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Abstract: The use of dental resin composites adapted to computer-aided design/computer-aided
manufacturing (CAD/CAM) processes for indirect tooth restoration has increased. A key factor for
a successful tooth restoration is the bond between the CAD/CAM composite crown and abutment
tooth, achieved using resin-based cement. However, the optimal pairing of the resin cement and
CAD/CAM composites remains unclear. This study aimed to identify the optimal combination of a
CAD/CAM composite and resin cement for bonding. A commercial methyl methacrylate (MMA)-
based resin cement (Super-Bond (SB)) and four other composite-based resin cements (PANAVIA V5;
PV, Multilink Automix (MA), ResiCem EX (RC), and RelyX Universal Resin Cement (RX)) were tested
experimentally. For the CAD/CAM composites, a commercial polymer-infiltrated ceramic network
(PICN)-based composite (VITA ENAMIC (VE)) and two dispersed filler (DF)-based composites
(SHOFU BLOCK HC (SH) and CERASMART300 (CE)) were used. Each composite block underwent
cutting, polishing, and alumina sandblasting. This was followed by characterization using scanning
electron microscopy, inorganic content measurement, surface free energy (SFE) analysis, and shear
bond strength (SBS) testing. The results demonstrated that the inorganic content and total SFE
of the VE composite were the highest among the examined composites. Furthermore, it bonded
highly effectively to all the resin cements. This indicated that PICN-based composites exhibit unique
bonding features with resin cements. Additionally, the SBS test results indicated that MMA-based
resin cement bonds effectively with both DF- and PICN-based composites. The combination of the
PICN-based composite and MMA-based resin cement showed the best bonding performance.

Keywords: dental adhesive; composite; methyl methacrylate; bond strength; CAD/CAM; polymer-
infiltrated ceramic

1. Introduction

The increasing integration of computer-aided design/computer-aided manufacturing
(CAD/CAM) systems into dental prosthetic fabrication has revolutionized the field. These
systems have substantially streamlined the production of various dental prostheses such
as crowns, inlays, onlays, and dentures using CAD/CAM milling machines [1,2]. In
addition, CAD/CAM systems can be used to fabricate monolithic restorations and broaden
their applicability. This innovation allows for a higher precision in the creation of dental
restorations and facilitates faster and more efficient production processes. The advent of
CAD/CAM technology in dentistry underscores the significant progress in the industry. It
displays potential for future advancements.

The array of materials available through advanced CAD/CAM systems for producing
block-shaped restorative dental materials is remarkable [3,4]. Ceramic-based materials
include feldspathic porcelain, leucite-reinforced glass, lithium disilicate glass, and zirco-
nia [5,6]. These ceramics enable the fabrication of all-ceramic crown restorations. These
restorations are highly sought after because of their exceptional aesthetic quality, robust
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mechanical strength, remarkable biocompatibility, and physicochemical properties. These
attributes contribute to the long-term functionality of the oral environment. In contrast,
resin-based composites are an essential part of advanced dental restorative practice [7].
Resin composites are also known as dental composites or composites. These are tooth-
colored materials consisting of an acrylic resin matrix embedded in various types of
inorganic fillers. With the growth of CAD/CAM technology, resin composites have been
formulated into blocks or discs (referred to as CAD/CAM composites) that are designed
specifically for milling restorations within these systems [8]. CAD/CAM composites have
grown in popularity owing to their cost-effectiveness, biocompatibility, and superior me-
chanical and physicochemical properties compared with conventional resin composites
used for indirect restorations. These enhancements are largely attributable to a higher
degree of matrix resin conversion and increased filler content [9].

Advanced CAD/CAM composites are primarily categorized into two types based
on their microstructures: dispersed filler (DF)- and polymer-infiltrated ceramic network
(PICN)-based composites [2]. DF-based composites incorporate inorganic fillers into the
resin matrix. The DF-based composite for CAD/CAM blocks has a high filler content
(60–80%). The resin matrix in the DF-based composite blocks undergoes adequate polymer-
ization under high-temperature and high-pressure conditions during fabrication. Therefore,
the mechanical and physicochemical properties of DF-based CAD/CAM composites are
superior to those of conventional resin composites. DF-based composites are widely used as
restorative materials because of their relatively high flexural strength and machinability [1].
Meanwhile, the microstructure of the PICN-based composites is significantly different
from that of the DF-based composites. PICN-based composites feature dual networks
composed of ceramic and resin skeletons. As the name indicates, the PICN is a composite
material produced by impregnating pre-sintered porous ceramics with resin monomers
and polymerizing the resin under high-temperature and high-pressure conditions [10].
Because the PICN composite has a double skeleton comprising a ceramic skeleton and a
resin skeleton, the mechanical properties of the PICN are intermediate between those of the
resin and ceramics. In particular, PICN-based composites are attracting increasing attention
because of their mechanical compatibility with human enamel [11–16]. For example, a
commercial PICN-based composite, VITA ENAMIC (VE), consists of a silicate-glass-based
ceramic skeleton and methacrylate-based resin skeleton. Its Vickers hardness and elastic
modulus are intermediate between those of dentin and enamel. In recent years, PICN-based
composites have been used for conventional restorations such as crowns and inlays and for
minimal interventions such as occlusal veneers [17], overlays [18], and endocrowns [19].

Tooth preparation design, tooth vitality, and the amount of residual sound tooth
structure play vital roles in the long-term success of tooth restoration [18]. Additionally,
appropriate bonding of a restorative material to the abutment tooth is crucial. This pre-
vents both fractures and debonding failures [20–22]. CAD/CAM composites that contain
large amounts of filler are brittle materials that can crack under relatively small stresses
owing to stress concentration. Bonding a composite resin crown to a tooth is important
to prevent fractures. This is because crowns integrated with teeth are more resistant to
fractures. However, in clinical practice, the debonding failure of crowns fabricated from
CAD/CAM composites has been observed [23,24]. These are mainly attributable to the
inferior bonding properties of composites with resin cement [25,26]. To address this issue,
several surface pretreatment methods have been evaluated to enhance the bond strength be-
tween CAD/CAM composites and resin cement. Laser irradiation abrades the surface. This
forms a concavo-convex structure that enables effective mechanical interlocking between
the CAD/CAM composite and resin cement [27]. In contrast, plasma treatment modifies
the surface properties of CAD/CAM composites, thus enhancing the bond strength [28].
Airborne alumina particle abrasion is also known as alumina sandblasting. It abrades the
CAD/CAM composite, roughens the surface, and increases the surface area to improve
the adhesion [29]. Additionally, the application of an adhesive primer containing a silane
coupling agent (known as silane primer) to the surface facilitates covalent or hydrogen
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bonding between the CAD/CAM composite and resin cement [30]. Considering factors
such as safety, versatility, and usability, alumina sandblasting followed by the applica-
tion of a silane primer is currently regarded as the most suitable technique for bonding
pretreatment of CAD/CAM composite surfaces.

Notwithstanding these advancements, the determination of an appropriate resin
cement for optimal bonding with CAD/CAM composites remains an uncharted area of
research. In this study, we focused on two types of resin cement: (1) methyl methacrylate
(MMA)-based resin cement, which primarily consists of poly(methyl methacrylate) (PMMA)
with no filler, and (2) composite-based resin cement, which contains an inorganic filler with
a resin matrix. The purpose of this study was to identify the most suitable resin cement for
bonding PICN-based and DF-based CAD/CAM composites. The null hypothesis was that
the microstructure of the CAD/CAM composite and type of resin cement do not affect the
shear bond strength (SBS).

2. Materials and Methods
2.1. Materials

Table 1 lists the commercially available CAD/CAM composites used in this study,
namely, two DF-based composites (HC and CE) and a PICN-based composite (VE). Each
CAD/CAM composite block was cut into a 2 mm thick plate using a diamond wheel saw.
The surfaces of the plates were polished under dry conditions with emery papers, starting
with #400, followed by #600, and finally #1000. The polished plates were then cleaned via
ultrasonication in distilled water for 5 min. This was followed by complete drying using
an air-blower. Subsequently, the cleaned plates were sandblasted with 50 µm alumina
particles using an air-borne particle abrader (Jet Sandblast II, J. Morita, Suita, Japan) under
a pressure of 0.2 MPa for 10 s at a distance of 1 cm. The sandblasted plates were subjected
to an air-blower to remove the residual alumina particles from the surface. These plates
were used for the subsequent experiments.

Table 1. CAD/CAM composites. Each composition is according to the manufacturer’s information.

H Microstructure Product Name Manufacturer Lot Number Composition

SH Dispersed filler SHOFU BLOCK
HC Shofu, Kyoto, Japan 0322064

Silica powder, Zirconium
silicate, UDMA, TEGDMA,
Micro fumed silica, Pigments

CE Dispersed filler CERASMART300 GC, Kyoto, Japan 2208226 Balium glass, Silica, Bis-MEPP,
UDMA

VE Polymer-infiltrated
ceramic network VITA ENAMIC Vita Zahnfabrik, Bad

Sackingen, Germany 98162 SiO2, Al2O3, Na2O, K2O, B2O3,
CaO, TiO2, TEGDMA, UDMA

UDMA: urethane dimethacrylate; TEGDMA: triethylene glycol dimethacrylate; Bis-MEPP: 2,2-bis(4-
methacryloxypolyethoxyphenyl)propane.

A resin cement and adhesive primers were used to bond the CAD/CAM compos-
ites. Table 2 details the adhesive systems used in this study. These encompass a methyl
methacrylate (MMA)-based resin cement system and four composite-based resin cement
systems. These systems are used in conjunction with an adhesive primer and resin cement.
The bonding protocols for each resin cement and adhesive primer were followed according
to the manufacturer’s instructions.



J. Compos. Sci. 2023, 7, 418 4 of 11

Table 2. Resin cements and their corresponding adhesive primers used for bonding with the
CAD/CAM composites.

Adhesive System Resin Cement (Lot Number) Adhesive Primer Manufacturer

SB Super-Bond (EE22FR) Super-Bond PZ Primer Sun Medical, Moriyama, Japan

PV PANAVIA V5 (2E0230) CLEARFIL CERAMIC PRIMER
PLUS

Kuraray Noritake Dental, Tokyo,
Japan

MA Multilink Automix (Z02FY6) Monobond Plus Ivoclar Vivadent, Schaan,
Liechtenstein

RC ResiCem EX (092104) BeautiBond Xtreme Shofu, Kyoto, Japan

RX 3M RelyX Universal Resin
Cement (9720977)

3M Scotchbond Universal Plus
Adhesive 3M, Saint Paul, Minnesota, USA

2.2. Scanning Electron Microscopy (SEM)

For the SEM observations, the surfaces of the sandblasted CAD/CAM composites were
coated with platinum using a sputtering device. The coated composites were examined
via scanning electron microscopy (SEM, JCM-7000, JEOL, Tokyo, Japan) at an accelerating
voltage of 10 kV.

2.3. Measurement of Filler Contents

The filler content of the CAD/CAM composites was measured using a combustion
method as reported earlier [14]. Each sample was weighed using an electric balance
(CP225D; Sartorius, Göttingen, Germany). Subsequently, the sample was calcined at 600 ◦C
for 3 h in air to remove all the organic matter. The residual sample ash and inorganic matter
(filler) were weighed using an electric balance. The inorganic filler content of the samples
was estimated as the ratio of the sample weight before and after calcination.

2.4. Surface Free Energy (SFE) Analysis

The SFE of each CAD/CAM composite was determined through the following pro-
cedure via contact angle measurements: Initially, the contact angle of each specimen was
measured with two test liquids: distilled water and diiodomethane (>99% purity, Kanto
Chemical Co., Inc., Tokyo, Japan). Each test liquid’s contact angle was obtained five times
per sample with each instance involving a droplet volume of 2 µL administered under
ambient conditions at a room temperature of 20 ± 3 ◦C, using a dedicated contact angle
meter (DMe-211, Kyowa Interface Science Co., Ltd., Saitama, Japan). A new sandblasted
sample was used to determine the reliability of each measurement. The contact angle
measurements were obtained by capturing an image of the droplet 5 s after it landed on the
surface of the specimen. Subsequently, the SFEs of the samples were computed based on
the measured contact angles. The calculation involved the utilization of analytical software
(FAMAS, Kyowa Interface Science Co., Ltd., Saitama, Japan). The methodology was aligned
with the Owens–Wendt theory [31]. The equations governing this theory are as follows:√
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where the subscripts L1 and L2 indicate the test liquids (water and diiodomethane, re-
spectively); γtotal, γp, and γd are the total SFE, polar (hydrogen) component of SFE, and
dispersive component of SFE, respectively, for the examined composites (or control sam-
ples); and γL

total, γL
p, and γL

d are the total SFE, polar component of SFE, and dispersed
component of SFE, respectively, for the test liquids (water and diiodomethane). The SFE
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values of the test liquids used were the following previously reported ones [31]: γL1
total =

72.8 mN/m, γL1
p = 51.0 mN/m, and γL1

d = 21.8 mN/m for water, and γL2
total = 50.8 mN/m,

γL2
p = 1.3 mN/m, and γL2

d = 49.5 mN/m for diiodomethane. θ is the measured contact
angle of the test liquids.

2.5. Shear Bond Strength (SBS) Test

The bond strength of each CAD/CAM composite with each resin cement was deter-
mined using the SBS test reported in our previous study [26]. The sandblasted CAD/CAM
composite plates were secured to a Teflon tube (height = 5 mm, inner diameter = 5 mm)
using double-coated tape to ensure a constant bonding area of 19.6 mm2. A primer was
applied to the bonding area of the CAD/CAM composite surface. Subsequently, the resin
cement was loaded onto the composite surface and cured according to the manufacturer’s
instructions. The cement-bonded samples were then immersed in distilled water at 37 ◦C
for 1 d. These samples were designated as the “initial group”. Additionally, samples were
subjected to 20,000 thermal cycles by alternately immersing these in 5 ◦C and 55 ◦C water
baths for 60 s each. These samples were designated as the “thermocycling group”.

The SBS tests were performed on both initial and thermocycling groups using a
universal testing machine (AGS-H; Shimadzu Corp., Kyoto, Japan). A shear load was
applied to the interface between the CAD/CAM composite and resin cement using a knife-
edge-shaped apparatus until failure occurred. The SBS value was calculated by dividing
the measured maximum applied force by the adhesion area.

After the SBS test, the fractured interface between the CAD/CAM composite and resin
cement was inspected to determine its failure mode. The failure mode was categorized into
three types: adhesive failure at the cement–composite interface, cohesive failure within the
composite, and mixed failure consisting of both cohesive and adhesive types.

2.6. Statistical Analysis

Statistical analyses of SBS, SFE, and filler content were performed using EZR software
(Jichi Medical University, Saitama, Japan). The Kolmogorov–Smirnov test was used to
assess the normality of data distribution. Given that the results indicated a non-normal
data distribution, we used the non-parametric Steel–Dwass test for multiple comparisons.
In all the analyses, the threshold for statistical significance (p-value) was set at 0.05.

3. Results

The SEM images of the sandblasted composites presented in Figure 1 demonstrate
that each composite surface was roughened by the alumina sandblasting, thereby forming
random microgrooves. Figure 2 illustrates the inorganic content of the composites as
determined by the calcination method. The content follows the order SH (63.87 ± 0.16%)
< CE (74.95 ± 0.40%) < VE (86.46 ± 0.22%). This inorganic content was aligned with the
manufacturer’s information for each product.
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Figure 2. Inorganic content of the CAD/CAM composites. The different alphabet letters in the figure
represent statistically significant differences between the groups (p < 0.05, Steel–Dwass test).

The SFE analysis results of the composites are shown in Figure 3. The polar compo-
nents of the VE composite are significantly higher than those of the SH and CE composites.
The dispersive component of the VE composite was lower than those of the SH and CE
composites. The VE composite exhibited the highest total SFE (which consists of the polar
and dispersive components) among the examined composites.
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Figure 3. SFE of the sandblasted CAD/CAM composites, (a) polar component of SFE, (b) dispersive
component of SFE, and (c) total SFE. The different alphabet letters in the figure represent statistically
significant differences between the groups (p < 0.05, Tukey’s test).

Table 3 outlines the SBS between each resin cement and composite. It includes the
results of the statistical comparisons of the SBSs. The statistical analysis revealed that the
type of cement affected the SBS. Upon comparing the SBS across the SH composite, the
Super-Bond (SB) cement displayed the highest value in both initial and thermocycling
groups. Similarly, for the CE composite, the SB cement consistently exhibited the highest
values. For the VE composite, the PANAVIA V5 (PV) cement had the highest value among
the initial groups, whereas the SB cement had the highest SBS among the thermocycling
groups. These results indicate that the SB cement displayed the best performance in bonding
with each composite. The statistical analysis also revealed that the type of composite
affected the SBS. For the cement types, the SBS followed the order SH < CE < VE. This
indicates that the VE composite performed the best for bonding with cement.
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Table 3. Mean and standard deviation of SBS between each adhesive system and each CAD/CAM
composite. The uppercase letters indicate significant differences between groups in rows, whereas the
lowercase letters represent significant differences between groups in columns (p < 0.05, Steel–Dwass
test, n = 11).

SH CE VE

Adhesive Initial Thermocycling Initial Thermocycling Initial Thermocycling

SB 17.9 ± 3.2
A, ab

19.2 ± 2.0
A, ab

20.9 ± 4.2
A, a

18.9 ± 3.9
A, ab

21.6 ± 5.2
B, a

15.0 ± 3.4
A, b

PV 4.4 ± 0.8
D, cd

3.4 ± 1.1
B, d

10.5 ± 1.3
B, b

6.3 ± 0.5
B, bcd

30.9 ± 9.9
A, a

9.5 ± 3.5
AB, bc

MA 6.6 ± 0.7
CD, cd

2.7 ± 1.9
B, d

10.3 ± 1.3
BC, bc

8.0 ± 1.4
B, bc

23.6 ± 6.7
AB, a

12.5 ± 7.0
AB, b

RC 9.9 ± 2.1
B, b

2.5 ± 1.5
B, c

7.7 ± 1.3
C, b

7.4 ± 1.1
B, b

28.1 ± 7.7
AB, a

7.8 ± 3.8
B, b

RX 8.0 ± 1.8
BC, c

1.9 ± 0.7
B, d

9.9 ± 1.7
BC, bc

8.5 ± 2.6
B, c

31.7 ± 3.6
A, a

14.3 ± 8.0
AB, b

The SBS results were supported by the failure mode analysis. Table 4 lists the failure
modes of the samples after the SBS tests. It indicates that cohesive failure more strongly
bonded the resin cement with the composite than adhesive failure. Cohesive failure was
observed only in the SB cement for all the composites in both initial and thermocycling
groups. This indicates that the SB cement bonded well to each composite even after
thermocycling. Focusing on the composite types, cohesive failure was most frequently
observed in the VE composite. This implied that it bonded effectively with all the cements.

Table 4. Failure modes (Adhesive/Mix/Cohesive) of the SBS-tested samples.

SH CE VE

Adhesive Initial Thermocycling Initial Thermocycling Initial Thermocycling

SB 0/0/11 0/0/11 0/0/11 0/0/11 0/0/11 0/0/11
PV 11/0/0 9/2/0 11/0/0 11/0/0 0/0/11 2/5/4
MA 11/0/0 8/3/0 6/4/1 3/8/0 0/0/11 0/8/3
RC 3/7/1 10/1/0 10/1/0 10/1/0 0/0/11 1/9/1
RX 3/8/0 11/0/0 6/5/0 4/7/0 0/0/11 1/6/4

4. Discussion

The relationship between the microstructure of the CAD/CAM composites and their
bonding characteristics remains ambiguous in contemporary dental prosthetic research.
The ambiguity on this issue was the primary motivation for the current investigation. It
sought to determine the bond strength between CAD/CAM composites and resin cements,
with a specific focus on various types of commercially available composites and resin
cements. In this study, we selected three commercial CAD/CAM composite blocks to
represent the range of materials commonly used in the field. These included two DF-based
composites, labelled SH and CE, and a PICN-based composite, denoted as VE. These com-
posite options enabled us to analyze the interactions of both the major types of CAD/CAM
composites with different types of resin cements. With respect to the resin cements, we used
a commercial MMA-based resin cement, identified as SB (Super-Bond), and four composite-
based resin cements, namely, PV (PANAVIA V5), MA (Multilink Automix), RC (ResiCem
EX), and RX (3M RelyX Universal Resin Cement). An appropriate silane-containing primer
was incorporated into the bonding process to facilitate effective adhesion between the com-
posites and cement. To test the bond strength, SBS tests were performed for each pairing of
composite and cement. The tests revealed observable differences in the SBS values across
various combinations of materials. This disparity in results demonstrates the influence
of both the type of resin cement and the microstructure of the CAD/CAM composite on
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the SBS. Therefore, we reject our null hypothesis. This highlights the significance of these
variables in influencing the bond strength of dental restorations.

Alumina sandblasting is conventionally used as a surface pretreatment approach
to enhance the bonding of various restorative materials including metal-based materials
(e.g., gold alloys and titanium), resin-based materials (e.g., PMMA and resin composites),
and polycrystalline ceramics (e.g., zirconia) [32]. Alumina sandblasting is considered a
practical method in dental clinics because of its safety, convenience, and ease of handling. In
addition, it is an effective surface pretreatment method for increasing the bond strength of
resin cements [33,34] because it yields increased surface roughness and SFE. These, in turn,
contribute to improved bonding with adhesives. This study demonstrated that alumina
sandblasting successfully roughened the composite surface. Moreover, the increased
surface roughness resulted in enhanced mechanical interlocking at the composite–adhesive
interface.

The results of the SBS tests highlighted the significant influence of the composite
microstructure on the bond strength between the composite and resin cement. The SBS of
the PICN-based composite (VE) exceeded that of the DF-based composites (SH and CE).
These observations were corroborated by the failure mode analysis. The analysis revealed
that the PICN-based composite predominantly demonstrated cohesive failure modes, which
were significantly more prevalent than those observed for the DF-based composites. The
implication of these SBS test results is the potential superiority of the PICN-based composite
in terms of bonding properties compared with the DF-based composites. Our present
observations align with the results of prior research [26,35]. This demonstrates that resin
cements with a silane primer perform more effectively with PICN-based composites than
with DF-based composites. This assertion validates the SFE results. The polar component
of the SFE of the PICN-based composite was significantly higher than that of the DF-based
composite. According to the Owens–Wendt theory, the polar component of SFE originates
from polar functional groups capable of forming hydrogen bonds such as Si-OH groups.
Consequently, we determined that the surface of the PICN-based composite displayed a
relatively larger number of Si-OH groups than that of the DF-based composites. These
Si-OH groups on the composite surface can react with the silane coupling agent present in
the silane primer. This would enhance the bond strength between the composite surface
and resin cement. The sandblasting process was applied to increase the surface area of
both the PICN-based and DF-based composites. This resulted in a corresponding increase
in the SFE of the composites. It is also worth mentioning that the filler content within
the composites could potentially affect the bond strength of the resin cement via a silane
coupling agent. Because the effect of the silane coupling agent increased with an increase in
the filler content, the filler content in our test composites followed the order SH < CE < VE.
This order is consistent with the SBS results and further reinforces our observations.

The SBS results revealed that the MMA-based resin cement presented a superior
bonding performance with the CAD/CAM composites, compared with the composite-
based resin cements. This aligns with previous studies [36]. Therein, the MMA-based
resin cement Super-Bond adhesive system demonstrated a higher bond strength than the
composite-based resin cement ResiCem adhesive system. A feasible explanation for this
phenomenon involves the formation of a semi-interpenetrating polymer network (semi-
IPN) structure at the interface between the MMA-based resin cement and the CAD/CAM
composite [37–39]. The structure comprises a macromolecular-level polymer blend in
which the polymer chains of a linear polymer infiltrate another polymer matrix. It is known
to enhance the bond strength between different polymer resins via mechanical interlock-
ing [37]. In this study, it was postulated that the relatively small MMA molecules infiltrate
the resin matrix of the CAD/CAM composite and subsequently polymerize to PMMA. This
results in the formation of the semi-IPN structure at the interface. This structure potentially
enhances the bond strength between the MMA-based resin cement and the CAD/CAM
composite. Furthermore, the use of an MMA-containing silane primer in conjunction with
an MMA-based resin cement is considered to facilitate the semi-IPN structure formation.
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This is because the MMA present in the primer can penetrate the resin matrix. This sup-
position is supported by reports stating that an MMA-containing primer enhances the
bonding between CAD/CAM composites and resin cement [27,30,40,41] and that the MMA
monomer can infiltrate the resin matrix in resin composites [30,38,41,42]. In contrast, the
composite-based resin cements employed in this study contained relatively large molecules
such as triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA),
and bisphenol A glycidyl methacrylate (Bis-GMA). These do not have the capability to infil-
trate another polymer network or form a semi-IPN structure. Therefore, the SBS decreased
significantly after thermocycling because of the deficiency of mechanical interlocking by the
semi-IPN structure. Another consideration is the wettability of the resin cement. As shown
in the SEM images, the surfaces of the CAD/CAM composites featured grooves of various
sizes formed by sandblasting. Owing to its relatively low viscosity and high wettability,
MMA-based resin cement can infiltrate both wide and narrow grooves. This infiltration
results in mechanical interlocking at the interface when the MMA-based resin cement is
cured. In contrast, composite-based resin cements, which contain numerous ceramic fillers
(particles), are incapable of infiltrating narrow grooves on CAD/CAM composite surfaces.

The current study was limited to the use of a single PICN-based composite owing
to the restricted commercial availability of this type of composite. Currently, the only
available brand is ENAMIC. Future studies should aim to test the bond strength using a
diverse range of PICN-based composites including noncommercial prototypes [15,16,43,44].
The MMA resin cement used in this study was restricted to one brand. Therefore, future
studies should consider the use of other brands or prototypes of MMA-based resin cements.
Moreover, although the present experiments provided valuable in vitro insights, it is crucial
to acknowledge that these laboratory conditions may not fully replicate the complexities of
the oral environment. Consequently, the next step in evaluating the performance of these
materials involves clinical studies to verify their efficacy and durability in oral settings.
Through such investigations, the bond strength characteristics of these materials and their
potential applications in dental practice can be understood more comprehensively.

5. Conclusions

This study was focused on evaluating the bonding performance between CAD/CAM
composites (namely, PICN- and DF-based composites) and resin cements (specifically
MMA- and composite-based resin cements). With due consideration of the limitations of
this study, we drew the following conclusions:

1. When resin cement was used with a silane coupling agent, the PICN-based CAD/CAM
composite displayed a superior bond strength compared with its DF-based CAD/CAM
counterpart. These observations underscore the potential advantages of PICN-based
CAD/CAM composites for dental restorations.

2. Irrespective of whether a PICN- or DF-based CAD/CAM composite was used, a
higher bond strength was observed with the MMA-based resin cement than with the
composite-based resin cements. This indicates that the MMA-based resin cement may
provide superior bonding properties and, thereby, facilitate better dental restorative
procedures.

These conclusions highlight the advantages of PICN-based composites and MMA-
based resin cements for achieving superior bond strength. This is crucial for the long-term
durability and efficacy of dental restorations.
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