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Abstract: Mechanical properties of fiber-reinforced polymers are sensitive to environmental influ-
ences due to the presence of the polymer matrix but inhomogeneous and anisotropic due to the
presence of the fibers. Hence, structural analysis with mechanical properties as a function of loading,
environment, design, and material condition produces more precise, reliable, and economic structures.
In the present study, an analytical model is developed that can predict engineering values as well as
non-linear stress–strain curves as a function of six independent parameters for short fiber-reinforced
polymers manufactured by injection molding. These parameters are the strain, temperature, humidity,
fiber content, fiber orientation, and thickness of the specimen. A three-point test matrix for each
independent parameter is used to obtain experimental data. To insert the effect of in-homogenous
and anisotropic distribution of fibers in the analytical model, microCT analysis is done. Similarly,
dynamic mechanical thermal analysis (DMTA) is done to insert the viscoelastic effect of the material.
The least mean square regression method is used to predict empirical formulas. The standard error
of regression for the fitting of the model with experimental stress–strain curves is closely controlled
below 2% of the stress range. This study provides user-specific material data for simulations with
specific material, loading, and environmental conditions.

Keywords: analytical model; stress–strain curve; short fiber-reinforced thermoplastic

1. Introduction

Short fiber-reinforced polymer (SFRP) parts are widely used in industries as they
can be easily molded into complex shapes. However, the orientation of the fibers varies
from one point to another in composite structures. In complex shapes such as the dome
of a pressure vessel or plastic gears, plastic axle, bicycle seats, etc., the fiber angle varies
locally due to the geometry of the structure, fabrication process, and type of fiber used
in the composite material. This induces a strong heterogeneity throughout the structures,
enhancing anisotropic mechanical behavior. For continuous fiber composites, finite ele-
ment (FE) analysis is well developed to consider variations in fiber angle locally in stress
analysis [1–5], whereas for SFRP parts, the micromechanical models in the FE analysis
use the same empirical formulas that are used for continuous fiber composites with some
modification. Due to the short fiber length, the randomness of the fiber arrangement
significantly varies throughout the specimen. Hence, local fiber orientation distribution
affects material characterization. Changes in the microstructure of short fibers should be
considered in the calculation of mechanical properties in specimen level analysis and then
in finite element analysis of the component.

For example, injection-molded short fiber-reinforced plates show fibers aligned to-
wards the molding direction in outer peripheral layers and transversely deviated in the core
layer. Therefore, heterogeneity and anisotropy in material properties should be considered
in structural analysis. Mechanical properties of an injection-molded specimen are the
combination of the mechanical properties of each layer. Such properties can be estimated
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by developing a model as a function of the degree of anisotropy of each layer. Engineering
values created by such a model can insert the variation of local fiber orientation in the
FE analysis of an injection-molded component [6]. In addition to fiber contribution, the
polymer also contributes to sensitivity in mechanical properties due to environmental con-
ditions such as temperature and humidity. Hence, in designing SFRP parts, the sensitivity
of mechanical properties due to both the fiber and polymer matrix should be considered
in material data. Such material data inserted in FE analysis will provide an economical,
effective, and precise design.

One of the material data components is the stress–strain curve. The aim of this project
is to develop a model that can provide the stress–strain curve considering inhomogeneity
and anisotropy of the material due to fiber orientation distribution and sensitivity towards
environmental conditions in addition to material selection. In stress analysis, the material
is pulled with a certain pulling speed, which develops strain in it. Due to the strain, the
resistance in the material increases, called stress. Hence, stress σ is dependent on strain ε.
Therefore, the mathematical formula for this model should be as follows:

σ = f (ε) (1)

Stress varies linearly until a certain point, which indicates elastic deformation. It
follows Hook’s law of elasticity. After the yield point, the material no longer follows
Hook’s law due to strain hardening or plastic deformation. Ramberg and Osgood used a
three-parameter equation to predict stress–strain relationship beyond the yield point. The
equation is as follows [7,8]:

ε =
σ

Eo
+ k
(

σ

σk

)n
(2)

Eo is Young’s modulus or the elastic modulus and σk is proof stress corresponding to
the plastic strain k. Parameter n describes the bend of the stress–strain curve. The elastic
part of the stress–strain curve, which is the first part of the equation, follows Hook’s law
of elasticity whereas the plastic part of the stress–strain curve, which is the second part of
the equation, follows a power law of the non-dimensional stress ratio. This equation was
designed initially for metals such as aluminum where k was generally accepted as 0.2% of
the plastic strain and n is a material constant, which is calculated based on 0.01% to 0.2%
proof stress [9,10]. This value gives the measure of work hardening or plastic deformation.
It varies from 0–0.5 [11]. Equation (2) predicts the stress–strain curve until 0.2% of plastic
strain for metals, but after that it cannot follow the curvature of the stress–strain curve
accurately [10]. To overcome this limitation, the stress–strain curve is divided into elastic
and plastic regions. Tayler series expansion of the Ramberg–Osgood (RO) equation is
used for fitting the stress–strain curve in the plastic region [12]. However, this equation
uses values of the plastic strain at ultimate and yield limit to calculate the value-modified
material constant n [13]. Kamaya et al. [9] used the yield and ultimate strength value to
develop a modified version of the RO equation with the help of the J integral. The accuracy
of the curves varied from 2–10%. The RO equation requires values of k, n, and plastic strain.

To predict the stress–strain curve for a composite material, the fiber orientation distri-
bution should be considered. Several numerical approaches were developed in LS-DYNA
by overlapping fiber orientation distribution from an injection molding simulation model
to the finite shell element of the anisotropic structural simulation. [14–17]. Dean et al. [18]
tested a macro-mechanical model in which the average of the layerwise fiber orientation
tensor in each direction (flow direction of injection molding and transverse direction) was
inserted in a macro-mechanical invariant based on the anisotropic constitutive model
mentioned in [18,19]. This FE simulation requires a huge computational time and cost.

An analytical model can be a more economical solution in the design of SFRP. Several
analytical models were developed to predict the mechanical properties of SFRP using failure
criteria usually used for unidirectional (UD) laminates such as the Tsai–Hill criterion [20],
theory of linear elasticity for orthotropic material, Halpin—Tsai–Nielsen criterion [21],
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etc. [5,22,23] by considering the specimen as a pile of three UD laminates. The fiber
orientation distribution within these layers varies according to the thickness of the injection-
molded plate [18].

The thickness of the specimen has a significant influence on anisotropy as well as
mechanical properties, especially in injection-molded plates. The fiber fraction ratio aligned
to the flow direction is high in thin plates (1 mm) as compared to thick plates (>2 mm) [20,24].
Due to the difference in the fiber orientation distribution, there is a significant difference
in the normalized modulus as the thickness of the specimen increases. The E modulus of
a 0◦ fiber-oriented specimen decreases whereas at 90◦, increases with an increase in the
thickness of the specimen [20]. Moreover, temperature increases the difference in the tensile
modulus with the thickness of the specimen for fiber angles greater than 30◦ [20]. This
could be due to matrix-dominated behavior at a fiber angle higher than 30◦ since the matrix
(polymer) is sensitive to temperature. Hence, a single model, which can insert synergetic
effects of all influential parameters is required to predict the mechanical behavior of SFRP.

Therefore, in this project, an analytical model is developed, which provides material
data (stress–strain curve) considering the influence of environmental, loading, material,
and design condition.

σ = f (ε, temp, f o, f c, RH, th) (3)

The aim of this project is to develop a formula as mentioned in Equation (3), which
can predict the stress–strain curve at any arbitrary temperature (temp), fiber orientation (fo)
and fiber content (fc), relative humidity (RH), and thickness of the specimen (th). Sensitivity
in mechanical properties due to the fibers can be considered by inserting fiber orientation
and fiber content in the formula. Temperature and humidity will add more pronounced
viscoelastic behavior of the polymer in the formula.

If we compare a stress–strain curve of a metal and composite material, it is evident
that in metals, the stress–strain curve transits quickly and steeply from the elastic to plastic
region (Figure 1b). However, in SFRP, this transition is gradual and slow (Figure 1a).
Therefore, the stress–strain curve for SFRP should be divided into three distinguished parts,
which are defined as follows:

• Linear part: the part of stress–strain curve before the elastic limit (blue part in
Figure 1a).

• Onset of the bend: This is the part of the stress–strain curve where the graph starts
following a curve. The end-limit of this part will be the start of a line. This limit can
be calculated through trial and error and can vary with material composition. This
can also be referred to as the elasto–plastic region in the case of metals (yellow part in
Figure 1a).

• Offset of the bend: This part of the stress–strain curve is approximately linear after
the bend. This can also be referred to as the plastic region. This curve starts from the
offset of the bend until fracture of the specimen (red part in Figure 1a).

These three parts can be predicted separately by using some mathematical functions.
The Ramberg–Osgood (RO) equation cannot be used here because it requires the

value of the plastic strain. To calculate the plastic strain, values of stress and strain are
required. However, in this project, both of these values for an arbitrary material condition
are not available.

Therefore, a new empirical formula should be developed. The first step in designing
the empirical formula is to predict the elastic modulus. Several models were developed to
predict the elastic modulus, i.e., rule of mixture (ROM), inverse rule of mixture (IROM),
and Halpin Tsai and Bowyer–Bader model [5,23,25]. All these models are designed for
fiber laminates where fibers are continuous and compactly packed. All these models use
the fiber volume fraction and other geometric parameters of the fiber. They require the
elastic modulus of the fiber and matrix separately. This requirement of the measuring
volume fraction ratio and fiber length makes the model user unfriendly and complicated.
Moreover, equations involved in these models do not consider the change in temperature
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and moisture, which modifies not only the elastic modulus of the fiber and polymer but
also the length of the fiber [20]. Hence, a model using the mass fraction ratio is more
friendly and practical. There is no need for extra effort in converting the mass fraction to
the volume fraction. A model described in [26] uses the mass fraction of the fiber. However,
this model cannot accommodate variation in temperature.
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The modulus of elasticity varies with temperature if the fibers are in the transverse
direction of the load. The longitudinal modulus of elasticity of the UD laminate GF PP is
independent of temperature, whereas the transverse modulus of elasticity has a decaying
tendency with increases in temperature [27]. An empirical formula mentioned in [27] to
predict the elastic modulus has inserted a factor of the normalized temperature ratio with
the melting point of the polymer. It predicts the E modulus quite accurately but cannot
accommodate variations in the fiber angle. Zhai et al. tested the famous Mori–Tanka
micromechanical model [28] to predict the elastic modulus with different temperatures and
fiber angles [29]. The model requires the orientation tensor [30], elastic moduli of fiber, and
matrix and fiber length ratio. This model is dependent on the shape factor of the fibers.
Neither fiber angle nor temperature is an independent variable in this model, which is
the requirement for this study. To add the variation of the elastic modulus of composite
material due to temperature, viscous behavior of the polymer must be inserted in the form
of mathematical functions.

In this project, a model is designed in which the relationship between the microstruc-
tural properties and mechanical properties of composite material is developed. This is
done by studying the arrangement of fibers and matrix in the material at its micro-scale
level and by studying temperature-dependent behavior of the polymer. Micro-computer
tomography (µCT) analysis helps us to understand the fiber arrangement and its influence
on mechanical properties. The stiffness of the polymer is dependent on the temperature.
DMTA (Dynamic mechanical thermal analysis) describes the stiffness of the material over
the whole temperature range. Parameters of these analyses should be included in the
formula for the stress–strain curve in the form of some empirical equations, which will be
described in Section 3. In Section 2, experimental methodology, observation of tensile tests,
and the development of an analytical model will be discussed.
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2. Methodology and Experiment

Short glass fiber-reinforced polyamide (PA46 GF) with different fiber contents (15, 30,
and 60 percent by weight) was used to develop the stress–strain model. To add sensitivity
of the material towards temperature and humidity in the model, DMTA was conducted.
All specimens were pre-conditioned for 50% RH following the methodology described in
standard DIN EN ISO 1110 for pre-conditioning of polyamide. Small dog bone specimens
of type 1BA from standard DIN EN ISO 527-2 were milled from injection-molded plates
with a dimension of 80 × 80 mm2. The fiber angle of the specimen was varied by rotating
the specimen with respect to the molding direction of the injection-molded plate. The
number of specimens per plate was determined on the basis of prior fiber orientation
distribution analysis.

2.1. Fiber Orientation Distribution Analysis

The fiber orientation in the injection-molded plates is not uniform throughout the
thickness, width, and length of the plate [15,18,20]. Fibers at the outer periphery of the
plates are aligned towards the molding direction, whereas at the core they are transversely
deviated. Hence, fiber orientation distribution analysis is necessary to select the position
for the specimens in the plate where maximum fibers are oriented towards the assigned
direction (molding direction). Inhomogeneity of fiber distribution varies with the fiber
content, thickness, and position of the specimen with respect to the plate.

Therefore, three specimens from each plate were milled as shown in Figure 2. A
small section at the center of ex-centric and centric specimens was scanned by µCT. Fiber
distribution and orientation tensor [30] were studied with the help of the software VG
Studio from Volume Graphics®. Fiber angles with respect to the molding direction were
compared in each layer of the specimen. Orientation tensor, index of anisotropy, and the
variation of the core-shell layer thickness were calculated [30,31]. The index of anisotropy
is a quantitative way to characterize a sample on a scale of 0 to 1 where 0 is isotropic and 1
is perfectly anisotropic [32]. The optimum number of specimens per plate for the tensile
tests was determined by comparing all these factors in ex-centric and centric specimens for
each test matrix point. Tensile tests for each ex-centric and centric specimen were also done
to quantify the deviation in the mechanical properties within the plate. The specimens
with the highest fraction of fibers orientated towards the assigned orientation (i.e., with
respect to the molding direction) and highest index of anisotropy were chosen for further
tensile tests.
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2.2. Test Matrix

Three test points per independent variable were taken as shown in Table 1. With three
experimental points, a linear function (or line) can be predicted. However, there are only
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two testing points for the thickness of the specimen. Hence, the thickness is a nominal
variable rather than numerical.

Table 1. Test matrix to produce experimental data for the stress–strain model.

Fiber Content Fiber Orientation Thickness Temperature Humidity

15%, 30%, 60% 0◦, 30◦, 90◦ 2 mm,
3 mm −20 ◦C, RT, 80 ◦C 50% RH

Fiber orientation in Table 1 is the assigned orientation of the specimen with respect
to the molding direction. The number of specimens per plate was determined based on
fiber orientation analysis mentioned in Section 2.1. In each specimen, most of the fibers
are orientated towards the assigned orientation. The local fiber orientation distribution is
not considered in this analytical model. Humidity is kept constant at 50% RH to reduce
experimental efforts. However, the analytical model has a capability to insert humidity
as numerical variable [33] Five tensile tests were conducted for each test matrix point to
reduce data scattering. The same procedure was used for DMTA tests [33].

2.3. Experimental Observation

Tensile tests were performed on a uniaxial tensile testing machine with a load cell of
10 kN or 250 kN depending upon the fiber content of the material. Strain was calculated by
digital image correlation from the video captured by a high-resolution 2D camera system.
A climatic chamber was attached to perform tensile tests at high and low temperature. This
chamber cannot control humidity. However, the effect of high temperature on the moisture
content in the specimen was considered negligible if the specimens with a fiber content
of 30% remained in the chamber for 8 min, those with a fiber content of 60% remained
for 5 min, and those with a content of 15% remained for 17 min or less. None of the tests
took more time than these. Hence, the relative humidity of the specimens was assumed to
be constant throughout the tests. High and low temperature tests were closely controlled
for the isothermal condition with a variation of ±2 ◦C, but the room-temperature test was
not that closely controlled. It varied from 17–27 ◦C. To ensure uniform distribution of the
heat, a thermocouple was attached in close proximity at the center of the specimen. All
experimental stress–strain curves are plotted in Figure 3. From the graphs, it can be easily
concluded that the fracture strain is lower at a lower temperature and vice versa due to the
inverse relationship of stiffness and ductility.

As shown in Figure 3, the stiffness of the curves at −20 ◦C are quite high as compared to
80 ◦C of the same material. The water content in the specimens is frozen at low temperature
such as −20 ◦C. This increases the stiffness of the material. Moreover, due to the sensitivity
of the polymer to temperature, stiffness varies due to the glass transition temperature of the
polymer. At low temperature, in this case, −20 ◦C, PA46 is in the glassy state. Therefore,
the curve shows higher stiffness as compared to 80 ◦C where PA46 stays in a rubbery state.

Curves for the higher fiber content show higher stiffness. However, with lower
orientation angles, the stress–strain curves show higher stiffness. Hence, it is concluded
from this observation that the mathematical formula must have special parameters or
procedures to accommodate the variation in stiffness with respect to the fiber content, fiber
orientation as well as humidity and temperature. Since the same observations were noticed
in the curves of storage modulus, a similar approach is used to develop an analytical model
for the storage modulus [33]. Differences in Young’s modulus between fiber orientations
are due to the fiber content. The higher the fiber content of the specimen, the higher
the difference in Young’s modulus for the same fiber orientation. Similarly, the strength
of the material increases linearly with the fiber content [34]. The variation of Young’s
modulus with respect to the fiber orientation within the same fiber content is not linear.
This is well explained in the classical laminate theory. Young´s modulus of fiber-reinforced
composites shows hyperbolic behavior if the fiber angle changes in regard to the loading
direction [5,20]. Similar behavior is seen in the experimental curves of the storage modulus
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for the same material and specimens through DMTA [33]. Thus, Young´s modulus could
be predicted by the storage modulus.
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From the mathematical point of view, the stress–strain curves in Figure 3 can be
divided into three parts as described earlier. The linear part can be described by the
Young´s modulus. Then, it follows a bend. In the case of SFRP, this onset of bending is
longer as compared to metals. After this bend, the material shows purely plastic behavior
that could be described as a straight line with lower/minimal slope. This approach will be
used in designing empirical formulas.

2.4. Analytical Approach

An analytical approach for prediction of the stress–strain curve can be divided into
two steps. First, the stiffness of the material should be predicted. This will help to predict
the linear part of the curve. Later, the non-linear part of the curve can be assumed based
on some mathematical formulas. Young´s modulus from tensile tests and the storage
modulus from DMTA tests is similar based on the basic principle of testing [35,36]. In
tensile tests, specimens are strained in a quasi-static condition. In DMTA tests, the specimen
is subjected to oscillatory strain under varying temperature. Stiffness has been calculated at
each temperature, which consists of the storage modulus and loss modulus. Therefore, the
stiffness of the composite material should follow the same behavior as the storage modulus
curve with respect to the temperature [37,38].

To analyze and validate the hypotheses, all values of storage modulus calculated from
the DMTA tests were plotted against Young´s modulus determined by tensile tests for
several fiber orientations, fiber contents, and temperatures as shown in Figure 4. A linear
relationship can be observed between Young´s modulus and storage modulus by using the
least mean square method of regression. Hence, Young´s modulus can be predicted with
the help of the storage modulus model.
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Experiments performed at room temperature were discarded because room tempera-
ture lies in the glass transition temperature range of PA46 (15–40 ◦C). In this region, the
curve of the storage modulus is very sensitive to small temperature deviations. To predict
the stiffness of the material, the storage modulus for arbitrary conditions is required. A
separate analytical model for the storage modulus is designed that can predict the storage
modulus with four independent parameters (i.e., fiber content, fiber orientation, temper-
ature, and humidity). The development of this model called the storage modulus model
is described in a conference paper [33]. The next step is to design the formula for the
non-linear part of the stress–strain curve. The stiffness of the composite is the combination
of fiber and matrix behavior. The fiber contributes towards stiffness of the composite
whereas the polymer influences the toughness. As shown in Figure 3, the sensitivity of the
stress–strain curve with respect to temperature and humidity is also due to the presence
of the polymer. Therefore, the stress curve is a collection of the behavior contributed by
both the fiber and polymer. Similar observations can be noticed in the storage modulus
model [33]. In other words, the fiber content increases linearity, whereas the polymer
influences the commencement of curvature in the stress–strain curve. The stress values
in the elastic range are not exactly linear, which can be seen clearly from Figures 1 and 3.
It is a combination of a line and a curve. This is due to the combination of the fiber and
matrix. The plastic deformation of the matrix happens much faster as compared to the
fibers. This has been investigated by plotting the rate of change of the E modulus through-
out the test, which is expected to be constant or near constant at least at the elastic range
of the stress–strain curve. This happens in metals, but in short fiber-reinforced polymer
(especially PA46), this is not the case. Thus, a single mathematical function cannot predict
the stress of the composite material. It can be considered as a combination of linear and
non-linear functions in which the linear function influences the stiffness and the non-linear
function influences the toughness of the curve. Linearity or slope of the stress–strain curve
is governed by the fiber content. Each value of stress in Equation (3) can be assumed as
weighted moving average of the fiber and polymer contribution biased by the fiber content
by weight. Equation (3) can be described as:

σ =
Fiber content[%]

100
fl(ε) +

100 − Fiber content[%]

100
fnl(ε) (4)

Here, fl(ε) and fnl(ε) are the mathematical functions for linearity and non-linearity of
the curve, respectively. fl(ε) is a linear function with E modulus of the composite. This
E modulus is predicted by the storage modulus model by simply inserting all arbitrary
conditions. However, the non-linear function fnl(ε) can be a single or a combination of
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mathematical functions. The non-linear function will be estimated based on observations
of experimental data of the material.

Since the experimental data were evaluated on the basis of standard ISO 527-2 [39],
Young´s modulus is calculated using the range from 0.05% to 0.25% for the strain. Similarly,
the elastic limit for the predicted curve should be 0.25% strain. As mentioned in Section 1,
the predicted curve should also be divided into three parts. The offset of the bend in the
stress–strain curve could start from a certain fraction of the fracture strain. For example,
one-fourth of the fracture strain could be considered as offset of the bend. This value is
calculated through trial and error or by observation. An initial estimate of the offset of
the bend can be estimated by fitting the Holloman equation of strain hardening [40] to the
available experimental data. Hence, the elaborated version of Equation (4) is as follows:

σe =
Fiber content

100 fl(ε) +
100−Fiber content

100 fnl1(ε) [ε < 0.25%]

σelpl =
Fiber content

100 Ea0.25%ε
ε + 100−Fiber content

100 fnl1(ε) [0.25% < ε < x% FS]

σpl = fnl2(ε) + σelplx%FS [ε > x% FS]

fnl1(ε) & fnl2(ε) = any mathematical f unction, FS = f racture strain


(5)

Equation (5) shows the formulas used to predict three parts of the stress–strain curve,
i.e., linear part, onset of bending and offset of bending, as illustrated by Figure 1. Ea0.25%ε

is the value of the apparent elastic modulus at 0.25% strain. The first part of the stress is
referred to as σe, which indicates the elastic part of the stress–strain curve. The second part
is σelpl , which refers to the onset of the bend of the stress–strain curve, which starts from
0.25%ε until x% of the fracture strain. This x value has been estimated by trial and error.
The initial value has been estimated by plotting the Hollomon equation [40] on the graph
of true stress and plastic strain. The strain values, from where the Hollomon equation
fits linearly to the plastic strain is considered as the first initial estimate for the value of x.
The last part of the stress–strain curve is the offset of the bend, which is denoted by σpl .
The non-linear equation/s iterate from the strain values at x% of the fracture strain until
fracture strain. σelplx%FS is the stress value at x% of fracture strain (FS), which is the initial
value for the iteration. In this analytical model, the non-linear function fnl is described
by two separate mathematical functions for the onset and offset of the bend, that is fnl1
and fnl2 , respectively. Equation (5) was used to fit all experimental data, taking strain
as an independent variable. For the non-linear function, a set of or single mathematical
equations are used that can imitate the curvature nature of the onset and offset of the
bend in the stress–strain curve. A curve-fitting method from python coding language was
used to determine the best-fitting parameters for the mathematical functions mentioned in
Equation (5).

To add temperature as an additional independent variable, the value of the fracture
strain at the particular temperature is required. Similarly, the fitting parameters of all
mathematical functions must be predicted. Hence, another code in python language was
written to predict fracture strain and fitting parameters. The algorithm of this code is
described in the next Section 2.5.

2.5. Analytical Model to Predict Fracture Strain and Fitting Parameters

To insert additional variables such as temperature, fiber content, fiber orientation,
and thickness in Equation (5), fracture strain must be predicted first. Then, the fitting
parameters for function fnl1 and fnl2 in Equation (5) can be predicted. The value of the
fracture strain and the fitting parameters are predicted by using the algorithm shown in
Figure 5. An analytical model for the storage modulus was developed based on the same
test matrix as mentioned in Table 1 [33].
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This algorithm as shown in Figure 5 is followed by the code to predict the fracture
strain. There are three different models named Wish FO, Wish FC, and Wish FS. As the
names says, these models provide the values of the fracture strain or any fitting parameter
for the mathematical functions at an arbitrary temperature, fiber orientation or fiber content.
From model Wish FS, the value of the fracture strain is predicted for different temperatures,
whereas from Wish FO, the fracture strain is predicted for different fiber orientations.
Similarly, Wish FC predicts the value of the fracture strain for different fiber contents.
The workflow or procedure to predict the values from these models is described in the
next paragraph.

Wish FS creates a normalized curve of the storage modulus with respect to temper-
ature. Experimental fracture strain values for −20 ◦C and 80 ◦C are projected on this
normalized curve. Hence, the normalized value for fracture strain at any temperature can
be calculated by projecting on this normalized curve. The experimental fracture strain of
room temperature has been excluded. Room temperature is in the range of 17 to 27 ◦C.
The exact temperature was not recorded. The glass transition temperature for PA46 lies in
this range. On the other hand, the storage modulus model is sensitive to temperature [33].
The more accurate the temperature values, the more accurate the prediction of the fracture
strain. The experimental fracture strain of any two values of the fiber content or fiber
orientation in the case of Wish FO will be projected on the normalized curve. Now the
normalized value of fracture strain at any arbitrary fiber orientation or content can be
calculated by mapping back the normalized value of the storage modulus at that particular
fiber orientation or content.

The same algorithm will be run to calculate the fitting parameters for the mathematical
functions. The algorithm in Figure 5 will again execute replacing the fracture strain with the
required fitting parameter. For the 4P model with four independent variables, the algorithm
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will be executed separately for all fitting parameters of the mathematical functions for each
iteration. Repetition and a combination of executing these three models (Wish FS, Wish FC,
and Wish FO) can predict the fracture strain and fitting parameters at any arbitrary fiber
orientation, fiber content, temperature, and thickness.

3. Comparison of Analytical Models with Experimental Data

Equation (5) is used to predict the stress–strain curve. First, strain is taken as an
independent variable and the curve is predicted with the help of curve fitting by the least
square method. The standard error of regression is calculated. This model is called the
1P model. Later, all other additional independent variables are inserted with the help of
the algorithm mentioned in Figure 5. This model is called the 4P model. The value of the
fracture strain will instruct the iteration code of the 4P model to stop iterating the values
of stress at a certain strain value i.e., fracture strain. Apart from the fracture strain, the
fitting parameters of all mathematical functions for any arbitrary material condition are
also required. The same algorithm mentioned in Figure 5 is used to predict these values
as well.

3.1. 1P Model with One Independent Variable

The 1P model predicts the stress–strain curve directly by fitting to experimental data.
The fracture strain value of each model curve is taken from experimental data. Hence,
the standard error of regression is quite low as shown in Figure 6. The standard error
of regression of the model curves (red) is less than 2% of the stress range. To predict the
stress–strain curve for any temperature between −20 ◦C and 80 ◦C, the 4P model is used as
described in the next section.
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3.2. 4P Model with Four Independent Variables

The fracture strain and other fitting parameters of mathematical functions are predicted
based on the procedure and concept described in the algorithm mentioned in Figure 5.
Some of the parameters are predicted by the storage modulus model [33], for example,
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the stiffness of the material. The stiffness of PA46GF varies with temperature. Hence, the
storage modulus model creates variation in the stiffness according to the viscous behavior.

Figure 7 shows verification of the 4P model with experimental data. Here, green
curves are experimental stress strain curves whereas red curves are the 1P model, and
colorful dotted lines are the 4P model. It shows that there is a cluster of curves near −20 ◦C
and 80 ◦C. This verifies that the stress–strain model is working according to the viscous
behavior of the material. For 50% RH conditioned PA46, the glass transition region lies
between 15◦ and 40 ◦C. The variation in the stiffness below and above the glass transition
temperature is less compared to the glass-transition temperature region. Therefore, the
stress curves at temperatures ranging from 10 to 40 ◦C are uniformly spread out. Hence,
incorporating the storage modulus model to predict the E modulus is a very important part
of this analytical model.
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Figure 7. 4P stress–strain model, which provides the stress–strain graphs at any arbitrary fiber
content, fiber orientation, and temperature σ = f (ε, temp, f c, f o). Results for PA46GF30, 3-mm-
thickness, and 90◦ orientation are displayed as an example. Green curves are experimental curves,
red lines are model data with the 1P model, and dotted colorful data are 4P model with four
independent parameters.

In the glass-transition region, the stress values are highly sensitive to the temperature
as Young’s modulus varies strongly with temperature. Room temperature lies in this region.
However, the exact temperature of the laboratory was not measured. Hence, the standard
error of regression of the 4P model at room temperature, which is assumed to be 25 ◦C,
shows abnormally high values. The error has been accumulated from the 1P model to the
4P model due to four occurrences of the prediction of the fitting parameters and fracture
strain. Some non-physical behavior of the curves is noticed at the higher temperature. For
example, at the junction of two mathematical functions, there is a sudden drop of the curve,
which is mathematically correct but physically incorrect with respect to the stress behavior
of the material. Excessive bending of the stress–strain curve could be mathematically true
based on the equations used but physically incorrect with respect to the material behavior.
To reduce such non-physical behavior of the mathematical functions, some check functions
were inserted in the 4P model. However, the other stress–strain curves for −20 ◦C and 80
◦C show standard error of regression less than 2% of the stress ranges. The same model has
been verified with experimental data for 2-mm-thick specimens and with the experimental
data for dry specimens (room temperature condition).
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4. Discussion and Conclusions

The paper proposed an analytical model that predicts the stress–strain curve for
injection-molded SFRP considering five extra independent variables, namely, the fiber
content, fiber orientation, temperature, humidity, and thickness of the specimen. The
empirical formulas accommodate synergetic effects of each parameter by incorporating
fiber properties with the help of µCT analysis and polymer properties with the help of
DMTA analysis. This is the reason behind achieving an accuracy of 2% of the stress range
in the prediction of mechanical properties. Mechanical characterization shows that the
mechanical properties of the SFRP are strongly dependent on viscous behavior of the
polymer. At temperatures higher than glass temperature, the polymer is in a rubbery phase.
Hence, SFRP shows ductile behavior in the stress–strain curve whereas at temperatures
lower than the glass transition temperature, it shows brittle behavior. In the glass transition
region, the storage modulus varies almost linearly, and the stress–strain curves are equally
spread out.

This model is developed for injection-molded short glass fiber-reinforced polyamide
PA46. The following assumptions are considered:

• The stiffness of the material is predicted through the storage modulus. The frequency
used for DMTA analysis is 10 Hz. It is assumed that the DMTA test at this frequency
can be similar to the quasi-static tensile test.

• The variation of the stiffness of the material with respect to fiber orientation is assumed
to be linear due to a lack of experimental points.

• It is assumed that the fracture strain and fitting parameters of all mathematical func-
tions follow the same storage modulus curve from DMTA [33].

Further research can be done to determine the relationship of the frequency of the
DMTA test to the tensile test. In this way, another model can also be designed to predict the
fatigue behavior of SFRP. It would be interesting to develop a similar model for continuous
fiber-reinforced composites and other matrices. The approach of the model will remain
the same if the matrix material changes except for some modifications in the mathematical
functions. Similarly, an analytical model for other loading conditions can also be devel-
oped, for example, compression or shear loading. Since this model has thickness as an
independent variable, layer-wise mechanical properties for injection-molded specimens
can also be extracted [6].

In engineering design, the stiffness, strength, yield strength, and ultimate strain are
more important than the fracture strain. In most of the cases, a component is designed until
the yield strain of the material with a factor of safety. Hence, this model provides these
values with high accuracy, which is suitable for component development. This model can
be inserted in FEA. In-situ material data provided from this analytical model according to
the change in the testing environment can be mapped in each finite element. This will help
the simulation engineer to design economical and reliable SFRP parts.
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