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Abstract: Short fiber reinforced thermoplastics show distinct anisotropic behaviors due to their
microstructure. The mechanical testing of specimens cut from injection molded plates at different
angles to the injection molding direction reveals direction-dependent properties. However, these
results are an average value for the tested cross section, which in more detail has a core-shell
microstructure. When analyzing the stresses and deformation of a structural component, the local
anisotropy will be very different compared to these tensile specimens. Therefore, a methodology is
needed to transfer the properties obtained by mechanical testing to the local properties of an injection
molded component. The core-shell microstructure and tests with different specimen thicknesses
enable the determination of microstructure-dependent material properties. This paper presents a
method using a mean value representing isotropy and an amplitude applied to the mean value to
determine orientation-dependent mechanical properties. The amplitude in turn depends on the
degree of anisotropy. The method is applied for extracting the anisotropic Young’s modulus of the
core and shell layer of short glass fiber reinforced polyamide 46. The results obtained by this method
and their reliability are discussed.

Keywords: short-fiber composites; injection molding; X-ray computed tomography; mechanical
properties

1. Introduction

Short fiber reinforced thermoplastics are predestinated for high-volume production,
even for parts with complex geometry. Despite short fibers with a length typically between
0.2 and 0.5 mm, a pronounced fiber alignment may result from the injection molding
process. The local fiber orientation distribution affects the mechanical as well as the ther-
momechanical properties throughout the plate [1,2]. To exploit the full capability of the
material, the anisotropic behavior must be considered in the design process. A reliable
virtual design process becomes increasingly important to save weight and resources. Meth-
ods for describing the statistical fiber orientation distribution are already established [3–5].
Besides some possibilities of graphical description, the fiber orientation tensor uses unique
numbers to quantify the fiber orientation distribution [4,6,7]. Figure 1 provides some
examples, showing the same analyzed specimen. The determination of statistical fiber
orientation is possible prior to component design by using suitable process simulation
software [6,8–11] or on an existing component by imaging techniques such as X-ray mi-
crocomputer tomography (µCT) [2,7]. An advantage of the first method is an affordable
prediction, while the second method analyzes the real microstructure and, thus, it is free
from deviations by theoretical assumptions. However, analyses of larger volumes by µCT
are very costly or even of limited feasibility. After determining the local fiber orientation
distribution of a component, it is furthermore necessary to obtain knowledge about the
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orientation-dependent material properties. By the µCT image (Figure 1c), the distinct core-
shell microstructure becomes visible. The shell layers are created due to the boundary layer
formation of material flow near the walls of the tooling, and fibers are aligned preferably
in the injection molding direction. The core layer, which is the center part of the material
flow between the tooling, is less oriented in comparison to the shell layers with a preferred
fiber orientation perpendicular to the molding direction. This becomes visible by the fiber
orientation distribution, plotted as a diagram in Figure 1b. The molding of thicker plates
leads to thicker core layers, while the thickness of the shell layers is only slightly affected
by the plate thickness. Using the eigenvalues of the orientation tensor [4] (Figure 1d), an
index of anisotropy (IA) can be determined (Figure 1e). Since the analysis in the following
is conducted for an in-plane stress state only, the z component of the orientation tensor is
omitted, and the anisotropy is described by the x and y eigenvalues only. It is necessary to
consider the component of the examined axis alone, as it describes the statistical amount of
fibers aligned in that direction. A value of one for a component in the orientation tensor
means that all the fibers are aligned perfectly in that direction, while a value of zero means
that all the fibers are aligned perpendicular to that direction. For short fiber reinforcements,
the reality is somewhere in between [5].
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Figure 1. Different ways to display the fiber orientation of short fiber reinforced composites: (a) accu-
mulated fiber orientation distribution, (b) partial fiber orientation distribution, (c) colorized micro-
section by µCT, (d) fiber orientation tensor, and (e) index of anisotropy determined by the eigenvalues
of the orientation tensor [3].

Fu et al. [5] provide analytical equations to estimate mechanical properties by the
geometry of the reinforcement and the constituent properties. Promising functions are the
Halpin–Tsai equations to calculate the Young’s modulus of perfectly aligned short fiber
composites in the direction of alignment and perpendicular to that [12,13]. However, very
often, the constituent properties and the real microstructure are not exactly known.

The easiest and therefore most common way to determine the mechanical properties
of short fiber reinforced thermoplastics experimentally is to mold specimens in a cavity
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with the specimen geometry. However, such specimens have a defined microstructure
and thus do not allow for the determination of orientation-dependent properties. There-
fore, the machining of specimens from injection molded plates in different directions
allows for testing in different directions with regard to the molding direction, i.e., the
main fiber orientation [2,14]. Nevertheless, properties obtained using machined speci-
mens provide an average value of the material volume within the gauge length, i.e., a
pronounced core-shell layer microstructure instead of a distinctive fiber orientation [15,16].
As a consequence, a methodology is required to extract the properties of the material as a
function of the anisotropy [17]. Similar approaches are known for endless fiber reinforced
composites [18,19]. This allows for a consideration of local material properties in the subse-
quent design process of a structural component. For this purpose, this paper proposes an
efficient method for the determination of the Young’s modulus as a function of anisotropy.
This can be used to describe local material properties in the process of component design.

2. Material and Experiments

Short glass fiber reinforced polyamide 46 (PA46GF15: DSM Stanyl® TW300F3) with a
15% fiber weight fraction was used for specimen preparation. The same material with a
30% fiber weight fraction (PA46GF30: DSM Stanyl® TW300F6) was used for the validation
of the results. Plates in the dimension of 80 × 80 mm2 were injection molded with two
different thicknesses, namely, 2 mm and 3 mm. Tensile specimens according to DIN EN ISO
527-2, Type 1BA were extracted by milling from these plates in such a way that the loading
direction of the specimens was parallel (0◦) as well as perpendicular (90◦) to the molding
direction. All the specimens were conditioned to 50% relative humidity prior to testing.

The tensile tests were performed on a universal testing machine (Zwick/Roell, Ulm,
Germany) with a displacement of 1 mm/min and a 10 kN load cell. The strain was
measured with an extensometer as well as a digital image correlation using the GOM
Correlate (GOM GmbH, Braunschweig, Germany). Besides room temperature (RT), tensile
tests were conducted at 80 ◦C within an attached temperature chamber. Details of the
materials and specimens, the results of the tensile tests, and their usage for materials
modelling were published recently [20].

To analyze the microstructure, cuboids (7 × 5 × thickness mm3) were extracted from
the center of some specimens. These samples were scanned using an X-ray computer
tomograph (nanotom, Phoenix x-ray systems + services GmbH, Wunstorf, Germany) with
a resolution of 4 µm. Fiber orientation tensors and the core-shell microstructure of the
scanned volumes were determined with the analysis software VG STUDIO MAX (Volume
Graphics GmbH, Heidelberg, Germany).

3. Resolving Layerwise Properties

This section describes the mathematical procedure to calculate the Young’s modulus
of the core and the shell layer, respectively. Therefore, an inverse approach is developed
using the data from tensile tests and µ-CT. Considering the microstructure of the injection
molded plates as a three-layer laminate consisting of a core layer covered by two shell
layers, the stiffnesses can be summed up:

E = Ecore·vcore + Eshell ·vshell (1)

where E is the measured Young’s modulus of the specimen, Ei the local modulus of the
layers, and vi the volume fraction of the layers—here, core and shell, respectively. Due to the
microstructure, the preferred fiber orientation of the shell layers is aligned along the global
x-axis (molding direction), while the fibers of the core layer are preferably aligned along the
global y-axis. Taking the notation from the classical laminate theory [21,22], the preferred
fiber orientation is the 1-axis in the local coordinate system and the 2-axis perpendicular to
the preferred fiber orientation. Taking this into account, Formula (1) can be written as:

Ex = E2,core·vcore + E1,shell ·vshell (2)
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Figure 2 illustrates the local coordinate systems of the layers and the global coordinate
system. The target here is to determine the Young’s moduli of the core and shell layer in
their local coordinate system in the 1- and 2-directions.
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To determine the individual Young´s modulus of the core and shell layer, using the
results of the tensile tests, some assumptions for simplification need to be made beforehand.
Firstly, an isotropic mean value is assumed, which is defined as the average of the global
values measured in the 0◦- and 90◦-directions with specimens cut from plates in different
directions. Referring to the global coordinate system, the 0◦-direction is parallel to the
molding direction and is assumed as the x-axis, while the 90◦-direction is the y-axis.
Therefore, the isotropic mean value is:

Em =
Ex + Ey

2
(3)

E is the Young´s modulus, and index m denotes the mean value, while x and y are the
testing directions in the global coordinate system, as defined before.

Secondly, an amplitude marked by index a applies to the isotropic mean values,
which is added for the property in the 1-direction and is subtracted for the property in the
2-direction.

E1 = Em + Ea (4)

E2 = Em − Ea (5)

In analogy to continuous reinforced composites [21,22] the 1-direction is defined as the
direction along the preferred orientation of the fibers, and, consequently, the 2-direction is
perpendicular in-plane to the 1-direction. Since the degree of anisotropy is different for the
core and the shell layer, the amplitude is thus layer-dependent, and Formulas (4) and (5)
need to be used for the core and shell layer separately. Furthermore, it is assumed that
the core and shell layer are not constraining each other. This means the Poisson ratio is
considered to be the same in all directions and layers.

With these assumptions, the layer properties can be summed up with respect to their
volume contents vcore and vshell to obtain the Young’s modulus for the molded plate:

Ex = (Em − Ea,core)·vcore + (Em + Ea,shell)·vshell (6)
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with
vcore =

tcore

t
(7)

and
vshell = (1 − vcore) (8)

tcore is the thickness of the core layer, while t denotes the total thickness of the specimen.
The two unknowns in Formula (6) are the amplitudes for the core and the shell layer,

respectively. Since the volume ratios of the core and shell layer depend on the thickness of
the specimens, an equation system can be formulated and resolved to the amplitudes of
the core and shell, leading to:

σa,core = ka

(
σm −

σx,t1·vshell,t2 − σx,t2·vshell,t1

vcore,t1·vshell,t2 − vcore,t2·vshell,t1

)
(9)

and

σa,shell =
σx,t2 − vcore,t2(σm − σa,core)

vshell,t2
− σm (10)

Here, index t1 denotes the data of the thinner plates, while index t2 denotes the data
of the thicker plates. ka is a correction factor for the amplitude, which is determined as 0.5
to avoid unrealistically high amplitudes. As input for Equations (9) and (10), the volume of
the core or shell layer needs to be measured from microscopic cross sections or µCT analysis.
Mechanical tests in the x- and y-directions are necessary to provide the mean value Em
and the values in the x-direction of both thicknesses: Ex,t1 and Ex,t2. Thus, specimens from
the plates with two different thicknesses tested in two different directions are necessary to
provide the input data for the equations.

4. Results
4.1. µCT-Analysis

µCT-scans were used to distinguish the core and shell layers and to determine the fiber
orientation tensors of both. Exemplary cross sections of the µCT scans and the anisotropy
values are provided by Figure 3. The eigenvalues λx and λy are the averages from two
specimens. The values given of the shell layers are the average of the left and right shell
layers. It can be seen that the fiber orientation distribution is similar for both thicknesses,
while it is more anisotropic for the skin layer than it is for the core layer. This results
in a more pronounced anisotropy (full thickness) for the thinner specimen. Both fiber
fractions show a similar behavior. The thickness of the shell layers is 0.81 mm for the 2 mm
specimens and 0.92 mm for the 3 mm specimens. This leads to volume fractions of 0.19 and
0.388 for the core layer of the 2 mm and 3 mm plates, respectively, for both fiber fractions,
despite the fact that the transition between the core and shell layers is more pronounced
for the higher fiber fraction.

4.2. Tensile Tests

The exemplary stress-strain curves obtained by the tensile tests are displayed in
Figure 4. As expected, higher temperatures yield lower stresses and stiffnesses along
with higher fracture strains. Since the volume fraction of the more anisotropic shell layers
is higher for the 2 mm thick specimens, the anisotropic behavior is more pronounced
compared to that of the 3 mm specimens. This results in higher values for the stiffness and
strength of the 0◦-specimens and lower values for the 90◦-specimens with 2 mm thickness
compared to those for the respective 3 mm thick specimens. This behavior meets the
expectations. The Young´s modulus was determined as the secant modulus in the strain
range of 0.05 to 0.25% according to DIN EN ISO 527-1. The Young´s moduli of all the
specimens are summarized in Table 1 along with their standard deviation.
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average of five specimens, and the envelope marks the standard deviation.

Table 1. Engineering values (exemplary for the 15% fiber weight content) from the tensile tests;
average of five specimens tested for each parameter set with the standard deviation.

Temperature Orientation Thickness
[mm]

Young’s
Modulus

[MPa]

Tensile
Strength

[MPa]

Strain at Break
[%]

RT
0◦

2 3249 ± 36 87.4 ± 1.1 14.34 ± 1.42
3 2992 ± 67 83.3 ± 0.6 15.16 ± 0.64

90◦
2 1988 ± 79 69.4 ± 0.4 21.09 ± 2.0
3 2296 ± 77 74.0 ± 0.7 17.88 ± 1.49

80 ◦C
0◦

2 2627 ± 238 72.5 ± 1.2 13.69 ± 1.19
3 2092 ± 137 69.9 ± 7.7 14.06 ± 0.56

90◦
2 1292 ± 69 49.8 ± 1.0 22.86 ± 2.11
3 1356 ± 55 53.1 ± 0.2 20.39 ± 0.97

4.3. Analytical Results

With the volume fractions of the core and shell layer determined by µCT and the
Young´s modulus obtained from the tensile tests, the mean value and amplitudes of the core
and shell layer can be derived by Formulas (3), (9) and (10). For the mean value, the average
of the moduli of both thicknesses and both directions were taken. With these, the properties
in the material coordinate system (1–2-system) are obtained by Formulas (2) and (3). A
summary of the results is given in Table 2.
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Table 2. Analytical results of the anisotropic modulus in the MPa of the core and shell layers in the
material coordinate system.

Fiber Content 15% 30%

Temperature RT 80 ◦C RT 80 ◦C

Em 2631 1842 4662 2775
Ea,core 212 691 1051 1064
Ea,shell 727 852 3026 1723

E1,core 2843 2533 5712 3838
E1,shell 3358 2694 7688 4498
E2,core 2420 1151 3611 1711
E2,shell 1905 990 1636 1052

5. Discussion

The tendency of the layerwise-determined modulus is plausible in general. The shell
layers show higher anisotropy than the core layers, correlating well with the differences in
the degree of anisotropy due to the microstructure. Furthermore, a higher anisotropy is
obtained for higher testing temperatures. This observation is also plausible since the matrix
is much more temperature sensitive compared to the fibers and, thus, the anisotropy of the
composite will increase with increasing temperature.

It is assumed by Fu et al. [5] that there is a linear relationship between the Young’s
modulus and the eigenvalue of the fiber orientation. Therefore, Figure 5 correlates the
modulus of the tensile test on the layered specimens as well as the results of the layerwise
extraction by the mean value-amplitude method to the individual eigenvalues. In general,
a linear relationship is visible. However, single points in the diagrams deviate a lot from the
linear approximation. Especially, when test results with inconsistent relations to each other
are used as the input for the layerwise extraction, a big deviation between the experimental
and analytical curve is obtained. This can be seen by the curves for room temperature and
30% fiber content (green curves at the bottom of Figure 5). Here, the experimental modulus
in the x-direction of the 2 mm specimens is lower than that of the 3 mm specimens; both are
within the range of one standard deviation. Since this behavior is physically not evident, a
high deviation of the experimental and analytical results is obtained. The reasons for the
failure of the experimental results at room temperature may be that the testing temperature
is very close to the glass transition temperature of PA46 in the conditioned state, and small
temperature deviations have a big impact on the mechanical response. Since the linear
behaviors of the experimental and layerwise extraction are very close to each other, it may
be most reliable to use the experimental and extracted values for a common approximation.

Another considerable parameter is the initial definition of the core and shell layers. In
Figure 6, the orientation tensor components xx and yy are plotted along the specimen’s
thickness. It is evident that not a sudden frontier but rather a transition zone exists between
the core and shell layers. The exact selection of this frontier can cause non-negligible shifts
in the volume fractions of the layers. Additionally, especially when the core layer is very
thin, the orientation tensor is prone to the influence of the transition zone depending on
the selected frontier. Since the analytical results are very sensitive to the volume fraction of
the core layer, this effect might be significant. Especially for the specimens with a lower
fiber content, the transition is hard to distinguish. The adjustment of the correction factor
ka in Formula (9) may be used to compensate such deviations.
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