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Abstract: The use of waste materials to make eco-friendly wood-polymer composites has been
explored by many researchers for academic and industrial purposes due to the low cost, biodegrad-
ability, and availability of waste wood flour. Polypropylene (PP)/ground tyre rubber (GTR)/wood
flour (WF) composites were prepared using an internal batch mixer at a temperature of 165 ◦C for
8 min, and the samples were injection-moulded at 190 ◦C with a pressure of 6 MPa. The design of the
experimental approach was used to determine and optimize the proportions of each component in the
composites. The morphology of the untreated composites showed more voids and the agglomeration
of fillers, namely WF and GTR, in the PP matrix. Fewer voids, as well as improved distribution, were
observed in the compatibilized composites. The incorporation of ethylene-1-butene as a compatibi-
lizer improved the thermal stability and elongation at the break of the composites. The addition of
WF increased the elongation at break and decreased the tensile strength of the composites. Overall,
the use of statistically designed experiments has aided in attaining the optimum formulations of the
wood flour–polymer composites.

Keywords: wood flour–polymer composites; polypropylene; ground tyre rubber; recycling; design
of experiments; thermo-mechanical; mechanical properties; morphological properties

1. Introduction

In the last decade, researchers have developed ways to reduce the consumption of
polymers and minimize the amount of dumped waste polymers in landfills [1–4]. Some of the
strategies include the reuse of neat polymers more than once, blending the raw materials with
recycled material, and recycling materials to produce secondary products [5,6]. Recycling
reduces both the utilization of raw materials and the energy required for fabricating a new
material, which leads to a reduction in air, water, and land pollution [7,8]. However, recycling
has some drawbacks which need to be taken into consideration. The history of the recyclates
must be well known to quantify the effect of fillers and additives in the composites, since
most polymers are reinforced by different fillers and additives before reprocessing [9–11].

Wood flour (WF), ground tyre rubber (GTR), and other polymers have been utilized
as reinforcements or fillers to improve the impact properties of polypropylene (PP), in
particular [12–14]. Coupling agents, such as maleic anhydride and silanes, are often utilized
to improve the compatibility between the PP matrix and various fillers [5,15,16]. The desired
properties of the composites are achieved as a result of a good stress transfer and good
interfacial adhesion between the polymer matrix and its components [17–19].

Several researchers have focused on producing polymer composites that are less costly
and more environmentally friendly [20–24]. The properties of polymer/GTR/natural fibre
composites have been extensively studied, and they have been found to have improved
properties with a wide range of applications [25–27]. Factors that influence the morphology
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of polymer-wood composites include particle size and the amount of WF [28–30]. Ndiaye
et al. [3] reported that the dispersion of WF was better at a lower wood fibre content of
25 wt.%, but that as the loading increased to 50 wt.%, the blend formed aggregates which
resulted in cavities and the failure of the polymer matrix to incorporate all the WF particles.
The authors also reported that, after the addition of maleic anhydride grafted to PP as a
coupling agent, the interfacial interaction adhesion of the PP/WF composites was improved
and the debonding of large particles was prohibited. Thus, there were with fewer cavities
compared to the blends without a coupling agent.

Ciro et al. [31] investigated the effect of GTR loading from 10–50 wt.% on the thermal
stability of PP/GTR blends. It was reported that the thermal stability of all the blends was
higher when compared to that of individually recycled PP and GTR. The blends showed a
weight loss at around 310 ◦C, corresponding to the removal of a small number of compounds
that have low molecular weights. The overall results showed that the thermal stability
of blends decreased with the increase in the rubber content from 10–50 wt.%, due to the
presence of additives, which initiated an early degradation process. Luo et al. [4] examined
the effect of 60 and 80 mesh GTR on the mechanical properties of polypropylene/wood flour
(PP/WF) composites. The authors observed an increase in tensile strength for all PP/WF/GTR
composites after the addition of GTR from 5–15 wt.%. A significant increase was reported for
the composites containing the least amount of GTR (5 wt.%), and there was improved impact
strength of the PP/WF blends by 46%, due to the elastic nature of GTR material.

In this study, GTR and WF will be used to tailor the properties of PP in the presence
and absence of ethylene-1-butene as a coupling agent. The main aim of this study is to
investigate the influence of GTR and WF on the chemical, physical, thermal, and morpho-
logical properties of PP using a statistically designed simplex-centroid mixture design.
It is, therefore, envisaged that findings from this study will also assist in the industrial
development of waste materials into value-added products where mechanical strength is
not a major requirement.

2. Materials and Methods
2.1. Materials and Chemicals

A homopolymer polypropylene with a density of 0.905 g/cm3 and a melt flow index
of 12 g/min measured at 230 ◦C with a load of 2.16 kg was supplied by the Sasol Company,
South Africa. The waste WF with a particle size of 18 mesh size was supplied by a local
furniture shop. The WF was obtained from a pine tree which contains ~50% cellulose,
~30% lignin and ~20% hemicellulose. The GTR, which has a particle size of 40 mesh, was
obtained from truck and passenger car tyres, with a composition of styrene-butadiene
rubber (SBR) and natural rubber (NR). Ethylene-1-butene (EB) was purchased from LG
Chemicals. All the materials were used as received.

2.2. Mixing Approach and Injection Molding Procedures

Binary and ternary composites of PP, GTR, and WF were prepared using the propor-
tions given by the data points, as shown by a circle dot, in Figure 1. The formulations were
designed and optimized using a simplex-centroid mixture methodology approach. The
materials were mixed in the Brabender internal mixer (Haake Thermo Scientific Polylab
QC) at 165 ◦C with a speed of 50 rpm for 8 min. A three-step mixing procedure was used
to achieve a good dispersion of fillers in the PP matrix. The PP was melted in the mixer
for 4 min, the addition of GTR was followed by WF in the last 4 min, and the samples
were injection moulded. To evaluate the effect of the compatibilizer, some composites were
prepared with ethylene-1-butene as a compatibilizer, as shown in Table 1. When PP was
the main component, its content was varied in the rage of 60–86 wt.%, while amounts of
GTR and WF were limited between 0–40 wt.% in the composites.
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Figure 1. The experimental formulations, shown as a circle dot, for the binary and ternary blends of
the PP/WF/GTR samples designed by a simple-centroid mixture methodology approach.

Table 1. The melting behaviour of the composites with and without EB as a compatibilizer.

Sample # PP (%) GTR (%) WF (%)
Absence of EB Presence of EB

Tm (◦C) ∆Hm (J/g) Tm (◦C) ∆Hm (J/g)

1 60 40 0 163.7 57.6 162.5 56.6
2 60 0 40 163.6 68.6 163.4 52.9
3 66 27 7 162.0 87.1 156.8 62.8
4 66 7 27 164.2 72.5 164.1 60.8
5 86 7 7 162.3 90.0 166.0 67.0

An injection moulding machine (ARBURG 221-55-250) was used to obtain the speci-
mens for further characterization. Injection moulding zones were programmed as follows:
melt temperature at the feed zone at 170 ◦C, the centre at 180 ◦C, and the front zone and
the nozzle at 190 ◦C. The nozzle was operated at holding and injection pressures of 40 and
60 MPa, respectively, with a speed of 2 mm/s. The obtained injection moulded specimens
were further characterized by various analytical techniques.

2.3. Thermal Analysis of the Composites

A TA Instruments’ Discover Series DSC was used for the thermal analysis of the
composites. The sample with a mass range of 3.0–5.0 mg was analysed under a nitrogen
atmosphere at a flow rate of 50 mL/min. The first and second heating and first cooling
runs were performed at a temperature range of 20–180 ◦C at a heating rate of 10 ◦C/min.
The first cooling and second heating measurements were used for data analysis. The first
heating was performed to remove the thermal history and to eliminate any impurities
within the sample.

A Q600 Discovery Series, high-resolution thermogravimetric analyser (Hi-Res™-TGA)
was used to study the thermal degradation behaviour of the composites. A sample with
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a mass of ~15 mg was heated from 20–600 ◦C under nitrogen gas with a flow rate of
50 mL/min at a heating rate of 10 ◦C/min.

2.4. Water-Resistance Analysis of the Composites

The water-resistance properties of the cured samples were measured using absorp-
tion experiments by following the ASTM D 570 specifications [32]. Before analysis, the
samples with a width of 6.18–6.23 mm, thickness of 4.06–4.20 mm, and a diameter of
9.34–0.51 mm were placed in an oven for 48 h at 50 ◦C to remove any moisture. The dried
samples were weighed and immersed in water for 6 days at ambient temperature. During
the 6 days, soaked composites were taken out after every 12 h, tapped gently using a
paper towel, and then weighed. Water absorption percentages (WA%) of the samples
were calculated based on the following Equation (1), where Mi and Mf are the initial and
final masses, respectively:

WA% = ((Mf − Mi)/Mi) × 100 (1)

2.5. Mechanical Analysis of the Composites

Tensile strength and elongation at break properties of the composites were measured
using a Tensometer, ENT 6005, with a crosshead speed of 500 mm/min. Dog-boned shaped
samples with a length of 104.98 mm, a width of 10.22 mm, and a thickness of 4.98 mm
were injection moulded using the ARBURG 221-55-250. The ASTM D 638 test method was
followed for tensile testing [5]. The gauge length of 25 mm was used for the analysis, and
three specimens were tested per composite.

2.6. Dynamic Mechanical Analysis of the Composites

The dynamical mechanical properties of the composites were measured using a dy-
namic mechanical analyser (DMA), model Q800. The sinusoidal stress was applied on the
rectangular sample with a length of 17.88 mm, width of 6.05–6.88 mm, and a thickness
of 4.10–4.20 mm, and the resulting strain was measured. The single cantilever mode of
deformation was used with a multi-strain mode. At the start of the analysis, the sample
was kept isothermal for 1 min and, thereafter, it was heated from −70 ◦C to 120 ◦C at a
heating rate of 5 ◦C/min under the nitrogen atmosphere. The analysis was performed with
the amplitude and frequency of 10 µm and 1 Hz, respectively.

2.7. Morphological Analysis of the Composites

The morphological properties of the composites were studied using a Joel JSM-IT100
scanning electron microscope (SEM). The samples were taken from fractured tensile speci-
mens. The instrument was operated at an acceleration voltage between 10 and 15 kV. The
samples were coated with gold before the analyses.

3. Results and Discussion
3.1. Thermal Properties of the PP/GTR/WF Composites

The results of the melting behaviour of composites are presented in Table 1. The
melting temperature of the neat PP was observed at 161.2 ◦C, and the highest melting
point that was reached for the untreated composites was 164.2 ◦C for the PP/GTR/WF
composite, which was Sample 4. The melting temperature of the composites increased with
the addition of GTR and WF for both the binary and ternary composites, but a significant
increase was observed in the binary composites having only PP and GTR. The composites
with more WF than GTR showed increased melting temperature, since WF can act as a
nucleating agent, which can increase the crystallites’ size and result in higher melting
temperature values. The addition of a compatibilizer decreased the melting temperature of
all the composites, possibly because the compatibilizer could have hindered the molecular
movement of PP by interacting with WF and GTR. Furthermore, the decrease could have
been a result of introduced flexibility from the elastomeric nature of the compatibilizer



J. Compos. Sci. 2022, 6, 220 5 of 14

(ethylene-1-butene) and resulted in reduced crystallites size. The melting enthalpy is related
to the total crystallinity of a material. The melting enthalpies of the ternary composites as
depicted in Table 1 were observed to be higher than those of the binary composites, and
the presence of the compatibilizer decreased the melting enthalpies of all composites.

Figure 2 shows the TGA results of the untreated and compatibilized PP/GTR/WF
composites. The untreated composites result, as depicted in Figure 2A, showed that
Sample 5 has a single degradation step, which indicate good interaction among the PP
matrix and GTR/WF components. The increase in the amount of either GTR or WF to
27 wt.% resulted in the composites exhibiting two degradation steps, where the first step
is due to GTR and possibly the degradation of WF, depending on their amounts, and the
second step can be attributed to the degradation of the PP matrix. Sample 5 also showed
higher miscibility due to the PP component in the composites, and its thermal stability
was lower than that of Samples 3 and 4. The composite containing more GTR than WF,
Sample 3, showed higher thermal stability than the composite containing more WF than
GTR, Sample 4.

The TGA curves of EB compatibilized PP/GTR/WF composites are shown in Figure 2B.
The thermal stability of Sample 1 and Sample 4 decreased after the addition of the compat-
ibilizer, whereas there was improved wetting between the PP matrix and GTR particles
as Sample 1 changed from heterogeneity to homogeneity. On the other hand, the thermal
stability of Sample 5 decreased after the addition of the compatibilizer due to debonding
amongst the components of the composites. This decrease might be due to the preference
of the compatibilizer for one component in the composite. Several authors have suggested
that a compatibilizer can favour one component over the other, which, thus, causes good
interfacial bonding between one filler and the matrix while excluding the other filler.
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3.2. Mechanical Properties of the PP/GTR/WF Composites

The tensile properties of untreated and EB compatibilized PP/GTR/WF composites
are shown in Figure 3. The maximum tensile strength for untreated composites was
≥34 MPa, as in Figure 3A, while that of the EB compatibilized composites was observed
at ~26 MPa, as in Figure 3B. The neat PP showed the highest tensile strength of all the
composites, irrespective of whether it was untreated or compatibilized with EB. The tensile
strength of the composites decreased upon the addition of GTR and WF; this was more
evident for the composites that contain a higher amount of GTR in both untreated and
EB compatibilized composites. The decrease with the addition of GTR was due to the



J. Compos. Sci. 2022, 6, 220 7 of 14

low mechanical properties of GTR and poor adhesion between the PP matrix and GTR
particles. There was a decrease in the tensile strength of the composites as the WF content
was increased due to poor interfacial adhesion caused by aggregates of WF within the
PP matrix. The compatibilizer did not cause any significant positive change to the tensile
strength of the composites; instead, it weakened the strength of the composites.
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The tensile strength results of composites compatibilized with EB demonstrated a
linear model, as shown by straight lines, thus suggesting that there were no interactions of
the components observed in the composites, as in Figure 3B. For untreated composites, there
were interactions among the components of the composites, as shown by the contour lines
in Figure 3A. Figure 4 shows the Pareto chart for the interaction among the components
of the untreated and EB compatibilized composites. The observed interaction among
the components in the untreated composites meant that each component had either a
positive or negative effect on the tensile strength of the composites. The significance of each
variable was determined by the p-value greater than 0.05, and PP was found to have the
greatest positive influence on the tensile strength for both untreated and EB compatibilized
composites, as presented in Figure 4A,B, respectively. Figure 4A also showed a statistically
significant interaction between PP and GTR, and between PP and WF components, which
resulted in a decrease in the tensile strength of composites. Based on the magnitude of both
interactions in Figure 4A, GTR has a more negative effect than WF on the tensile strength
of the composites. Lastly, WF on its own contributed positively towards the overall tensile
strength of the composites.

Figure 5 shows the elongation at break for the untreated and EB compatibilized
PP/GTR/WF composites. It can be seen in Figure 5A that the addition of GTR significantly
improved the elongation at break of the composites, more so than the addition of WF due to
the elastomeric nature of GTR. The maximum elongation at break observed was ≥12% and
≥14% for untreated and EB compatibilized composites, respectively. The results show that
a compatibilizer increased the elongation at break of the composites due to the elastomeric
nature of EB. The statistically significant interaction that occurred between PP and GTR was
found to have a negative effect on the elongation at break. Moreover, there was a decrease
in the elongation at break of the composites with an increase in WF content, attributable to
high stiffness of WF, as well as poor interfacial adhesion between the PP matrix and the
fibre particles.
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3.3. Dynamic Mechanical Properties of the PP/GTR/WF Composites

The effect of the compatibilizer on the dynamical properties of the composites was
studied using DMA. The results of the storage modulus for the untreated and compatibi-
lized PP/GTR/WF composites are depicted in Figure 6. The untreated composites with
high amounts of WF, namely Samples 2 and 4, show increased storage modulus among
the samples, as displayed in Figure 6A. The WF has particles which are brittle and rigid,
which has resulted in increased storage modulus, and the storage modulus of the material
is related to its stiffness or rigidity [29]. Upon the addition of the compatibilizer, the maxi-
mum storage modulus of the composites drops significantly, except for Sample 2 with the
highest amount of WF, as shown in Figure 6B. The assumption is that the EB compatibilizer
acts as a binder within the composites to decrease their stiffness, and results in improved
processing conditions in terms of rheological behaviour.
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Figure 6. Storage modulus results of the untreated (A) and EB compatibilized (B) PP/GTR/WF composites.

Figure 7 shows the tan delta results of the untreated and compatibilized PP/GTR/WF
composites. The tan delta is related to the impact properties of the material, since it is
measured at the glass transition temperature, Tg. There are two sets of tan delta peaks
observed in Figure 7A,B. The first set of peaks at ~−45 ◦C is assigned to the rubber material
in GTR [33], as it is confirmed by Samples 1 and 3 that these have a higher amount of GTR,
and the second set of peaks at ~5 ◦C is due to the glass transition behaviour of the PP
matrix. It is observed that in the composites with a high amount of WF, as displayed in
Figure 7A, tan delta values shifted to higher temperatures, indicating that WF particles
disrupted the chain mobility in the PP matrix, thus resulting in lower damping behaviour
of the composites [29,34]. There is a significant decrease in the tan delta of Sample 5 after
the addition of a compatibilizer, as shown in Figure 7B. This could be due to the elastomeric
nature of the EB compatibilizer, and it has indirectly introduced flexibility and initiated
chain mobility within the composites. The tan delta of Sample 4 decreased drastically
after the addition of the compatibilizer, reflecting that EB hindered the formation of WF
agglomeration, but it has induced the entanglement of WF particles within the PP matrix.
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3.4. Water Resistance Properties of the PP/GTR/WF Composites

The results of untreated and EB compatibilized PP/GTR/WF composites are shown in
Figure 8, and there is a similar trend for all the composites with relatively low WF content.
The increase in WF content increased the absorption of water in the composites, since wood
particles consists of hydroxyl groups which have a strong affinity to water, and there could
also be a weak interfacial adhesion between PP matric and WF particles that caused voids
in the composites. The addition of a compatibilizer decreased the water uptake for all
the binary and ternary composites, especially the ones containing GTR. The decreased
water uptake might be due to a better interfacial adhesion between the PP matrix and GTR
particles. In addition, some of the cavities present in untreated composites could be blocked
by the compatibilizer, thus, restricting water from entering the composites.
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3.5. Morphological Properties of the PP/GTR/WF Composites

The results of the morphological analyses on the untreated and EB compatibilized
PP/GTR/WF composites are presented in Figure 9. The SEM images of the EB compatibi-
lized binary composite, Sample 1b, is shown in Figure 9A, and it can be seen that the GTR
is well distributed and dispersed in the PP matrix, while a few small voids are present in
the composites. This result is similar to the tensile strength results that indicated that the
compatibilizer did not significantly enhance the interfacial adhesion between the PP matrix
and GTR particles. Sample 2b shows a rough and uniform surface, and it can be seen in
this composite that the PP encapsulated the WF particles, even though a small portion of
WF particles were not fully covered due to the high wood flour content of 40 wt.%. This
composite showed improved interfacial bonding between the WF particles and the PP
matrix, as there were fewer gaps observed due to the EB compatibilizer effect.
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The SEM image of the untreated ternary composite, Sample 4a, showed a hollow void,
indicating that both fillers agglomerated in the middle part of the specimen, thus indicating
that the agglomerated fillers detached from PP matrix. The SEM images of Sample 4b
showed that PP is more compatible with WF than with GTR, since the WF particles were
embedded in the PP matrix, as in Figure 9D. The GTR particles showed a weak interfacial
adhesion and consequent detachment from the PP matrix, which resulted in several voids
in the composites. The compatibilizer performed better with WF than GTR.

4. Conclusions

The statistically designed experiments using a simplex-centroid methodology ap-
proach was used to determine the proportions of PP, GTR, and WF required to determine
the optimal properties of the binary and ternary composites. Several characterization and
analytical techniques were employed to evaluate and compare proprieties of the blends rel-
ative to the neat PP. The addition of WF and GTR increased the glass transition temperature
of the composites, and there was an increase in crystallization and melt temperature values
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for both binary and ternary composites. The compatibilizer increased the thermal stability
of composites comprising the largest amounts of PP and WF. The compatibilizer improved
wetting amongst the components; TGA analysis showed that composites without compati-
bilizer displayed heterogeneous behaviour, but after the addition of the EB compatibilizer
composites displayed homogeneity, therefore indicating that PP has encapsulated the WF
particles. The incorporation of WF and GTR decreased the tensile strength of the composites.
This might be due to poor interfacial adhesion among the components in the composites.
Each filler can either have positive or negative effect, since the WF is hydrophilic and GTR
is hydrophobic, hence, GTR could shield WF from absorbing water. The increase in GTR
increased the elongation at break of the composites, and overall ternary composites showed
better properties than binary ones. The storage modulus of the composites increases with
the increased amount of the WF, due to the brittle and rigid nature of the fibre particles
which disrupted the PP matrix. The incorporation of EB as a compatibilizer has reduced
the stiffness of the composites, since it acted as a binder among the components.

The good wetting of composites that was achieved by the presence of compatibilizer
decreased the water absorption, as the untreated composites showed a higher water uptake
than the EB compatibilized composites. The composites with a higher quantity of WF
absorbed water more than the composites with higher amounts of GTR. The morphology
of various composites was also studied, and it was shown that PP was not compatible with
both fillers, GTR and WF. However, the incorporation of a compatibilizer enhanced the
interfacial adhesion between the PP matrix and filler particles, especially for the composites
that contained a higher content of WF than GTR. The experimental mixture design showed
that ternary composites have improved properties as compared to binary composites, and
the use of more than one filler proved to provide balanced tensile and thermal stability
properties of the composites.
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