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Abstract: In this paper, using the self-consistent charge density-functional tight-binding (SCC DFTB)
method, we perform an in silico study of the effect of functionalization by potassium atoms on the
electronic properties of a new configuration of the glass-like carbon (GLC) reinforced with (4,4) and
(6,5) single-walled carbon nanotubes (SWCNTs). The method of classical molecular dynamics was
used to obtain energetically stable GLC configurations with different mass fractions of potassium. It
is found that with an increase in the mass fraction of SWCNTs, the elasticity of GLC increases. It is
shown that when the GLC structure reinforced with SWCNTs is filled with potassium, the number of
available electronic states at the Fermi level increases compared to GLC without nanotubes, which
significantly improves the emission and electrophysical characteristics of the carbon nanomaterial.
For most structures, at a potassium/carbon mass ratio of 1:100 (0.01), an increase in the Fermi energy
is observed, and, hence, a decrease in the work function. The maximum decrease in the work function
by ~0.3 eV was achieved at a mass ratio of potassium/carbon of 1:4.5 (0.23) for GLC reinforced with
(6,5) SWCNTs. It is revealed that, at a mass ratio of potassium/carbon of 1:28.5 (0.035), the quantum
capacitance of GLC reinforced with (4,4) and (6,5) SWCNTs increases by ~9.4% (1752.63 F/g) and
24.1% (2092.04 F/g), respectively, as compared to GLC without nanotubes (1587.93 F/g). Based on
the results obtained, the prospects for the application of the proposed GLC configuration in emission
electronics devices are predicted.

Keywords: glass-like carbon; single-walled carbon nanotubes; SCC DFTB method; density of states;
Fermi energy; quantum capacitance; work function; molecular dynamics

1. Introduction

Due to their promising properties, GLC nanomaterials are in demand and very rele-
vant in a wide range of applications [1–15]. These materials have high thermal stability,
mechanical strength, abrasion resistance, and chemical inertness, as well as isotropic elec-
trical conductivity [2–4,15–17]. They are characterized by the presence of a large number of
nanopores; that is, their density has clearly defined local regions with a high density several
times higher than the average value. That is, the atomic structure is also characterized by
islands of increased density formed by the accumulation of fragments of graphene flakes,
nanotubes, and fullerene caps in separate local places. Modern technology allows us to
control the size of nanopores. For example, when forming GLC on a conductive substrate,
the nanopore size can be varied from 0.6 to 4.0 nm. The samples of such nanoporous
GLC were fabricated as a result of the thermochemical treatment of different carbides with
chlorine at different temperatures [18,19]. The modern capabilities of computer modeling
allow one to study all the features of carbon surface modification at the atomic level [20]. In
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most studies, the GLC structure is represented mainly by graphene flakes (mono-/bi-layer),
layered graphene, and fullerene fragments [21–24].

GLC nanomaterials are promising materials for the manufacture of lithium-ion bat-
teries [6,7] and capacitors [8] due to their anomalously high capacitance [9], as well as
for creating on the basis of sensors for the detection of dopamine [10], adrenaline [11],
chlorpromazine [12], and methyldopa [13]. Carbon nanoporous glass-like materials are
also actively used in modern emission electronics [1,25–28], in particular, for the fabrication
of field cathodes based on them. Such cathodes have promising field emission parameters.
The edges of the pores in these carbon glass-like materials are sharp, blade-like structures
that make them centers of radiation. The increasing interest in the GLC nanomaterial in
recent times is due to increasing possibilities of modifying its pores with atoms of various
chemical elements [29–31]. Thus, it was shown that when GLC is doped with potassium
atoms, it is possible to reduce the work function of electrons due to the redistribution of
electron density on GLC atoms [4]. Difficulties in the implementation of this process may
arise due to the disordered atomic structure of GLC, which is a mixture of various carbon
nanoobjects. A possible solution to this problem could be the use of carbon nanotubes as
reinforcing inclusions of GLC nanomaterial. As is known, the mass fraction of these carbon
nanostructures is controlled by temperature during the synthesis [24].

In this paper, we consider the possibility of controlling the electrophysical properties
and characteristics of GLC reinforced with SWCNTs via functionalization with potassium
atoms. According to our assumption, the high elasticity of nanotubes will allow more
potassium to be stored in the pores of GLC as compared to GLC without nanotubes. To test
our assumption, we performed a series of molecular dynamics simulations during which
we filled the GLC structure reinforced with (4,4) and (6,5) SWCNTs with potassium atoms
at different mass fractions. The DOS distribution, Fermi energy, and quantum capacitance
were calculated for each resulting potassium-functionalized GLC configuration.

2. Methods and Approaches
2.1. Bulding of Atomistic Models of GLC Reinforced with SWCNTs

The process of building an initial supercell of GLC was described in detail in our
previous article [32]. This supercell contains 3891 atoms and has a volume V = 40.8·41.8·39.9
Å3 = 68.05 nm3. The density of such a material was 1.14 g/cm3, which agrees with known
experimental data [33]. The mass fraction of fullerene-like elements in the supercell was
10.2%. Supercells of GLC with SWCNTs were constructed using the classical molecular
dynamics method implemented in the Lammps software package (version 2021.4, Sandia
National Laboratories, Albuquerque, NM, USA, Temple University, Philadelphia, PA,
USA) [34]. Obtaining the equilibrium configuration of the structure was carried out in
the following three stages: (1) static optimization using only the potential interaction
between the nuclei—microcanonical NVE-ensemble of particles (at a constant number of
particles, volume, and energy); (2) dynamic optimization using a thermostat—an isothermal
NVT ensemble (at a constant number of particles, volume, and temperature); (3) dynamic
optimization using a thermostat and barostat—isothermal–isobaric NPT ensemble (at a
constant number of particles, pressure, and temperature). In this case, holes were made in
an initial supercell of GLC containing 3891 atoms, and thin SWCNTs were placed in them.
A chiral nanotube (6,5) and an achiral nanotube (4,4) were taken as SWCNTs. Nanotubes
of a larger diameter were not considered, because, with an increase in the diameter of the
nanotubes, the number of atoms in the supercell also increases, which sharply increases the
time of computer calculations. It is important that the selected nanotubes are characterized
by different types of conductivity and topology. The simulation of the NVE ensemble was
carried out until the maximum uncompensated force of interaction between the nuclei
became equal to zero. The cutoff radii of the Coulomb and van der Waals interactions
were equal to rcolumb = rvdw = 1 nm. Next, a Nose–Hoover thermostat [35] was applied to
the NVT ensemble, which made it possible to obtain an equilibrium structure at normal
temperature T = 300 K. The simulation was carried out with a time step of 0.5 fs for 50 ps.
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To simulate the NPT ensemble, a Parinello–Raman barostat [36] with a reference pressure
of P = 1 bar was used. The simulation duration was 50 ps with a time step of 0.5 fs.

Thus, the following atomistic models of eight supercells of a 3D GLC nanomaterial
reinforced with SWCNTs were constructed: four models with (6,5) nanotubes and four
models with (4,4) nanotubes. The number of tubes in each model increased sequentially
from one to four. Figure 1 shows GLC supercells with one and four (4,4) SWCNTs and
GLC supercells with one and four (6,5) SWCNTs. Nanotubes (4,4) are highlighted in
red, and nanotubes (6,5) are highlighted in blue. Each figure shows a supercell (periodic
box) and a fragment of a 3D nanomaterial. It can be seen that the 3D nanomaterial of
graphene/fullerene fragments is, as it were, reinforced with nanotubes.
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Figure 1. Atomistic models of a supercell (highlighted by a box) and a fragment of a 3D GLC
reinforced with (4,4) and (6,5) SWCNTs.

For the constructed atomistic models with different mass fractions of nanotubes, the
compressibility factor was calculated according to the following well-known formula [37]:〈

δV2
〉

NPT
= VkBTη (1)

here η is the compressibility factor (the reciprocal of the volumetric compression factor),
kB is the Boltzmann constant. The compressibility factor was determined at the stage
of modeling an isothermal–isobaric NPT ensemble of particles based on the analysis of
volume fluctuations. The values of the compressibility factor and the bulk modulus for
various models are presented in Table 1. As can be seen from Table 1, with an increase in
the mass fraction of SWCNTs, an increase in the density of the material is observed in all
cases under consideration. In this case, the chirality of the embedded SWCNT strongly
affects the mechanical properties of the nanostructure under study. Thus, for models of a
3D nanomaterial with (6,5) nanotubes, which provide a higher density to the nanomaterial,
the compressibility is lower compared to the nanomaterial based on (4,4) nanotubes. That
is, with an increase in the SWCNT diameter, the mechanical responsiveness decreases, and
the mechanical properties of the 3D nanomaterial begin to be determined by the mechanical
properties of the SWCNTs themselves.
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Table 1. Structural and elastic properties of GLC reinforced with (4,4) and (6,5) SWCNTs.

Number of Atoms
in Supercell

% Mass Fraction of
Nanotube, % Density, g/cm3 Compressibility, GPa−1 Bulk Modulus, GPa

GLC without SWCNTs
3891 0 1.18 0.519 1.93

SWCNT (6,5)
4010 9.08 1.18 0.1091 9.17
4111 17.71 1.32 0.0793 12.61
4243 25.73 1.38 0.0539 18.55
4336 33.57 1.41 0.0519 19.27

SWCNT (4,4)
3994 6.81 1.21 0.2071 4.83
4093 13.29 1.24 0.1072 9.35
4200 19.43 1.26 0.0788 12.69
4287 25.38 1.29 0.0682 14.71

Next, the resulting supercells of GLC reinforced with (4,4) and (6,5) SWCNTs were
filled with potassium atoms at a potassium/carbon mass ratio (m(K):m(C)) of 1:100 (0.01),
1:28.5 (0.035), 1:14 (0.07), 1:7.5 (0.13), 1:4.5 (0.23), and 1:3 (0.33) using the Nose–Hoover
thermostat. After that, the atomic structure of supercells was reoptimized by means of
molecular dynamics method using the reactive force field REAXFF [38]. The simulation
was carried out with a time step of 0.5 fs for 50 ps at normal temperature T = 300 K. Figure 2
demonstrates the optimized atomic structure of the supercells of GLC reinforced with (4,4)
and (6,5) SWCNTs when filled with potassium at a potassium/carbon mass ratio of 1:100
and 1:14, respectively. This figure also shows a map of the local density distribution for
these supercells. As can be seen, potassium fills predominantly the center region of GLC
supercell. This corresponds to the interval of change in the coordinate X from 15 to 25 Å on
the map of local density distribution. It should be noted that, at a potassium/carbon mass
ratio of 1:14, the destruction of both graphene-like sheets and fullerene-like elements, and
of (4,4) and (6,5) nanotubes is observed in the supercell of GLC-reinforced SWCNTs.
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2.2. Calculation Details

To study the electronic properties of a 3D nanomaterial, the self-consistent-charge
density-functional tight-binding (SCC-DFTB) method was used [39,40]. The total energy of
the system in the framework of this approach is determined by the following expression:

Etot = ∑iµv ci
µci

v H0
µv +

1
2 ∑αβ

γαβ∆qα∆qβ + Erep + Edis, (2)

where ci
µ and ci

v are weight coefficients in the expansion into atomic orbitals, ∆qα and ∆qβ

are charge fluctuations on atoms α and β, respectively, γαβ is a function that decreases
exponentially with increasing distance between atoms α and β, Erep is term describing the
repulsive interaction at small distances; Edis is the van der Waals interaction energy. The van
der Waals interaction was modeled using the universal force field (UFF), which supports
the description of the interaction of various atoms [41]. The full sp-basis for carbon atoms
and the s-basis for potassium atoms were used. All calculations were carried out at the
Γ point. The SCC-DFTB calculations were performed using the DFTB+ software package
version 20.2 (University of Bremen, Bremen, Germany) [42].

The calculation of the quantum capacity was carried out in accordance with the
formula of the following form [43]:

Cq(U) =
1

mU

∫ V

0
eD
(
EF − eU′

)
dU′, (3)

where m is the mass of the object, U is the displacement calculated as a change in the Fermi
energy with a change in the charge of the object, e is the elementary charge, D is the DOS
function for the applied displacement, and EF is the Fermi energy.

3. Results and Discussion

We have studied how the electronic properties of GLC reinforced with (4,4) and (6,5)
nanotubes will change at different potassium/carbon mass ratios. Figure 3 shows the plots
of changes in the Fermi energy for the GLC structures reinforced SWCNTs when filled



J. Compos. Sci. 2022, 6, 186 6 of 10

with potassium. For most structures, at a mass ratio of potassium to carbon of 1:100 (0.01),
an increase in the Fermi energy is observed, since the pores of the GLC are filled with
potassium without destroying the carbon hexagonal cells, as shown in Figure 2a,b (picture
on the left). However, an increase in the number of potassium atoms (a potassium/carbon
mass ratio of more than 1:28.5 (0.035)) leads to the destruction of the GLC atomic structure
with nanotubes (Figure 2a,b, picture on the right). This process is accompanied by a shift
of the Fermi level along the energy axis to the left relative to zero eV and, accordingly, an
increase in the work function electron from the material. At a potassium/carbon mass ratio
of more than 1:7.5 (0.13), a significant number of hexagonal elements of graphene-like sheets
have already been destroyed, and only islands of local density maxima of fullerene-like
and nanotube carbon elements remain, which do not undergo further destruction. Thus,
the subsequent decrease in the work function occurs due to the shift of the Fermi level
along the energy axis to the right relative to 0 eV upon the addition of potassium atoms.
The maximum decrease in the work function by ~0.3 eV was achieved at a mass ratio of
potassium/carbon of 1:4.5 (0.23) for the SWCNT (6,5).
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Figure 3. Dependence of the Fermi energy EF on the potassium/carbon mass ratio (m(K)/m(C)) for
GLC reinforced (4,4) (a) and (6,5) (b) SWCNTs.

It can be noted that, apart from the 3 × (4,4) case, the highest Fermi energy is observed
for structures with four nanotubes, i.e., the 4 × (4,4) and 4 × (6,5) configurations, which
have greater elasticity than structures with less than the number of nanotubes according
to the data in Table 1. The diameter of the nanotubes also affects the Fermi level when
filled with potassium. The Fermi energy in almost all cases is greater for GLCs with
(6,5) SWCNTs.

Figure 4 shows the distributions of DOS of GLC reinforced with (4,4) and (6,5) SWCNTs.
For the convenience of analyzing the obtained distributions, the Fermi level on the plots
is shifted to zero eV. It can be seen that when the GLC structure with SWCNTs is filled
with potassium, the number of available electronic states at the Fermi level increases,
which significantly improves the emission properties of the material and, as will be shown
below, the capacitive properties of the material. Thus, at a potassium/carbon mass ratio of
1:100 (0.01), the DOS maximum (853.43 eV−1) for GLC reinforced with two (4,4) SWCNTs
increases by 3.6%, and the DOS maximum (943.96 eV−1) for GLC-reinforced four (6,5)
SWCNTs increases by 12.8% as compared to the DOS maximum (822.74 eV−1) of GLC
without nanotubes.
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The effect of potassium on the electronic properties of GLC reinforced with nanotubes
was also estimated from the quantum capacitance. The results of calculating the quantum
capacitance are shown in Figure 5. It can be seen from the figure that the calculated
quantum capacitance profiles largely repeat the DOS profiles. Thus, when filling with
potassium at zero voltage (actually at the Fermi level), the quantum capacitance almost
doubles at a potassium/carbon mass ratio of 1:28.5 (0.035).

The influence of the nanotube diameter on the quantum capacitance is also noticeable.
For GLC with (4,4) SWCNTs, with an increase in potassium atoms, the highest quantum
capacity is observed when GLC is reinforced with two tubes. While in the case of reinforce-
ment with (6,5) SWCNTs, the maximum quantum capacitance is observed for the atomic
configuration of GLC with four nanotubes, as in the case of the DOS distribution. The
obtained results significantly exceed the quantum capacitance of other composite carbon
nanomaterials, in particular, graphene–nanotube films with an island structure subjected to
axial tensile deformation [43] and pillared graphene films [44]. For example, the maximum
quantum capacitance of graphene–nanotube film was 1197 F/g at an axial stretch of 5% [43].
The pillared graphene film modified with boron (B) clusters had a maximum quantum
capacitance of ~1266 F/g in the case of five B12 clusters [44]. The quantum capacitance of
GLC reinforced with SWCNTs also exceeds the ones of some other materials. In particular,
the maximum quantum capacitance of the boron-doped (6, 6) CNTs in negative and positive
voltages was 304 F/g and 760 F/g, respectively. For boron-doped (16, 16) CNTs, these
values were found to be 335 F/g and 659 F/g, respectively [45]. The quantum capacitance
of the MnSe2/CNT composite does not exceed 1300 F/g [46].
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4. Conclusions

Thus, using the molecular dynamics method, atomistic models of supercells of a
new composite GLC nanomaterial with an island-type topology due to the presence of
reinforcing SWCNTs of subnanometer diameter in the graphene/fullerene fragments were
constructed. It has been established that the bulk modulus of GLC at the maximum mass
fraction of nanotubes increases by 7–10 times, depending on the nanotube diameter, as
compared to the GLC without SWCNTs. Nanotubes of larger diameter also provide greater
elasticity to the composite. Based on the results of SCC-DFTB calculations, regularities in
the change in the electrophysical parameters of GLC reinforced with (4,4) and (6,5) SWCNTs
when filled with potassium were revealed. We have shown that, at a potassium/carbon
mass ratio of 1:100 (0.01), the maximum DOS of GLC reinforced with (4,4) and (6,5) SWCNTs
increases by 3.6% and 12.8%, respectively, as compared to the maximum DOS of GLC
without nanotubes. At a potassium/carbon mass ratio of 1:4.5 (0.23), the maximum decrease
in the work function for the GLC reinforced with (4,4) SWCNTs was ~0.2 eV, and for the GLC
reinforced with (6,5) SWCNTs was ~0.3 eV. The presence of nanotubes in the GLC structure
also contributes to an increase in the quantum capacitance of the carbon nanomaterial.
The quantum capacitance of GLC reinforced with four (4,4) and (6,5) SWCNTs already at
a mass ratio of potassium/carbon of 1:28.5 increases by ~9.4% (1752.63 F/g) and 24.1%
(2092.04 F/g), respectively, as compared to the nanotubeless GLC (1587.93 F/g). Based
on the simulation results obtained, it can be concluded that the potassium-functionalized
SWCNT-reinforced GLC nanomaterial is promising for use in modern nanoelectronic
devices, including emission devices.
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