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Plates with Variable Thickness Using the Spline Method
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Abstract: The present study adds to the knowledge of the free vibration of antisymmetric angle-ply
annular circular plates with variable thickness for simply supported boundary conditions. The
differential equations in terms of displacement and rotational functions are approximated using cubic
spline approximation. A generalized eigenvalue problem is obtained and solved numerically for an
eigenfrequency parameter and an associated eigenvector of spline coefficients. The vibration of the
annular circular plates is examined for circumferential node number, radii ratio, different thickness
variations, number of layers, stacking sequences and lamination materials.

Keywords: free vibration; antisymmetric; shear deformation; spline approximation; eigenfrequency
parameter

1. Introduction

Many engineering structures consist of composite annular circular plates of variable
thickness. The distinguishing features of variable thickness plates are to obtain desired
frequency and to reduce weight, size and cost of the structure. The required properties
of the structure can be attained by selecting the best aspect of the constituent layers in
terms of choice of materials, number of layups, thickness variation of each layer and
boundary conditions.

Most of the researchers worked on functionally graded annular plates [1–6]. Whereas
Ref. [7] studied the free and forced vibration of annular plates made of carbon fiber-carbon
nanotube-polymer hybrid composites, Ref. [8] investigated the free vibration of an annular
mirror for the optical aberration representation. A number of methods were used for
analyzing vibration of annular plates; among them, the Ritz method was used by [9],
the Fourier series by [10], the Chebyshev collocation technique by [11], the Jacobi–Ritz
method by [12] and Carrera’s unified formulation by [13]. The FEM method was used to
study the free and static vibration of FGM plates by [14]. However, the present research
uses spline approximation to analyze composite plates of varying thickness with each
layer consisting of different material. Cross-ply laminates were studied by [15]. Higher-
order shear deformation theories with a unified model were studied for composite plates
by [16]. In Ref. [17], the free vibration of eccentric annular plates was analyzed. In Ref. [18],
annular plates coupled with fluids were investigated. The vibration of annular sector
plates was examined in [19]. Some researchers, such as those in [20], used a B-spline to
analyze rectangular plates using classical thin plate theory, whereas the current research
uses spline approximation using first-order shear deformation theory and composite plates
having variable thickness were used. Moreover, Ref. [21] used spline approximation to
investigate nonhomogeneous circular plates of quadratic thickness, but, in this paper,
composite annular circular plates of linear, exponential and sinusoidal thickness variations
were considered. Ref. [22] used spline approximation to analyze rectangular orthotropic
plates of variable thickness using classical and refined theories, whereas this research uses
first-order shear deformation theory to examine the vibration of antisymmetric angle-ply
annular circular plates of varying thickness using first order shear deformation theory.
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The novelty of the current research is that antisymmetric angle-ply plates of linear,
exponential and sinusoidal thickness variations have not been used by any of above-
mentioned researchers to analyze free vibration of annular circular plates. Moreover, each
layer being of variable thickness and consisting of different material is also a novelty of the
current research. The displacement and rotational functions are approximated using the
cubic spline method. The problem is solved using the eigen solution technique to obtain
the frequency parameters. Obtained results are presented by graphs and tables.

2. Formulation of the Problem

Consider a composite laminated annular circular plate with an arbitrary number of
layers, as shown in Figure 1. Consider ra = a is the inner radius and rb = b is the outer
radius of the annular circular plate and ` = b− a is the width of the annular circular plate.
The curvilinear coordinate system (r, θ, z) is fixed at its reference surface, which is taken to
be its middle surface.
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Figure 1. Geometry of annular circular plate.

According to [23], the displacement components are assumed to be

u(r, θ, z, t) = u0(r, θ, t) + z ψr(r, θ, t)
v(r, θ, z, t) = v0(r, θ, t) + z ψθ(r, θ, t)

w(r, θ, z, t) = w0(r, θ, t)
(1)

The equations of stress-resultants and displacements are of the form

Nr
Nθ

Nrθ

Mr
Mθ

Mrθ

 =



A11 A12 A16 0 0 0
A12 A22 A26 0 0 0
A16 A26 A66 0 0 0
0 0 0 D11 D12 D16
0 0 0 D12 D22 D26
0 0 0 D16 D26 D66





εr
εθ

γrθ

κr
κθ

κrθ


(

Qθ

Qr

)
= K

(
A44 A45
A45 A55

)(
γθz
γrz

)
(2)
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where

εr =
∂u0
∂r + z ∂ψr

∂r , εθ = 1
r

∂v0
∂θ + u0

r + z
(

1
r

∂ψθ
∂θ + ψr

r

)
,

γrθ = 1
r

∂u0
∂θ + ∂v0

∂r −
v0
r + z

(
1
r

∂ψr
∂θ + ∂ψθ

∂r − ψθ
r

)
,

κr = ∂ψr
∂r , κθ = 1

r
∂ψθ
∂θ + ψr

r , κrθ = ∂ψθ
∂r + 1

r
∂ψr
∂θ −

ψθ
r ,

γrz = ψr + ∂w
∂r and γθz = ψθ +

1
r

∂w
∂θ

(3)

The thickness variation of the kth layer of the plate is assumed in the form which can
be seen in Figure 2:

hk(r) = h0k g(r) (4)

where g(r) = 1 + C`

( r−ra
`

)
+ Ce exp

( r−ra
`

)
+ Cs sin

(
π
( r−ra

`

))
and h0k is a constant thick-

ness of the kth layer. The thickness of the plate becomes uniform when g(r) = 1.
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∂
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Figure 2. Plate of variable thickness.

Since the thickness is assumed to be varying along the radial direction, one can define
the elastic coefficients Aij, Bij and Dij (extensional and bending-extensional coupling and
bending stiffness), corresponding to layers of uniform thickness with superscript ‘c’, by

Aij = Ac
ij g(r), Bij = Bc

ij g(r), Dij = Dc
ij g(r) (5)

Ac
ij = ∑

k
Q(k)

ij (zk − zk−1), Bc
ij =

1
2∑

k
Q(k)

ij (z2
k − z2

k−1),D
c
ij =

1
3∑

k
Q(k)

ij (z3
k − z3

k−1) for i, j = 1, 2, 6 (6)

and
A∗ij = K∑

k
Q(k)

ij (zk − zk−1) for i, j = 4, 5 (7)

where K is the shear correction coefficient and zk−1 and zk are the boundaries of the
k-th layer. The value of K for a general laminate depends on lamina properties and
lamination scheme.

The displacement components u0, v0 and w and shear rotations ψr and ψθ are assumed
in the form

u0(r, θ, t) = U(r) enθeiωt,
v0(r, θ, t) = V(r) enθ eiωt,
w(r, θ, t) = W(r) enθ eiωt,
ψr(r, θ, t) = Ψr(r) enθ eiωt,
ψθ(r, θ, t) = Ψθ(r) enθ eiωt,

(8)

where r and θ are polar coordinates which describe the radial and circumferential direc-
tion, ω is the angular frequency of vibration, t is the time and n is the circumferential
node number.
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Substituting Equation (8) into the equilibrium equation and replacing the coefficients
A16, A26, A45, B11, B12, B22, B66, D16 and D26 identically with zero for antisymmetric
angle-ply laminates, the resulting equation becomes, in the matrix form,

L11 L12 L13 L14 L15
L21 L22 L23 L24 L25
L31 L32 L33 L34 L35
L41 L42 L43 L44 L45
L51 L52 L53 L54 L55




U
V
W
ψR
ψΘ

 =


0
0
0
0
0

 (9)

where

L11 = A11g
d2

dr2 + A11g′
d
dr

++A11g
1
r

d
dr

+ A12g′
1
r
− A22g

1
r2 + A66g

n2

r2 + I1ω2

L12 = A12g
n
r

d
dr

+ A66g
n
r

d
dr

+ A12g′
n
r
− A22g

n
r2 − A66g

n
r2 , L13 = 0

L14 = 2B16g
n
r

d
dr

+ B16g′
n
r

L15 = B16g
d2

dr2 + B16g′
d
dr
− B26g

1
r

d
dr

+ B26g
1
r2 + B26g

n2

r2 − B16g′
1
r

L21 = A12g
n
r

d
dr

+ A66g
n
r

d
dr

+ A22g
n
r2 + A66g′

n
r
+ A66g

n
r2

L22 = A66g
d2

dr2 + A66g′
d
dr

+ A66g
1
r

d
dr

+ A22g
n2

r2 − A66g′
1
r
− A66g

1
r2 + I1ω2

L23 = 0

L24 = B16g
d2

dr2 + B16g′
d
dr

+ 2B16g
1
r

d
dr

+ B26g
1
r

d
dr

+ B26g′
1
r
+ B26g

1
r2 + B26g

n2

r2

L25 = 2B26g
n
r

d
dr

+ B26g′
n
r

, L31 = 0, L32 = 0

L33 = KA55g
d2

dr2 + KA55g′
d
dr

+ KA55g
1
r

d
dr

+ KA44g
n2

r2 + I1ω2

L34 = KA55g
d
dr

+ KA55g′ + KA55g
1
r

, L35 = KA44g
n
r

, L41 = 2B16g
n
r

d
dr

+ B16g′
n
r

L42 = B16g
d2

dr2 − B26g
1
r

d
dr

+ B16g′
d
dr
− B16g′

1
r
+ B26g

1
r2 + B26g

n2

r2

L43 = −KA55g
d
dr

L44 = D11g
d2

dr2 + D11g′
d
dr

+ D11g
1
r

d
dr

+ D12g′
1
r
− D22g

1
r2 + D66g

n2

r2 − KA55g + I3ω2

L45 = D12g
n
r

d
dr

+ D66g
n
r

d
dr

+ D12g′
n
r
− D22g

n
r2 − D66g

n
r2

L51 = B16g
d2

dr2 + B16g′
d
dr

+ 2B16g
1
r

d
dr

+ B26g
1
r

d
dr

+ B26g′
1
r
+ B26g

1
r2 + B26g

n2

r2

L52 = B26g′
n
r
+ 2B26g

n
r

d
dr

, L53 = −KA44g
n
r

L54 = D66g n
r

d
dr + D12g n

r
d
dr + D66g′ nr + D66g n

r2 + D22g n
r2

L55 = D66g
d2

dr2 + D66g
1
r

d
dr

+ D66g′
d
dr
− KA44g− D66g′

1
r
− D66g

1
r2 + D22g

n2

r2 + I3ω2
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Introducing the nondimensional parameters, R = r−a
l , a ≤ r ≤ b and R ∈ [0, 1],

and λ = ω l
√

I1
A11

; a frequency parameter, β = a
b ; the radii ratio, γ = h

ra
; the ratios of

thickness to the radius of inner circle, δk =
hk
h , and the relative layer thickness of the k-th

layer. (10)
Here, hk is the thickness of the k-th layer, h is the total thickness of the plate, ra is the

radius of inner circular plate and A11 is a standard extensional rigidity coefficient.
After nondimensionalizing Equation (9), a new set of differential equations is obtained.

2.1. Thickness Variation

Case (i):
If Ce = Cs = 0, then the thickness variation becomes linear. In this case, it can easily

be shown that C` =
1
η − 1, where η is the taper ratio hk(0)/hk(1).

Case (ii):
If C` = Cs = 0, then the excess thickness over uniform thickness varies exponentially.
Case (iii):
If C` = Ce = 0, then the excess thickness varies sinusoidally.
It may be noted that the thickness of any layer at the end R = 0 is h0k for Cases (i) and

(iii) but is h0k(1 + Ce) for Case (ii).
The following range of values of the thickness coefficients is considered:

0.5 ≤ η ≤ 2.1,−0.2 ≤ Ce ≤ 0.2,−0.5 ≤ Cs ≤ 0.5

2.2. Method of Solution

The spline method is used because it uses a series of lower-order approximations rather
than global higher-order approximations, affording fast convergence and high accuracy.

The differential equations consist of second-order derivatives in U(R), V(R), W(R),
Ψr(R) and Ψθ (R). Therefore, these functions are approximated using cubic splines as:

U∗ (R) =
2
∑

i = 0
ai Ri +

N−1
∑

j = 0
bj ( R− Rj )

3 H ( R − Rj )

V∗ (R) =
2
∑

i = 0
ci Ri +

N−1
∑

j = 0
dj ( R− Rj )

3 H ( R − Rj )

W∗ (R) =
2
∑

i = 0
ei Ri +

N−1
∑

j = 0
f j ( R− Rj )

3 H ( R − Rj )

Ψr
∗ (R) =

2
∑

i = 0
gi Ri +

N−1
∑

j = 0
pj ( R− Rj )

3 H ( R − Rj )

Ψθ
∗(R) =

2
∑

i = 0
li Ri +

N−1
∑

j = 0
qj ( R− Rj )

3 H ( R − Rj )

(10)

in which H ( R − Rj ) is the Heaviside function and ai, ci, ei, gi, li, bj, dj, f j, pj and qj are
unknown coefficients (i.e., spline coefficients).

Let us assume that the interval R ε [ 0 , 1 ] is divided into N equal subintervals. The
knots are at R = Rs = s

N ; s = 0 , 1 , . . . . , N. We have the system of ( 5 N + 5 )
homogeneous equations in ( 5 N + 15 ) spline coefficients.

The simply supported (S-S) boundary condition is considered.
Each of these cases gives 10 more equations, thus making a total of (5N + 15) equations,

in the same number of unknowns. The resulting field and boundary condition equations
may be written in the form

[ M ] { q } = λ2 [ P ] { q } (11)
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where [ M ] and [ P ] are square matrices and { q } is a column matrix. This is treated as a
generalized eigenvalue problem in the eigenparameter λ and the eigenvector { q }, whose
elements are the spline coefficients.

3. Results and Discussion

In this work, free vibration of annular circular plates of variable thickness with anti-
symmetric angle-ply lamination schemes with different material combinations is studied.
Materials used in the analysis are Kevlar-49/epoxy (KGE), graphite/epoxy (AS4/3501-6)
(AGE) and E-glass/epoxy (EGE). The spline method is used to approximate the displace-
ment functions for analyzing the vibration behavior of the layered annular circular plates
for S-S boundary conditions. In all the analysis, circumferential node number n = 2 is
selected because frequency is lowest at this point, which shows that structure is least rigid
and most flexible at this point.

Validation

Table 1 shows the comparison of a reduced case of current results with [24–26] for
simply supported annular circular plates, which is the validation of the present results with
the available results.
Table 1. Comparison of natural frequency parameter (rad/s) of present study λ = ω`

√
I0

A11
with

[24–26] of simply supported annular circular plates β = 1/6 and γ = 1/60.

Circumferential
Node Number

n
Modes Present Hashemi et al.

(2010a) Exact Sol.
Duan et al.

(2005) FSDT
Liu et al. (2008)

FEM

1 1 1583 1584.65 1583 1551
2 5436 5437.61 5433 5328
3 11,494 11,495.1 11,478 11,283

2 1 2307 2308.11 2306 2260
2 6474 6475.13 6468 6348
3 12,652 12,653.2 12,632 12,428

Tables 2–4 show the influence of taper ratio η, exponential coefficient of variation
Ce and sinusoidal coefficient of variation Cs on the fundamental frequency parameter λ.
Two- and four-layered annular circular plates are considered with circumferential node
number n = 2, ratio of thickness to radius of inner circle γ = 0.05 and radii ratio β = 0.5.
It can be seen that the value of the frequency parameter increases with the increase in
number of layers. Frequency increases as number of layers increases, showing that the
structure’s rigidity increases and flexibility decreases. Similarly, the frequency parameter
value increases with the increase in thickness coefficients, evidently showing that the
rigidity of the structure increases and flexibility decreases.

Table 2. Relation of linear thickness variation η and the fundamental frequency parameter λ. n = 2,
γ = 0.05 and β = 0.5.

η

λ

450/−300/300/−450

(KGE/EGE/EGE/KGE)
450/−600/600/−450

(KGE/EGE/EGE/KGE)
300/−300

(EGE/EGE)

0.5 0.71949 0.643041 0.402384
0.7 0.728127 0.672854 0.421916
0.9 0.734973 0.690198 0.447392
1.1 0.739494 0.700368 0.464501
1.3 0.741874 0.706052 0.476395
1.5 0.74287 0.709517 0.484848
1.7 0.742917 0.711673 0.490948
1.9 0.742298 0.711698 0.495378
2.1 0.741207 0.710538 0.498588
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Table 3. Relation of exponential thickness variation Ce and the fundamental frequency parameter λ.
n = 2, γ = 0.05 and β = 0.5.

Ce

λ

450/−300/300/−450

(KGE/EGE/EGE/KGE)
450/−600/600/−450

(KGE/EGE/EGE/KGE)
300/−300

(EGE/EGE)

−0.2 0.745785 0.713475 0.490829
−0.1 0.742443 0.70506 0.472436

0 0.737531 0.695956 0.456753
0.1 0.732985 0.687592 0.44392
0.2 0.729205 0.68026 0.433387

Table 4. Relation of sinusoidal thickness variation Cs and the fundamental frequency parameter λ.
n = 2, γ = 0.05 and β = 0.5.

Cs

λ

450/−300/300/−450

(KGE/EGE/EGE/KGE)
450/−600/600/−450

(KGE/EGE/EGE/KGE)
300/−300

(EGE/EGE)

−0.5 0.673905 0.637247 0.43449
−0.3 0.711461 0.677643 0.452291
−0.1 0.731285 0.692456 0.457029
0.1 0.74213 0.696611 0.455322
0.3 0.748382 0.693315 0.45001
0.5 0.751603 0.685991 0.442494

However, Table 5 depicts the comparison of four-layered annular circular plates,
concluding that different lamination schemes and material combinations definitely affect
the frequency of plates. It is evident that ply orientation 300/− 300/300/− 300 shows
the least frequency, proving that the structure is most flexible using this ply orientation,
and 450/− 450/450/− 450 shows the maximum frequency, which proves that the struc-
ture is least flexible using this ply orientation. Table 6 shows the elastic properties of
materials used.

Table 5. Relation of linear thickness variation η and the fundamental frequency parameter λ. n = 2,
γ = 0.05 and β = 0.5.

η

λ

450/−300/300/−450

(KGE/EGE/EGE/KGE)
300/−300/300/−300

(AGE/EGE/EGE/AGE)
450/−600/600/−450

(KGE/EGE/EGE/KGE)
450/−450/450/−450

(KGE/EGE/EGE/KGE)

0.5 0.71949 0.487129 0.643041 0.84425
0.7 0.728127 0.503465 0.672854 0.848355
0.9 0.734973 0.51629 0.690198 0.854028
1.1 0.739494 0.525374 0.700368 0.855654
1.3 0.741874 0.531657 0.706052 0.855741
1.5 0.74287 0.535933 0.709517 0.854683
1.7 0.742917 0.538766 0.711673 0.852878
1.9 0.742298 0.540549 0.711698 0.850596
2.1 0.741207 0.54156 0.710538 0.848079
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Table 6. Elastic properties of materials used.

Elastic
Property

Density×103

N−s2/m4

Young
Modulus

Ex×1010N/m2

Young
Modulus

Ey×1010N/m2

Shear
Modulus

Gxz×1010N/m2

Shear
Modulus

Gyz×1010N/m2

Shear
Modulus

Gxy×1010N/m2

Major
Poisson

Ratio, υxy

EGE 1440 5.52 86.19 2.07 1.72 2.07 0.34
AGE 2550 11.72 42.75 4.14 3.45 4.14 0.27
KGE 1770 9.65 144.8 4.14 3.45 4.14 0.30

Figure 3 shows the variation of the fundamental frequency parameter with respect to
the circumferential node number of two-layered annular circular plates for three thickness
variations Cs = 0.5, Ce = 0.2 and η = 1.5 under S-S boundary conditions. It can be seen that
at circumferential node number n = 2 frequency is lowest, which shows that the structure
is least rigid and most flexible at this point. As circumferential node number increases,
frequency value also increases, which shows that rigidity increases but flexibility decreases.
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Figure 3. The relation of fundamental frequency parameter and circumferential node number of
two-layered annular circular plates with ply orientation 300/ − 300 (KGE/KGE). β = 0.5 and
γ = 0.05.

Figure 4 narrates the angular frequency parameter ω with respect to radii ratio β for
two-layered annular circular plates with different materials. It can be seen that angular
frequency increases gradually from β = 0.1 to 0.5 but strictly increases afterwards. It
shows that with the increase in β, rigidity increases but flexibility decreases. Figure 5 shows
the trend of the angular frequency parameter and radii ratio of four-layered annular plates
after fixing thickness variations Ce = 0.2, Cs = 0.5 and η = 1.5. Moreover, a relationship
between the angular frequency parameter and the radii ratio of four-layered annular plates
after fixing thickness variation Ce = 0.2 can be seen in Figure 6. However, Figure 7 relates
the angular frequency parameter and the radii ratio of four-layered annular plates with
different lamination schemes and lamination materials, concluding that both of these factors
definitely affect the angular frequency parameter value. The first three mode shapes of
vibration of annular circular plates are presented in Figure 8a–c. The shape is not circular
because only a small portion of the plate is considered so that the mode shapes can be
visualized clearly. Normalization is conducted with respect to the maximum transverse
displacement W. As expected, the transverse displacements are most dominant.
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4. Conclusions

The present study investigates the free vibration of antisymmetric angle-ply annu-
lar circular plates having variable thickness under shear deformation theory for simply
supported boundary conditions. The vibration behavior of the annular plates is examined
for circumferential node number, radii ratio, thickness variations, number of layers and
stacking sequences. Frequency parameter value increases with the increase in all thickness
coefficients; radii ratio and number of layers evidently show that rigidity of the structure
increases and flexibility decreases. The relation between circumferential node number and
frequency parameter value shows that at circumferential node number n = 2 frequency
is lowest, which shows that the structure is least rigid and most flexible at this point. As
circumferential node number increases, frequency value also increases, which shows that
rigidity increases but the flexibility decreases. If the boundary conditions are altered to
clamped, free or any combination of these two, we can obtain different results, but they
will be closer to the current results. Hence, it is concluded that variation of the geometric
and material parameters affect the frequency of the considered annular circular plate.
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Nomenclature

EGE E-glass/epoxy
GE AS4/3501-6 graphite/epoxy
KE Kevlar-49/epoxy
S−S Both the ends are simply supported
Symbols
Aij Elastic coefficients representing the extensional rigidity
Ac

ij Variable thickness elastic coefficients representing the extensional rigidity of
uniform thickness

Bij Elastic coefficients representing the bending-stretching coupling rigidity
Bc

ij Variable thickness elastic coefficients representing the bending-stretching coupling
rigidity of uniform thickness

Ce, C`, Cs Exponential, linear and sinusoidal variation, respectively
Dij Elastic coefficients representing the bending rigidity
Dc

ij Variable thickness elastic coefficients representing the bending rigidity of uniform
thickness

H Side-to-thickness ratio
H(R− Rj) The Heaviside function
I1 Normal inertia coefficient
I3 Inertia coefficients
K Shear correction factor
L Length parameter
Lij, L∗ij Differential operator occurring in the equations of motion

Mr
Mθ

Mrθ

 Moment resultants in the respective direction of annular circular plate
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Nr
Nθ

Nrθ

 Stress resultants in the respective direction of annular circular plate

N Number of intervals of spline interpolation

Q(k)
ij

Elements of the stiffness matrix for the material of k-th layer

Q(k)
ij Elements of the transformed stiffness matrix for the material of k-th layer

Qrz
Qθz

}
Transverse shear resultants in the respective directions

R Radial distance coordinate
U, V, W Displacement functions in r, θ, z directions
U, V, W Nondimensionalized displacement functions in r, θ, z directions
Rs The equally spaced knots of spline interpolation
a, b Length and width of the inner radius and the outer radius

ai
ci
ei
gi
li

,

bj
dj
f j
pj
qj



Spline coefficients

h Total thickness
hk Thickness of the k-th layer
i, j, k General indices
` Width of annular circular plate
n Circumferential node number
r Radius of reference surface of plate at a general point
ra, rb The radius of the inner radius and the outer radius
u, v, w r, θ, z displacements
u0, v0 The in-plane displacements of the reference surface
z Normal coordinate of any point on the annular circular plate
zk Distance to the top of the k-th layer from the reference surface
β The radii ratio a/b
δk Relative layer thickness of the k-th layer

εx
εy
εθ

εr


Normal strain in the respective directions

γ Ratios of thickness to radius of inner circle
γrθ

γrz
γθz

 Shear strain in the respective directions

ω Angular frequency
ψr, ψθ Shear rotations of any point on the middle surface
Ψr, Ψθ Shear rotational functions
ΨR, ΨΘ Nondimensionalized shear rotations
ρ Mass density of the material

σr
σθ

}
Normal stress in the respective directions

τrθ

τθz
τrz

 Shear stress at a point on the reference surface

θ Ply orientation angle



J. Compos. Sci. 2022, 6, 70 13 of 13

References
1. Heshmati, M.; Jalali, S. Effect of radially graded porosity on the free vibration behavior of circular and annular sandwich plates.

Eur. J. Mech.-A Solids 2019, 74, 417–430. [CrossRef]
2. Yang, Y.; Kou, K.; Lam, C.C. In-Plane Free Vibration of Circular and Annular FG Disks. Int. J. Comput. Methods 2019, 16, 1840024.

[CrossRef]
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