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Abstract: In this paper, the structure and phase transition temperature of bulk silicate materials are
studied by the simulation method (SM) of molecular dynamics (MD). In this research, all samples are
prepared on the same nanoscale material model with the atomic number of 3000 atoms, for which the
SM of MD is performed with Beest-Kramer-van Santen and van Santen pair interaction potentials
under cyclic boundary conditions. The obtained results show that both the model size (l) and the
total energy of the system (Etot) increase slowly in the low temperature (T) region (negative T values)
at pressure (P), P = 0 GPa. However, the increase of l determines the Etot value with very large values
in the high T region. It is found that l decreases greatly in the high T region with increasing P, and
vice versa. In addition, when P increases, the decrease in the Etot value is small in the low T region,
but large in the high T region. As a consequence, a change appears in the lengths of the Si-Si, Si-O,
and O-O bonds, which are very large in the high T and high P regions, but insignificant in the low T
and low P regions. Furthermore, the structural unit number of SiO7 appears at T > 2974 K in the high
P region. The obtained results will serve as the basis for future experimental studies to exploit the
stored energy used in semiconductor devices.

Keywords: bulk SiO2; low-temperature; high-temperature; pressure; phase transition temperature;
molecular dynamics; structure

1. Introduction

Today, with the significant development of computer science and materials science for
technology, it is possible for researchers to approach materials at the nanoscale. Among the
study tools used, the simulation method (SM) of molecular dynamics (MD) is currently the
most effective method for studying the structure, phase transition, and determining the
phase transition temperature (Tm) of new materials [1]. In the framework of this method,
the motion of atoms described by Newton’s law of equations is studied.

In recent years, different scientists have successfully explored the influencing factors
such as temperature (T) and pressure (P) on the structure and phase transition process in
oxide materials (such as CaSiO3 [2], MgSiO3 [3,4], and bulk Fe2O3 [5,6]). The obtained
results show that when T is rapidly reduced, the material moves to an amorphous state.
Conversely, the material moves to a liquid state when T is increased. So a question arises:
what will happen with SiO2 material, and the characteristic quantities of its structure, or
with Tm: do these ones follow the same rules as the above materials or not? To answer
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this question, in this research we have focused on the structural characteristics and Tm of
bulk Silica (bulk SiO2) materials by taking a proper pair interaction potential between the
related components. It has been shown that the choice of van Beest-Kramer-van Santen
(BKS) potentials introduced in Ref. [7] is the most proper one, because in different modified
versions it reproduces the structural properties of bulk SiO2 well [8]. Furthermore, it
describes the dynamical properties of considered materials which are consistent with
experimental data obtained before [8,9].

Bulk SiO2 materials exist mainly in the amorphous (Amor) state as a powder or
colloidal and are used widely in life. It is considered as one of the most important materials
in the electronic industry. The effects of T and P on the heterogeneous kinetics of bulk SiO2
material have recently attracted a lot of researchers’ attention, in particular, the influence of
T has become one of the focal points of their research [10–13]. By experimental methods
(EMs) and also by SMs, sometimes by the Ab-initio method, authors of many previous
publications have determined, among others, the length of links and the link angles in SiO2
compounds [14–41]. Some papers have combined the EM with the SM of MD to clarify the
change in the structural unit number of SiO2 when P increases [42–44].

Generally speaking, the numerous results obtained before by different methods are
very rich, but rather frequently are not consistent one with another. Here a question arises
with regard to how the effects of T and P on the structure and phase transition of SiO2 can
be considered systematically. In this research, the answer to this question will be given
by considering these effects in the framework of the SM of MD, and for that, as it has
been emphasized above, the choice of BKS potentials is the most suitable. Therefore, in
this study, the structural characteristics and phase transition of SiO2 in the high T and P
regions have been investigated. The results presented below provide a conclusion that the
structural units SiO4, SiO5, and SiO6 in the center of the earth do not exist for SiO2 material.
These are new results which could serve as a basis for future experimental studies.

2. Computational Methods

Initially, the sow randomly 3000 atoms of bulk SiO2 (1000 atoms Si and 2000 atoms O)
into the cube bulk model with the size (1) as expressed in Equation (1):

ρ =
N
V
→ l = 3

√
N
ρ

= 3

√
mSinSi+mOnO

ρ
(1)

In this formula mSi = 26.98154, mO = 15.999. The model with the force field was
expressed by the BKS pair interaction potential (according to the Equation (2)) and a
periodic boundary condition in the framework of the SM of MD is proposed [15–19,23,45]:

Urj(r) =
qiqj

rij
+Aije

−Bijrij − Bijrij − Cijr−6
ij (2)

whereas nSi, nO, ρ, rij, qi, qj, are molecular weights, the atomic numbers of Si, O and atomic
density, distance links, and charges of the atoms i and j, correspondingly. Aij, Bij and Cij are
the potential coefficients of the model given in Table 1.

Table 1. Parameters of the bulk SiO2 material [46,47].

SiO2 Si-Si Si-O O-O

Aij(eV) 0 18,003.5773 1388.773

Bij(Å−1) 0 4.87318 2.76

Cij(eVÅ5) 0 133.5381 175.0

qi,j(e) - qSi = +2.4 qO = −1.2
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By Verlet algorithm [48], one can determine the coordinates, velocity, and energy of
atoms in the simulation process (Table 1). The authors create SiO2 materials by running the
2 × 104 steps recovery statistics NVT (constant atomic number, volume, temperature), and
2 × 104 steps NVP (constant atomic number, volume, pressure) at T = 7000 K. The obtained
result shows that atoms do not stick together and when the T is lowered from T = 7000 K to
T = 300 K at P = 0 GPa. It can be noticed that the system is stable and reaches equilibrium at
T = 300 K, P = 0 GPa. In the next step, both T and P are changed in the following way: first,
the T of samples is increased from T = 300 K to T = 500 K, 1500 K, 2500 K, 3000 K, 3500 K,
4500 K, 5500 K, 7000 K at P = 0 GPa; in the next step P is increased from P = 0 GPa to P = 5,
10, 15, 20 GPa at T = 70 K, 300 K, 1273 K, 2974 K, 3500 K. After sample stabilization at the
desired T and P, all samples run simultaneously with 5 × 105 steps NVE (constant atomic
number, volume, energy) to the moment when the samples achieve equilibrium. To study
the heterogeneous kinetics of bulk SiO2, the samples are analyzed by radial distribution
function (RDF) (according to Equation (3)) [48–54]:

g(r) =
V

N2

〈
∑i ni(r)
4πr2∆r

〉
(3)

with g(r), V, N, ni(r), r is RDF, volume, atoms number, and coordinates denoting respectively
the links (Equation (4)) [45]:

CN = 4πρ
r1∫

0

g(r)r2dr (4)

where CN, r1 is the average Coordination Number (CN), the first peak position of RDF,
and the bond angle. The relationship between the O-Si-O bond angle is used for the link
lengths (applied for the links O-O, Si-O, Si-Si), and is computed by the following expression
(Equation (5)) [45]:

cosα =
2r2

Si−O − r2
Si−Si

2r2
Si−O

(5)

where: α = O-Si-O for the model defined at T and P. Also, during the heating process of
SiO2, it is evaluated according to the Nosé-Hoover formula [55,56].

To confirm the accuracy of the results, our results were compared with those obtained
previously under the same T and P conditions. All these results during heating, P change,
and model annealing were determined using the Nosé-Hoover formula [55,56], and the
Verlet algorithm, and were run on the computer central system of the Institute of Physics,
the Department of Physics & Astronomy of Zielona Gora University, Poland.

3. Results and Discussion
3.1. The Structural Characteristic Quantities

To study the structural properties of the bulk SiO2, we study the bulk SiO2 at T = 300 K
and P = 0 GPa, and the obtained results are shown in Figure 1.

The obtained results show that the bulk SiO2 at T = 300 K has a cube shape and is
composed of two types of atoms: Si, and O (Si atoms are dark blue, and O atoms are red).
It can be observed that Si atoms are not homogeneously distributed at the shell, while the
O atoms are homogeneously distributed in the core layer (Figure 1a); the structural units
number of SiO2 is SiO4 (green-blue), SiO5 (red), SiO6 (black) (Figure 1b). The parameters of
atomic links for the links Si-Si, Si-O, O-O are calculated from the RDF. The links lengths
are rSi-Si = 3.16 Å, rSi-O = 1.62 Å, rO-O = 2.64 Å which correspond to the first peak positions
of RDF gSi-Si = 4.47, gSi-O = 24.76, gO-O = 4.78 (Figure 1c), whereas the average CNs are
CNSi-Si = 4.11, CNSi-O = 4.01, CNO-O = 8.51 (Figure 1d). In addition, the quantities that
characterize the structure of bulk SiO2 also have the structural unit number, and the bond
angle between atoms is 2975 atoms SiO4, 121 atoms SiO5, 7 atoms SiO6, and the angles
of the links is O-Si-O is 105◦. The effect of low T (T < 273 K) corresponds to liquefied
gases such as T = 4.22 K (helium), 70 K (nitrogen), 83.8058 K (argon), 90 (oxygen), 194.5 K
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(carbon), high T (T > 273 K) and P at the respective T values will be studied in detail in the
following section.
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3.2. Effect of T
3.2.1. High T Region

The results structural characteristic quantities of the bulk SiO2 are presented in Figure 1,
Table 2.

The obtained results show that the bulk SiO2 has structural characteristic quantities
at T = 300 K (Figure 1). When the T increases from T = 300 K to T = 500 K, 1500 K, 2500 K,
3000 K, 3500 K, 4500 K, 5500 K, and 7000 K, then the length (r) of links Si-Si, Si-O, O-O is
rSi-Si, rSi-O, rO-O change as rSi-Si changes (in the range from rSi-Si = 3.12 Å to rSi-Si = 3.16 Å),
rSi-O changes (from rSi-O = 1.56 Å to rSi-O = 1.64 Å), and rO-O changes (from 2.64 Å to
2.66 Å at T = 3000 K). Also, the length of the Si-Si, and Si-O bonds decreases greatly at
T > 5500 K with rSi-O = 1.56 Å, which proves that SiO2 has completely liquefied and has
long fracture links which are caused by the size effect caused. The obtained results for
rSi-Si are consistent with the results given by other authors using the SM [12–19,23] and the
EM [21,22]. Similarly, one can also see accordance with other results for other links Si-O in
link length obtained by SM [15–19,23] and by EM [12–14,20,21], whereas for the links O-O
by SM [12–19,23] and [20,21] by EM (Table 2). It follows that the effect of T on the link is the
length and the number of coordinates are negligible, which is a consequence of the form of
g(r). This leads to the question of whether there is any other cause that strongly affects the
structure of bulk SiO2. The obtained results show that in the interval from T = 2500 K to
T = 3000 K, gSi-O decreases slowly, and the rO-O increases suddenly, so it can be concluded
that in this T zone, the phase transition from an amorphous state to a liquid state for bulk



J. Compos. Sci. 2022, 6, 234 5 of 14

SiO2 has been realized. To study this phase transition, the number of structural units at
different T values has been considered. The results are presented in Table 3.

Table 2. The structural characteristic quantity of bulk SiO2 at different T values.

T(K)
Links Lengths rij (Å) First Peak Positions g(rij) CN

Si-Si Si-O O-O Si-Si Si-O O-O Si-Si Si-O O-O

300 3.16 1.62 2.64 4.47 24.76 4.78 4.11 4.01 8.51

500 3.16 1.62 2.64 4.37 20.69 4.41 4.16 4.02 7.52

1500 3.14 1.64 2.64 3.62 12.72 3.54 4.23 4.02 4.02

2500 3.16 1.62 2.66 3.05 9.72 2.92 4.23 4.03 8.14

3000 3.14 1.62 2.66 3.03 8.85 2.83 4.34 4.02 8.71

3500 3.16 1.64 2.64 2.55 7.41 2.47 4.48 4.12 9.15

4500 3.16 1.62 2.66 2.54 7.14 2.47 4.49 4.12 9.16

5500 3.12 1.62 2.64 2.18 5.79 2.14 4.25 4.06 8.91

7000 3.12 1.56 2.66 1.96 5.31 1.92 3.99 3.96 8.65

Previous
Results

rSi-Si 3.155 [15], 3.16 [16], 3.08 [17], 3.13 [18], 3.14 [19], 3.11 [23], 3.12 [21], 3.077 [22]

rSi-O 1.595 [15], 1.63 [16], 1.62 [17], 1.61 [18], 1.61 [19], 1.60 [23], 1.62 [21], 1.608 [20]

rO-O 2.59 [15], 2.62 [16], 2.66 [17], 2.65 [18], 2.60 [19], 2.61 [23], 2.65 [21], 2.626 [21]

Table 3. The number of structural units and link angles of bulk SiO2 at different T values.

T (K)
Structural Units Number O-Si-O

(Degree) Results (Degree)
Obtained Previously

SiO4 SiO5 SiO6

300 2975 121 7 105

108.3 [15], 109 [17],
107.3 [23]

by SM
and 109.47 [24],

109.7 [25], 109.4 [26],
109.5 [18]

by EM

500 2071 153 7 105

1500 2965 173 21 105

2500 2959 232 0 105

3000 2960 211 0 105

3500 2791 709 74 105

4500 2769 783 49 105

5500 2653 959 119 100

7000 2650 960 64 95

When (T) increases from T = 300 K to T = 500, 1500, 2500, 3000, 3500, 4500, 5500, 7000 K,
the structure unit number SiO4 decreases from 2975 atoms to 2650 atoms; whereas for SiO5
it increases from 121 atoms to 960 atoms. Whereas for SiO6 change in about from 0 atoms
to 119 atoms (Table 3), the link angle of O-Si-O decreases from 105◦ to 95◦. Our results are
consistent with the results obtained previously. The links angle for O-Si-O [14,15,17,23] by
SM, and by EM [21,24–26], are also in agreement with our calculations. The results show a
significant influence of T on the link angle and the number of structural units SiO4, SiO5,
SiO6. The disappearance of the number of SiO6 structural units at T = 2500, 3000 K shows
that there is a phase transition of the material in this region. To answer this question, the l
and total energy of the system (Etot) at different T values (Table 4) have been also calculated.
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Table 4. The l and Etot of bulk SiO2 at different T values.

T (K) l (nm) Etot (eV)

300 3.440 −53,230

500 3.442 −53,072

1500 3.450 −52,282

2500 3.451 −51,477

3000 3.453 −51,062

3500 3.454 −50,501

4500 3.462 −49,424

5500 3.473 −48,258

7000 3.521 −46,695

The obtained results show the case for the high T region T > 273 K. When T increases,
Etot increases, and with T increasing from T = 300 K to T = 2500 K, the size (l) of the material
increases greatly from l = 3.440 nm to 3.451 nm, and when T increases from T = 3000 K to
T = 7000 K, l slows down from l = 3.453 nm to l = 3.521 nm (Table 4). The obtained results
show that in the high T region, two regions appear, the crystalline state and the liquid
state, in which the intersection region between the two liquid states and the crystalline
state appears in the T range from T = 2500 K to T = 3000 K [19]. As a consequence, it can be
generally said that the effect of T on the heterogeneous kinetics of the considered material
is very large. The results obtained show that when T increases at P = 0 GPa, the links length
(r) and angle of the links will not change significantly. With the first peak point of RDF
g(r), the mean coordinate number tends to decrease, g(r) decreases strongly, and the link
Si-O increases. This is the cause that leads to the insignificant change in the number of the
structural unit of SiO4, SiO5, SiO6, and the disappearance of structural units. The obtained
results could serve as the basis for future experimental studies.

3.2.2. Low T Region

The results of structural characteristic quantities of the bulk SiO2 at low T values are
presented in Table 5.

Table 5. The structural characteristic quantity of bulk SiO2 at low T values.

T(K)
Links Lengths rij (Å) First Peak Positions g(rij) CN

l (nm)
Etot
(eV)Si-Si Si-O O-O Si-Si Si-O O-O Si-Si Si-O O-O

300 3.16 1.62 2.64 4.47 24.76 4.78 4.11 4.01 8.51 3.439 −53,230

194.5 3.18 1.64 2.64 4.60 28.36 5.00 4.13 4.01 8.41 3.439 −53,312

90 3.2 1.64 2.64 4.63 35.28 5.22 4.12 4.01 10.2 3.439 −53,394

83.8085 3.2 1.64 2.64 4.64 35.81 5.22 4.12 4.01 6.73 3.439 −53,399

70 3.2 1.64 2.64 4.61 37.26 5.27 4.14 4.01 6.73 3.439 −53,410

4.22 3.22 1.64 2.62 4.67 42.51 5.57 4.13 4.00 7.78 3.439 −53,460

The number of structural units and bond angle at low T values

T(K) 300 194.5 90 83.8085 70 4.22

SiO4 2975 2974 2970 2969 2970 2974

SiO5 121 128 144 150 144 133

SiO6 7 7 7 7 7 7

O-Si-O
(degrees) 105 105 105 105 105 105
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The obtained results show that with bulk SiO2 at (T), T = 300 K has structural charac-
teristic quantities (Figure 1). The results obtained in the low T region T < 273 K (negative T
values), P = 0 GPa. When the T decreases from T = 300 K to T = 194.5, 90, 83.8085, 70, 4.22
K the lengths links of Si-Si, Si-O, O-O have changed as Si-Si increases (from rSi-Si = 3.16 Å
to rSi-Si = 3.22 Å), Si-O increases (from rSi-O = 1.62 Å to rSi-O = 1.64 Å) and O-O decreases
(from rO-O = 2.64 Å to rO-O = 2.62 Å); CN changes very little, l is constant value l = 3.439
nm; energy increased (from Etot = −53,230 eV to Etot = −53,460 eV); the number of SiO4,
SiO5, SiO6 structural units has a constant value, and the O-Si-O bond angle has a constant
value of 105◦ (Table 5) which shows that in this region there is almost no structural change,
but there is an increase in energy of the Etot system. With this, the researchers can use this
material in future energy storage devices.

3.2.3. Effects of P

As has been emphasized in the Introduction, other scientists only considered the effect
of P at T = 300 K, and there are no research results in the high T area. Therefore, the study
on the structural characteristics and phase transition of SiO2 in the high T and high P
regions has also been carried out and presented in this text.

At T = 70 K

The structural characteristic quantities of bulk SiO2 at T = 70 K with different p values
are shown in Table 6.

Table 6. The structural characteristic quantity of bulk SiO2 at low T values.

P (GPa)
Links Lengths rij (Å) First Peak Positions g(rij) CN

l (nm)
Etot
(eV)Si-Si Si-O O-O Si-Si Si-O O-O Si-Si Si-O O-O

0 3.20 1.64 2.64 4.61 37.26 5.27 4.14 4.01 6.73 3.439 −53,410

5 3.12 1.62 2.62 3.79 35.11 4.58 4.41 4.04 7.57 3.317 −53,347

10 3.06 1.62 2.62 3.64 27.69 4.29 4.82 4.09 8.26 3.232 −53,219

15 3.06 1.62 2.56 3.26 16.54 3.62 5.88 4.34 9.33 3.111 −52,990

20 - - - - - - - - - - -

The number of structural units and bond angle at low T

P (GPa) 0 5 10 15 20

SiO4 2970 2903 2697 1990 -

SiO5 144 389 894 1725 -

SiO6 7 35 120 757 -

O-Si-O
(degree) 105 105 105 105 -

The results obtained at T = 70 K, P = 0 GPa show that when the P increases from
P = 0 GPa to P = 0, 5, 10, 15, 20 GPa the lengths links of Si-Si, Si-O, O-O have changed as
Si-Si decreases (from rSi-Si = 3.20 Å to rSi-Si = 3.06 Å), Si-O decreases (from rSi-O = 1.64 Å
to rSi-O = 1.62 Å) and O-O decreases (from rO-O = 2.64 Å to rO-O = 2.56 Å); CN increases
from CNSi-Si = 4.14 to 5.88, CNSi-O = 4.01 to 4.34, CNO-O = 6.73 to 9.33, l is decreased from
l = 3.439 nm to l = 3.111 nm; energy increased (from Etot = −53,410 eV to Etot = −52,990 eV);
the number of structural units of SiO4 decreases from 2970 atoms to 1990 atoms, SiO5
increased from 144 atoms to 1725 atoms, SiO6 increased from 7 atoms to 757 atoms, and the
O-Si-O bond angle has a constant value of 105◦, in which the number of SiO4, SiO5, and
SiO6 structural units disappear at P = 20 GPa, showing that bulk SiO2 materials at low T
only exist in the region of P < 20 GPa (Table 6), which shows that in this region there is
almost no structural change, but there is an increase in energy of the Etot system. Based on
these results, the researchers can use this material in future energy storage devices.



J. Compos. Sci. 2022, 6, 234 8 of 14

At T = 300 K

The structural characteristic quantities of bulk SiO2 at T = 300 K with different p values
are shown in Figure 2.
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SiO5 144 389 894 1725 - 
SiO6 7 35 120 757 - 

O-Si-O 
(degree) 

105 105 105 105 - 
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The obtained results demonstrate the fact that bulk SiO2 at T = 300 K, P = 0 GPa has
the form of a cube (Figure 2a) with the nanoscale, l = 3.44 nm, and the Etot is equal to
−53,230 eV. The form of RDF gives the lengths of the links (r) of Si-Si, Si-O, O-O equal
to rSi-Si = 3.16 Å, rSi-O = 1.62 Å, rO-O = 2.64 Å. These correspond to the heights of RDF
gSi-Si = 4.47, gSi-O = 24.76, gO-O = 4.78. The average CNs were calculated by the formula (4)
and have the following values: CNSi-Si = 4.11, CNSi-O = 4.01, CNO-O = 8.51, respectively. The
number of structural units SiO4, SiO5, SiO6 are correspondingly 1978, 63, and 1, whereas
O-Si-O links angle is 105◦ and Si-O-Si is 140◦. When P increases from P = 0 GPa to 5, 10, 15,
20 GPa, the size (l) decreases from l = 3.44 nm to l = 3.33, 3.23, 3.08, 3.03 nm (Figure 2b),
which correspond to Etot increasing from Etot = −53,230 eV to Etot = −53,116, −52,921,
−52,831, −52,619 eV (Figure 2c), respectively. RDF had the position r slightly changed
(from 3.08 Å to 3.16 Å for Si-Si), (1.62 Å to 1.64 Å for Si-O), and (2.50 Å to 2.64 Å for O-O)
(Figure 2d), which corresponds to a decrease of g(r) (from 4.47 to 3.21 with Si-Si), (24.76 to
9.90 with Si-O), (4.78 to 3.22 with O-O) (Figure 2e).

The average CNs (4) increased from 4.11 to 13.19 for Si-Si, 4.01 to 5.91 with Si-O, 8.51
to 22.04 with O-O (Figure 2f), while the number of SiO4 structural units decreased from
2975 atoms to 2906, 1928, 1536, 983 atoms. This number of SiO5 increases from 121 atoms to
345, 1855, 2070, and 2163 atoms, whereas for SiO6 it increases from seven atoms to 32, 640,
932, and 1450 atoms. The O-Si-O links angle remains constant at 105◦.

The results obtained show that when P increases at T = 300 K, the length (r), g(r),
CN, and angle of the links will strongly change. With rO-O, gSi-O strongly decreases and
CNO-O, CNSi-Si strongly increases, and this leads to a sudden decrease in the number of
SiO4 structural units and the sudden increase of SiO5, SiO6.
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At T = 1273 K

The structural characteristic quantities of bulk SiO2 at T = 1273 K with different p
values are shown in Figure 3.

J. Compos. Sci. 2022, 6, x FOR PEER REVIEW 9 of 15 
 

 

  
Figure 2. Shape (a), l (b), the Etot of the system (c), r (d), g(r) (e), coordinate number (f) of bulk SiO2 
at T = 300 K with different values of p. 

The obtained results demonstrate the fact that bulk SiO2 at T = 300 K, P = 0 GPa has 
the form of a cube (Figure 2a) with the nanoscale, l = 3.44 nm, and the Etot is equal to 
−53,230 eV. The form of RDF gives the lengths of the links (r) of Si-Si, Si-O, O-O equal to 
rSi-Si = 3.16 Å, rSi-O = 1.62 Å, rO-O = 2.64 Å. These correspond to the heights of RDF gSi-Si = 
4.47, gSi-O = 24.76, gO-O = 4.78. The average CNs were calculated by the formula (4) and 
have the following values: CNSi-Si = 4.11, CNSi-O = 4.01, CNO-O = 8.51, respectively. The 
number of structural units SiO4, SiO5, SiO6 are correspondingly 1978, 63, and 1, whereas 
O-Si-O links angle is 105° and Si-O-Si is 140°. When P increases from P = 0 GPa to 5, 10, 
15, 20 GPa, the size (l) decreases from l = 3.44 nm to l = 3.33, 3.23, 3.08, 3.03 nm (Figure 
2b), which correspond to Etot increasing from Etot = −53,230 eV to Etot = −53,116, −52,921, 
−52,831, −52,619 eV (Figure 2c), respectively. RDF had the position r slightly changed 
(from 3.08 Å to 3.16 Å for Si-Si), (1.62 Å to 1.64 Å for Si-O), and (2.50 Å to 2.64 Å for O-O) 
(Figure 2d), which corresponds to a decrease of g(r) (from 4.47 to 3.21 with Si-Si), (24.76 
to 9.90 with Si-O), (4.78 to 3.22 with O-O) (Figure 2e).  

The average CNs (4) increased from 4.11 to 13.19 for Si-Si, 4.01 to 5.91 with Si-O, 
8.51 to 22.04 with O-O (Figure 2f), while the number of SiO4 structural units decreased 
from 2975 atoms to 2906, 1928, 1536, 983 atoms. This number of SiO5 increases from 121 
atoms to 345, 1855, 2070, and 2163 atoms, whereas for SiO6 it increases from seven atoms 
to 32, 640, 932, and 1450 atoms. The O-Si-O links angle remains constant at 105°.  

The results obtained show that when P increases at T = 300 K, the length (r), g(r), 
CN, and angle of the links will strongly change. With rO-O, gSi-O strongly decreases and 
CNO-O, CNSi-Si strongly increases, and this leads to a sudden decrease in the number of 
SiO4 structural units and the sudden increase of SiO5, SiO6. 

At T = 1273 K 
The structural characteristic quantities of bulk SiO2 at T = 1273 K with different p 

values are shown in Figure 3. 

   

J. Compos. Sci. 2022, 6, x FOR PEER REVIEW 10 of 15 
 

 

  

Figure 3. Shape (a), l (b), Etot (c), r (d), g(r) (e), coordinate number (f) of bulk SiO2 at T = 1273 K 
with different values of p. 

The results are presented similarly to the previous case of T = 300 K. Namely, bulk 
SiO2 at T = 1273 K, P = 0 GPa has the form of a cube (Figure 3a) with the nanoscale, l = 
3.45 nm, the Etot is −52,472 eV; RDF with links length (r) of Si-Si, Si-O, O-O rSi-Si = 3.14 Å, 
rSi-O = 1.64 Å, rO-O = 2.64 Å corresponding to the height of RDF is gSi-Si = 3.96, gSi-O = 13.81, 
gO-O = 3.77. The average CNs are CNSi-Si = 4.21, CNSi-O = 4.02, CNO-O = 8.81. When P in-
creases from P = 0 GPa to 5, 10, 15, 20 GPa, (l) decreases from l = 3.45 nm to l = 3.34, 3.22, 
3.11, 3.04 nm (Figure 3b) which correspond to the increase of Etot from Etot = −52,472 eV to 
Etot = −52,427, −52,285, −52,066, −51,983 eV (Figure 3c). RDF has very large change of r 
from 3.08 Å to 3.16 Å for Si-Si, 1.62 Å to 1.64 Å for Si-O; 2.48 Å to 2.64 Å with O-O (Fig-
ure 3d). These correspond to a decrease of g(r) from 3.96 to 2.82 for Si-Si, from 13.81 to 
7.30 with Si-O, and from 3.77 to 3.03 with O-O (Figure 3e). The average CN increases 
from 4.21 to 7.01 with Si-Si, from 4.02 to 4.85 with Si-O, and from 8.81 to 13.13 with O-O 
(Figure 3f), which corresponds to the decrease in structural units number for SiO4 from 
2970 atoms to 2900, 2571, 1685, 1046 atoms. For SiO5 this number increases from 147 at-
oms to 398, 1199, 1961, 2042 atoms, and for SiO6 it increases from 0 atoms to 36, 205, 881, 
1474 atoms. The O-Si-O links angle remains constant at 105°. The results obtained show 
that when P increases at T = 1273 K, the length (r), g(r), CN, and angle of the links will 
change. Also, rO-O, gSi-O decrease, and CNO-O, CNSi-Si increase. This leads to a sudden 
slow-down decrease in the number of SiO4 structural units and the slow-down increase 
of SiO5, and SiO6. 

At T = 2974 K 
The structural characteristic quantities of bulk SiO2 at T = 2974 K with different val-

ues of p are demonstrated in Figure 4. 

 
  

Figure 3. Shape (a), l (b), Etot (c), r (d), g(r) (e), coordinate number (f) of bulk SiO2 at T = 1273 K with
differ-ent values of p.

The results are presented similarly to the previous case of T = 300 K. Namely, bulk
SiO2 at T = 1273 K, P = 0 GPa has the form of a cube (Figure 3a) with the nanoscale,
l = 3.45 nm, the Etot is−52,472 eV; RDF with links length (r) of Si-Si, Si-O, O-O rSi-Si = 3.14 Å,
rSi-O = 1.64 Å, rO-O = 2.64 Å corresponding to the height of RDF is gSi-Si = 3.96, gSi-O = 13.81,
gO-O = 3.77. The average CNs are CNSi-Si = 4.21, CNSi-O = 4.02, CNO-O = 8.81. When P
increases from P = 0 GPa to 5, 10, 15, 20 GPa, (l) decreases from l = 3.45 nm to l = 3.34, 3.22,
3.11, 3.04 nm (Figure 3b) which correspond to the increase of Etot from Etot = −52,472 eV
to Etot = −52,427, −52,285, −52,066, −51,983 eV (Figure 3c). RDF has very large change
of r from 3.08 Å to 3.16 Å for Si-Si, 1.62 Å to 1.64 Å for Si-O; 2.48 Å to 2.64 Å with O-O
(Figure 3d). These correspond to a decrease of g(r) from 3.96 to 2.82 for Si-Si, from 13.81
to 7.30 with Si-O, and from 3.77 to 3.03 with O-O (Figure 3e). The average CN increases
from 4.21 to 7.01 with Si-Si, from 4.02 to 4.85 with Si-O, and from 8.81 to 13.13 with O-O
(Figure 3f), which corresponds to the decrease in structural units number for SiO4 from
2970 atoms to 2900, 2571, 1685, 1046 atoms. For SiO5 this number increases from 147 atoms
to 398, 1199, 1961, 2042 atoms, and for SiO6 it increases from 0 atoms to 36, 205, 881,
1474 atoms. The O-Si-O links angle remains constant at 105◦. The results obtained show
that when P increases at T = 1273 K, the length (r), g(r), CN, and angle of the links will
change. Also, rO-O, gSi-O decrease, and CNO-O, CNSi-Si increase. This leads to a sudden
slow-down decrease in the number of SiO4 structural units and the slow-down increase of
SiO5, and SiO6.

At T = 2974 K

The structural characteristic quantities of bulk SiO2 at T = 2974 K with different values
of p are demonstrated in Figure 4.
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It follows from these results that bulk SiO2 at T = 2974 K, P = 0 GPa has the form of a
cube (Figure 4a) with the size l = 3.45 nm, Etot = −51,085 eV. The lengths of the links of Si-Si,
Si-O, O-O are rSi-Si = 3.16 Å, rSi-O = 1.64 Å, rO-O = 2.70 Å what corresponds to the height
in the peak position of RDF gSi-Si = 3.06, gSi-O = 8.75, gO-O = 2.77. The average CNs are
CNSi-Si = 4.35, CNSi-O = 4.03, CNO-O = 8.71. When P increases from P = 0 GPa to 5, 10, 15,
20 GPa, the size l decreases from l = 3.45 nm to l = 3.33, 3.20, 3.11, 3.05 nm (Figure 4b). This
corresponds to increase of Etot from Etot = −51,085 eV to Etot = −51,033, −50,882, −50,695,
−50,599 eV (Figure 4c). RDF has larger, r changes between 3.10 Å to 3.16 Å for Si-Si, 1.60
Å to 1.64 Å with Si-O, for 2.52 Å to 2.70 Å with O-O (Figure 4d). This corresponds to a
decrease of g(r) from 2.58 to 3.06 with Si-Si, 5.42 to 8.75 with Si-O, 2.47 to 2.77 with O-O
(Figure 4e). The CN increases from 4.35 to 8.81 with Si-Si, from 4.03 to 4.93 with Si-O, and
from 8.71 to 13.32 with O-O (Figure 4f) which corresponds to the decrease in the number of
structural units for SiO4 from 2938 atoms to 2984, 2211, 1434, 961 atoms. This number for
SiO5 increases from 295 atoms to 713, 1660, 2079, 2138 atoms, whereas for SiO6 it increases
from 14 atoms to 111, 413, 1019, 1501 atoms, and SiO7 it increases from 0 atoms to 72 atoms.

It can be seen that the SiO7 structure unit number appears at P = 20 GPa; this result
is completely consistent with the result of bulk Fe2O3 when P is increased at the high T
region. The O-Si-O links angle remains constant at 105◦. The results obtained show that
when P increases at T = 2974 K, the length (r), g(r), CN, and angle of the links will change.
Also, rO-O, gSi-O decrease and CNO-O, CNSi-Si increase; this leads to a sudden slow down
decrease in the number of SiO4 structural units and a very big increase of this number for
SiO5, SiO6.

At T = 3500 K

The structural characteristic quantities of bulk SiO2 at T = 3500 K with different values
of p are shown in Figure 5.
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The calculated results show, that bulk SiO2 at T = 3500 K, P = 0 GPa has also the form
of a cube (Figure 5a) with the nanoscale, l = 3.43 nm. The Etot is equal to −50,378. The
RDF gives the links lengths (r) of Si-Si, Si-O, O-O which are rSi-Si = 3.12 Å, rSi-O = 1.64 Å,
rO-O = 2.66 Å. This corresponds to the height of the first peak position of RDF gSi-Si = 2.62,
gSi-O = 7.62, gO-O = 2.54. The average CNs are CNSi-Si = 4.51, CNSi-O = 4.11, CNO-O = 9.16.
When P increases from P = 0 GPa to 5, 10, 15, 20 GPa, the size (l) decreases from l = 3.43 nm
to l = 3.27, 3.17, 3.11, 3.05 nm (Figure 5b). This corresponds to increase of Etot from
Etot = −50,378 eV to Etot = −50,313, −50,255, −50,176, −50,078 eV (Figure 5c), relatively.
RDF has a very large r changes from 3.04 Å to 3.14 Å for Si-Si, from 1.60 Å to 1.64 Å for Si-O,
and from 2.52 Å to 2.66 Å with O-O (Figure 5d). These changes correspond to a decrease of
g(r) from 2.73 to 2.43 with Si, from 7.62 to 4.88 with Si-O and from 2.54 to 2.37 with O-O
(Figure 5e). The average CNs increase from 4.51 to 10.01 with Si-Si, from 4.11 to 5.19 with
Si-O, and from 9.16 to 14.46 with O-O (Figure 5f) which corresponds to the decrease of the
number of structural units for SiO4 from 2820 atoms to 2373, 1788, 1391, 887 atoms. This
number for SiO5 increases from 632 atoms to 1520, 1935, 2100, 2150 atoms, whereas for SiO6
it increases from 62 atoms to 222, 742, 1014, 1448 atoms, and SiO7 it increases from 0 atoms
to 173 atoms. In which, the appearance of structural units number of SiO7 at P > 15 GPa
with T = 3500 K. The O-Si-O links angle changes from 105◦ to 100◦. The O-Si-O links angle
changes from 105◦ to 100◦. It can be concluded that when P increases, l decreases, Etot
increases, r changes, and g(r) decreases with Si-O, but it changes insignificantly for Si-Si,
O-O. The CNSi-O changes in such a way that the number of SiO4 structural units decreases,
whereas for SiO5, SiO6 increases with constant links angle O-Si-O equal to 105◦. The results
obtained show, that when P increases at T = 3500 K, the length (r), g(r), CN, and angle of the
links will change. Also, rO-O, gSi-O decrease, and CNO-O, and CNSi-Si increase. This leads to
a sudden slow-down decrease in the number of SiO4 structural units and the slow-down
increase of SiO5, and SiO6. When P = 0 GPa and T increase, the numbers of structural units
of SiO4, SiO5, and SiO6 have no significant change. When P increases at T = 300, 1273,
2974, 3500 K, the number of structural units SiO4 decreases, while for SiO5, SiO6 increases
and there is the largest change at T = 2974 K. This fact proves that at Tm = 2974 K, the
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largest change in the number of structural units exists and this will be the basis for future
experimental studies.

4. Conclusions

In this study, using the SM of MD, the effects of T and P on the heterogeneous kinetics
of the bulk SiO2 (with 3000 atoms at 300 K, 500 K, 1000 K, 1500 K, 2000 K, 2500 K, 3000
K, 3500 K, 4500 K, 5500 K, and 7000 K; at 0 GPa, 5 GPa, 10 GPa, 15 GPa, and 20 GPa with
T = 300 K, 1273 K, 2974 K, 3500 K) have been considered. These considerations lead to a
conclusion that with bulk SiO2 (3000 atoms), the choice BKS potentials gives the results
consistent with previous both experimental and simulation results. The increase in the
T leads to the initial increase in the l. The Etot increases gradually as the T increases at
P = 0 GPa. It follows from the obtained results that for the T range from T = 300 K to
T = 2974 K, bulk SiO2 exists in an amorphous state, whereas for T > 2974 K bulk SiO2 exists
in a liquid state, so the Tm of bulk SiO2 has been determined as 2974 K. When T increases
from P = 0 GPa to P = 5, 10, 15, 20 GPa with T = 300, 1273, 2974, 3500 K calculated the
structural units number, which for SiO4 it decreases, while for SiO5, SiO6 it increases, while
the number of SiO7 structural units appears with P > 15 GPa at T = 3500 K, P > 20 GPa
at 2974 K. The l of bulk SiO2 decreases and Etot increases, g(r) of Si-O decreases, CN of
Si-Si, O-O increases strongly with higher T. It follows from these results that for low T, the
CN changes very strongly, while T is large, T > 2974 K, CN changes insignificantly. Our
results show generally that there is a significant influence of T and P on the structure and
phase transition of bulk SiO2. These are new results which could serve as a basis for future
experimental studies.
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