4 and 5.
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1100, and 1200 ◦C.

According to the data obtained, the surface of the ceramics sintered at 900 ◦C con-
sisted of agglomerated regions of nano-sized powder particles (Figure 4a,a*). The inset in
Figure 4a* clearly shows a uniform distribution of nanoparticles of the original sol–gel pow-
der. There were no noticeable areas of consolidation. Further increasing the temperature
to 1000 and 1100 ◦C was accompanied by the formation of consolidated material regions
(Figure 4b,b*,c,c*). The images of the sample (Figure 4b,b* inset) indicate the presence of
a local overheating effect, since defects on the ceramic surface were clearly visible. Due
to the relatively low heating rate, local formation of a monolithic structure is possible,
leading to a change in the temperature gradient and formation of areas of different den-
sities. The morphology of ceramics obtained at 1100 ◦C (Figure 4c,c* inset) showed that
further increasing the temperature was accompanied by the disappearance of defective
areas, but areas of non-monolithic structure were still present. SEM images of the sample
obtained at 1200 ◦C indicated the formation of a monolithic structure. The presence of
defects and unceramicized areas was not detected. The grains are clearly depicted in
the inset in Figure 4b*. SEM data and dilatometry signaled the complete completion of
thermal compaction and full ceramization of the sample. According to the EDX analysis
results (Figure 5), an inhomogeneous distribution of titanium on the surface of the 1000 ◦C
samples was noticeable, potentially serving as centers for the formation of areas with
defects. EDX images of 1100 ◦C also indicated a decrease in defective areas and a tendency
towards homogenization. However, areas of titanium concentration were preserved up to
a temperature of 1200 ◦C. Comparison with previously obtained data indicated a similar
ceramic formation mechanism involving partial agglomeration of areas followed by their
growth. The distribution of titanium was also described by local concentrates in areas.



J. Compos. Sci. 2023, 7, 421 10 of 14

3.2.4. Mechanical Properties of the Samples

The results of the microhardness and density determination are presented in Figure 6.
The ceramic underwent a significant increase in parameters with increasing temperature
above 1000 ◦C. This behavior was due to the transition of the ceramic structure to a
monolithic structure, which was confirmed by SEM analysis (Figure 4). The homogeneous
distribution of elements and the absence of large defects also had a positive effect on the
growth of physical parameters of ceramics. The obtained ceramics showed microhardness
values lower by about 100 HV; however, they reached RD = 99.79% compared to reaction-
bonded ceramics.
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3.2.5. Hydrolytic Stability of the Samples

Some key physical factors influencing leaching include particle size, as leaching is
partially dependent on the exposed surface area undergoing leaching. Homogeneity or
heterogeneity of the solid matrix in terms of crystalline phases is also important. The time
interval of interest and flow rate of the leaching fluid can impact results. Temperature
during leaching, porosity of the solid matrix, and geometric shape and size of materials
where diffusion processes dominate leaching kinetics should be considered. Permeability
of the matrix during testing or under field conditions, as well as hydrogeological settings,
may affect outcomes. Chemical factors commonly impacting leaching involve whether
equilibrium or kinetic control governs release, the potential leachability of components,
material or environmental pH (e.g., CO2 influence), and complexation with inorganic or
organic compounds.

The leaching resistance of SrTiO3 ceramic matrices were evaluated to assess the com-
posite materials obtained, as this is a key indicator of matrices effectiveness for strontium
radionuclide immobilization. The results are shown in Figure 7a. The lowest leaching
rate corresponded to the sample obtained at 1200 ◦C, which was 10−6–10−7 g/cm2·day,
meeting the requirements of GOST R 50926-96 for solidified high-level waste. These high
values were achieved firstly by the high degree of strontium chemical bonding within
the source material structure. Secondly, the ceramization process was accompanied by a
structural change in the material, forming a monolithic sample with the fewest defects and
pores, preventing strontium leaching throughout the ceramic volume. Further calculations
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of the tangent of the slope of straight lines showing the cumulative leach fraction versus
the decimal logarithm of the leaching time (in seconds) (Figure 7b) differed significantly.
However, it seemed possible to distinguish two patterns:

− the tangent of the slope of the straight line for the 900 ◦C sintered sample remained
unchanged and was equal to 0.74, indicating strontium release was primarily due to
the dissolution of the sample surface;

− the tangents of the slope of the 1000, 1100, and 1200 ◦C sintered samples significantly
increased during leaching.
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All the samples were characterized by a change in the strontium elution mechanism
during testing. For the 1000 ◦C sample, strontium was leached for the first 3 days via
the mechanism of surface washing, after which the difference in chemical potentials—
the driving force of the mass transfer process—became sufficient to compensate for the
depletion of the surface layers by strontium diffusion from the sample bulk.

The 1100 and 1200 ◦C samples were characterized by a similar leaching mechanism
as described above; however, they likely had an elevated strontium content at the surface.
Additionally, the effective diffusion coefficient of strontium in these materials was lower.
Therefore, the stage of compensating strontium leaching by its diffusion only occurred after
30 days. Furthermore, it seemed plausible that with increased test duration, a new change
in mechanism could be recorded, with the limiting stage becoming the sample surface
dissolution phase.

The leaching index (L) for all samples was above 8, allowing the conclusion that
cesium is reliably immobilized within the material bulk and the synthesized matrices may
be suitable for application as immobilizing materials [38].

Finally, to elucidate the leaching mechanism of Sr2+ in SrTiO3 matrices, we intro-
duced two additional parameters—the diffusion coefficient and leaching index (L). Table 1
provides the diffusion coefficients of samples after processing at 900–1200 ◦C.

Table 1. Sr2+ leaching parameters of SrTiO3 samples obtained via SPS with temperatures of 900, 1000,
1100, and 1200 ◦C on the 30th day.

Sintering Temperature, ◦C De, cm2/s L Depth, cm

900 6.37 × 10−11 10.20 4.48 × 10−5

1000 6.02 × 10−11 10.05 5.45 × 10−5

1100 5.03 × 10−11 10.30 3.05 × 10−4

1200 1.73 × 10−13 12.39 6.11 × 10−4

As shown in Table 1, samples processed at temperatures below 1200 ◦C consisted of a
dense monolithic solid structure, affecting their leachability parameters, which decreased
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with increasing temperature. It should also be noted that penetration of the solution into
ceramics was minimal and corresponded to the order of 10−4–10−5. After processing at
temperatures above 900 ◦C, all high-temperature products had a leachability index (L)
above 9 and can be classified as allowing controlled disposal.

The calculated indicators of leaching depth are presented in Figure 7c. The ceramic
samples had high stability in the medium of this solvent, due to their dense structure and
the chemical stability of the matrices.

4. Conclusions

We conducted the synthesis of SrTiO3 matrices using a sol–gel synthesis method
according to Pechini and spark plasma sintering. The synthesized powder material was
represented by a homogeneous phase composition of strontium titanate, obtained from
precursor metallic salt precursors Sr(NO3)2 and TiCl3. Solid-state matrices were obtained
based on the synthesized powder by SPS in the temperature range of 900–1200 ◦C. Ceramics
with a homogenous strontium distribution had high RD values (up to 99.79%) and micro-
hardness (up to 950 HV). The sample obtained at 1200 ◦C showed the best performance
of high hydrolytic stability, with a leaching rate of 10−7 g·cm−2·day−1 and a diffusion
coefficient (De) of 1.73×10−13 cm2·s−1.

The comparison of results allowed for the following conclusions to be drawn: Prepar-
ing the sol–gel starting mixture according to the method led to single-stage thermal
compaction of the material, reducing the shrinkage rate and the temperature range of
the process.

The ceramic formation mechanism is common in the case of reaction and normal sin-
tering. Formation of the solid-state matrix occurred through the formation of aggregates of
a dense monolithic structure that increased in size with increasing temperature. Formation
of a fully developed ceramic compound was achieved at 1200 ◦C.

The obtained results can be applied to solve problems of producing perovskite-type
ceramic minerals for immobilizing strontium radionuclides. The sol–gel synthesis technique
can be used to reduce the stages of waste pre-treatment for compaction, particularly to
eliminate the calcination stage.
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