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Abstract: Variable stiffness composite laminates can improve the structural performance of composite
structures by expanding the design space. This work explores the application of variable stiffness
laminated composite structures to maximize the fundamental frequency by optimizing the tow angle.
To this end, an optimization framework is developed to design the fiber angle for each layer based on
the maximization of the fundamental frequency. It is assumed that the design process includes the
manufacturing constraints encountered in the automated fiber placement process and a linear fiber
angle variation. The current study improves existing results by considering embedded gap defects
within the optimization framework. The plates are assumed symmetric, with clamped and simply
supported boundary conditions. The optimal results and a comparison between the non-steered and
steered plates with and without gaps are presented. Results show that, although gaps deteriorate
the structural performance, fiber steering can still lead to an increase in the fundamental frequency
depending on the plate’s geometry and boundary conditions.

Keywords: variable stiffness composite; variable angle tow; automated fiber placement; Defect Layer
Method; natural frequency; genetic algorithm optimization

1. Introduction

Nowadays, the use of composites materials is increasing in a wide range of sectors
such as the aerospace, automotive, naval and others. This is the main motivation to
develop innovative and cost effective composite manufacturing techniques which allow the
production of composite laminates meeting certain requirements in a more effective way.
In particular, the development of the Automated Fiber Placement (AFP) technique opens
the possibility of manufacturing Variable Stiffness Composite Laminates (VSCLs), which
allow the stiffness to vary spatially. VSCLs include, for instance, those made with variable
fiber spacing (VFS) and those in which the fibers are deposited following curvilinear paths,
denominated as variable-angle tow (VAT) laminates. They allow new design possibilities
by enlarging the design space when compared to conventional composite laminates. Hence,
several authors have been studying them with the objective of improving composite
laminates characteristics. For instance, the studies presented in [1–3] show the influence of
these kind of laminates in the buckling behaviour of laminated panels.

Although most studies for vibration analysis are performed on composite laminated
plates with constant stiffness, some authors also considered the use of VAT laminates.
Most of these studies aimed to study the influence of the curvature of the fibers on
the fundamental frequency achieved by a plate. Honda et al. [4] considered splines to
represent the fiber paths of curvilinear fibers. Honda et al. [5] developed a multi-objective
approach in order to maximize both fundamental frequencies and in-plane strengths of
VAT plates, while Pereira et al. [6] performed a multi-objective optimization considering
the fundamental frequency and the first mode specific damping capacity (SDC). Serhat
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et al. [7], also maximized the fundamental frequency of variable stiffness panels but
proposing a more efficient method to design variable stiffness composite panels using
lamination parameters. Although the steering radius was not directily constrained during
the optimization process, the design space is controlled to ensure a smooth changes in
the layer angles. The design methodology efficiency developed in [7] is improved by
Serhat et al. [8] study by combining the lamination parameters formulation with a spectral
Tchebychev modeling approach. In this study, the fundamental frequencies of the variable
stiffness designs were maximized for different boundary conditions and aspect ratios.
It was verified that optimal variable stiffness designs provide higher frequencies (up to
10%) when compared to constant stiffness ones. More recently, Farsadi et al. [9] included
plates with different aspect ratios, boundary conditions and skew angles. The fundamental
frequency was also studied and optimized together with other composite characteristics.

The most common manufacturing constraint considered when designing curvilinear
composite laminates is the maximum curvature constraint [10–14]. Akhavan and Ribeiro [10],
for example, considered this constraint in the study of the natural frequencies and mode
shapes of VAT with a linear curvilinear fiber path. They used a p-version finite element and
a Third-order Shear Deformation Theory (TSDT). It was verified that the use of curvilinear
fibers can be advantageous to adjust frequencies and mode shapes. Demir et al. [14]
developed a lamination parameter optimization algorithm using a penalty parameter to
enforce a maximum value for the fiber curvatures. The proposed methodology is applied to
design for the minimum compliance in-plane and out-of-plane problems. In a recent study,
Rashed and Demir [15] maximized the fundamental frequency of variable stiffness plates.
Manufacturing constraints were considered and the method employed uses lamination
parameters as the design variables. The optimum lamination parameters distribution found
is in good agreement with other studies present in the literature.

The previous studies mentioned assumed that the VAT laminated plate is ideal, which
means that the models used to obtain the natural frequencies and mode shapes did not
take into account the manufacturing process, in particular, the AFP and the respective
manufacturing induced imperfections. As a result of that, some models were developed
in order to take defects into consideration and better predict the structural behaviour of
VAT laminates. Blom [16] developed a methodology where each ply of the laminate is
modeled including gaps and overlaps generated by tow drops. Afterwards, a 2-D mesh
is generated on top of each ply and the centroids of all the elements in all the plies are
checked for the tow drop region. If it is the tow drop region considered as a gap, then at
that position resin properties are assigned to the respective element stack. In case of an
overlap, the thickness assigned to the element stack is twice the thickness. It is important
to emphasize that a tow drop defect is only identified if the respective element centroid is
located over it. In consequence, a very refined mesh is required to have a good precision
which is associated to a higher computational cost. A similar strategy was developed by
Fayazbakhsh [17,18]. However, each element properties are assigned in accordance with its
volume fraction of gaps and overlaps using micro-mechanics. In this way, it is not required
such a refined mesh and computational cost is saved. Several authors considered this
modeling methodology to include the effect of both gaps and overlaps [19–21]. Marouene
et al. [19] study considered this last methodology to model variable stiffness plates with
the goal of maximizing the in-plane stiffness and the buckling load. The numerical results
obtained were then validated with experimental studies and a good accordance between
them was found. Akbarzadeh et al. [20] study was focused on evaluating the impact that
AFP manufacturing defects, namely, gaps and overlaps, have on the laminate properties
of variable stiffness plates. Both static bending, buckling and free vibration have been
studied. It also examined the role of shear deformation on those plates. On the one hand,
for very thin plates, all equivalent single layer theories used provided similar results. On
the other hand, the results of moderately thick plates showed some discrepancies, especially
between those obtained using the Classical Laminate Theory (CLPT) and the Third Order
Shear Deformation Theory (TSDT). It was verified an increase of the buckling load and
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fundamental frequency when compared to the steered plate with no defects, if overlaps
were considered. When gaps were the plate manufacturing defect, a decrease in both
mentioned parameters was verified.

In addition to the studies presented in the previous paragraph, other novel methods
to include manufacturing defects were developed in [22,23]. Brooks and Martins [22]
treated tow paths as the streamlines of a unit-vector field. In the developed mathematical
formulation the gap/overlap formation is related with the divergence of a 2D vector field.
A positive divergence indicates a gap formation and a negative value the occurrence of an
overlap. Mishra et al. [23] explored the effect of gaps on the stiffness and buckling load of
variable stiffness panels. The developed methodology used to account the effect of gaps
showed to be significantly more efficient than the Defect Layer Method described in [17,18].

Other authors considered instead more detailed and comprehensive 3D analysis [24].
Marrouzé et al. [25], Heinecke et al. [26] and Willie et al. [27] approach models gaps
and overlaps in both laminate, lamina and micro structure level. Li et al. [28] developed
3D meshing tools to automatically generate ply by ply models with gaps and overlaps.
It automatically inserts intra and inter-ply cohesive elements in order to capture the
influence of splitting and delamination. As a result, out-of-plane waviness and ply thickness
variations are automatically modeled. These detailed 3D finite element models can capture
effects like load redistribution and stress localization. Therefore, these type of analysis
could be justifiable if higher levels of detail are necessary.

Regarding experimental studies, in Antunes et. al. study [29], which is the a continuation
of Rodrigues et al. study [30], experimental modal analysis were performed on a rectangular
plate considering various boundary conditions including one edge clamped and the
remaining edges free (CFFF), two opposite edges clamped and the other two free (CFCF)
and all the edges free (FFFF). Moreover, modal damping ratios were also identified in
addiction to both natural frequencies and mode shapes. In this article, the theoretical model
is based on two p-version type finite element models, one based on the Classical Plate
Theory (CPT) and another based on the First-order Shear Deformation Theory (FSDT).
Similar results were obtained using the two models, which can be justified by the use of a
very thin plate. The authors reported that the discrepancies found between the experimental
and numerical results were due to the occurrence of gaps and overlaps in the plate, which
the FEM model did not take into account.

In this work, an optimization framework is developed with the objective of designing
composite plates with curvilinear fibers for maximum fundamental frequency. Square and
rectangular plates under fully clamped and fully simply supported boundary conditions
are optimized using a Genetic Algorithm. The optimization is done first considering only
straight fiber and then using curvilinear fibers with the purpose of evaluating the difference
between the maximum frequencies obtained. The optimization of curvilinear fiber plates is
performed considering both the absence and different values of the maximum curvature
constraint of the AFP machine, thereby allowing to assess its effect on both maximum
frequency and optimal designs. Moreover, the optimization of curvilinear fiber plates is
performed considering the absence and the presence of embedded gap defects to evaluate
its effect on both maximum frequencies and optimal designs. Gap imperfections are taken
into consideration using the Defect Layer Method [17]. The authors consider that the
consideration of defects within the optimization framework is the principal contribution of
this work.

The remainder of this article is organized as follows: first, the variable stiffness plates
considered are described in Section 2. This Section also includes the methodology for
modeling the VATs and for including the effect of gaps in the FE model. The optimization
problem is formulated in Section 3. Section 4 presents the developed framework used
to solve the optimization problem. Section 5 discusses and analyses the results obtained.
Finally, Section 6 presents the main conclusions drawn of this work.
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2. Materials and Methods
2.1. Variable Angle Tow Laminates

In the AFP process, a band of fibers, denominated course, is composed by individual
units named tows. The courses are deposited following a reference fiber path which can be
curvilinear. Different curvilinear fiber paths have been studied by various authors. In this
work, the fiber path presented in the following section is the one considered to solve the
optimization problem.

2.1.1. Fiber Path Definition

The reference course fiber path considered was first introduced in [31] in 1993. In this
formulation, the fiber angle (θ), measured with respect to the x∗ axis, varies linearly along
the axis x∗. The respective fiber angle variation is presented in Equation (1). The fiber path
trajectory is presented in Equation (2) [32,33]. The variable T0, represents the value of θ in
the middle of the plate, while the variable T1 represents the value of θ when x∗ = ±a/2.
The variable φ represents the orientation of x* relative to the global axis x. This fiber path is
represented in Figure 1a.

In this work, φ is considered as zero. Thus, both axis x and x∗ coincide and T1
represents the fiber angle at both edges in x of a plate. The middle and edge fiber angles
are written as < T0, T1 >. As an example, the fiber path correspondent to < 60◦, 15◦ > is
presented in Figure 1b for a plate with length a in the x axis.

θ(x∗) = φ + (T1 − T0)2
|x∗|

a
+ T0 (1)

y∗(x∗) =



a
2(T1−T0)

[− ln(cos(T0))+

ln
(

cos
(

T0 +
2(T0−T1)

a x∗
))

],− a
2 ≤ x∗ ≤ 0

a
2(T0−T1)

[− ln(cos(T0))+

ln
(

cos
(

T0 +
2(T1−T0)

a x∗
))

], 0 ≤ x∗ ≤ a
2

(2)

(a) (b)

Figure 1. Reference fiber path: (a) Reference fiber path, with φ 6= 0◦; (b) Reference fiber path
< T0, T1 >=< 60◦, 15◦>, with φ = 0◦.

2.1.2. Induced Defects

During the deposition of the course, the AFP machine’s head is perpendicular to the
local fiber angle. Thus, each point along the AFP head has the same orientation as the one
corresponding to the reference path. Therefore, the points that form each tow of the course
can be calculated using Equation (3). In this equation, nt represents the number of tows in a
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course, tw is the tow width and i is the tow index which range increases by one from −nt/2
to nt/2. Moreover, the superscript re f is used to denote the points in the reference path.

x = xre f − i · tw sin
(

θre f
)

y = yre f + i · tw cos
(

θre f
) (3)

The fiber paths of the adjacent courses are obtained by moving the centerline fiber path
in the y direction with the shift distance, which leads to the formation of manufacturing
defects within the laminate. The shift distance (ds) considered is the minimum vertical
distance between the top and bottom boundaries of the reference course and it is calculated
as presented in Equation (4). The points of the shifted course (ys, xs) are obtained as
presented in Equation (5).

ds = min(
nttw

cos
(
θre f

) ) (4)

xs = xre f − i · tw sin
(

θre f
)

ys = yre f + i · tw cos
(

θre f
)
+ ds

(5)

The deposition of both reference and adjacent courses is presented in Figure 2a
considering a course with 8 tows. The reference course and its reference curve are
represented in black and green, respectively. The adjacent course and its reference curve
are represented in blue and red, respectively. In Figure 2a the intersection points between
the reference and adjacent course are also visible. These intersections lead to the formation
of defects which can be either gaps or overlaps depending on the way the tows are cut. If
the entire course is cut or restarted when there is an intersection with the adjacent course,
a large gap or overlap area is formed. So, in order to solve this problem and minimize
the defect area, the tow cut and restart capability of the AFP machine is used. It allows to
individually control each tow, to cut and restart its deposition and leads to a reduced defect
area. In this work, an one-sided cut strategy is employed, which means that the tows are
only cut on one side of each course. It is also used the zero percent coverage parameter in
the tow drop strategy, which implies that the cut is performed as soon as one edge of a tow
intersects the boundary of the adjacent course, also known as complete gap strategy or 0%
coverage parameter. The gap formation which results from this cut strategy is presented in
Figure 2b, where the gap set is represented in a gray colour.

(a) (b)

Figure 2. (a) Tow cut and restart positions; (b) Gap pattern between consecutive courses.
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The distance between two consecutive gap sets is the shift distance (Equation (4). So,
the gap set is translated vertically with the shift distance across a ply. The gap pattern over
an entire ply is represented in Figure 3a for a square plate, but considering that the AFP
machine deposits 32 tows, each one with a width of 3.175 mm. The gap distribution is
then intersected with the ply mesh in order to calculate the gap area fraction (Am) within
each element as represented in Figure 3b. Each element equivalent properties are then
calculated using a ‘modified’ rule of mixtures (Equations (6)–(10)). In these equations the
subscript c represents the non-defective composite and the subscript m the matrix or gaps.
The composite area fraction, Ac, and the gap area fraction, Am, are related by Am = 1−Ac.
It is important to note that both area fractions are equivalent to volume fractions because it
is assumed a constant thickness across the ply, with or without gaps.

E1 = AcE1c + AmEm (6)

E2 =
E2cEm

AmE2c + AcEm
(7)

G12 =
G12cGm

AmG12c + AcGm
(8)

G23 = AcG23c + AmGm (9)

ν12 = Acν12c + Amνm (10)

(a) (b)

Figure 3. (a) Gap distribution on a plate (b) Gap area fraction in each element.

2.1.3. Manufacturing Constraints

The maximum curvature constraint or inverse, minimum curvature radius, depends
on the AFP machine and limits the maximum value of curvature of the reference fiber path
of each course. Typical curvature constraints are presented in Table 1. This constraint limits
the design space by limiting the fiber angle distribution that each lamina possesses. This
constraint is dependent on the AFP machine and must be evaluated before the production
stage in order to ensure that the composite can be manufactured. For that reason, it is most
often used as an optimization constraint when VAT laminates are optimized to maximize
or minimize determined characteristics.
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Table 1. Curvature Constraint, adapted from [34].

Tow Typical Minimum Typical Maximum
Width Turning Radius Curvature

(mm) (mm) (m−1)

3.175 635 1.57
6.35 1778 0.56
12.7 8890 0.1125

The curvature equation was analytically obtained using the fiber reference path
presented in Equation (1) and also the definition of curvature of a function with a a single
variable presented in Equation (11).

K =

d2 f (x)
dx2

(1 + ( d f (x)
dx )2)3/2

(11)

f (x) was substituted in Equation (11) by y∗(x∗) of the reference fiber path (Equation (2))
treated here as y(x), because φ = 0. The first and second derivatives of y with respect to x
are calculated in the following equations:

dy
dx

= tan(θ) (12)

d2y
dx2 =

d tan θ

dx
=

1
cos2 θ

2(T1 − T0)

a
(13)

The trigonometric relation presented in Equation (14) is also considered:

1 + tan2 θ =
1

cos2 θ
(14)

After substituting Equations (12)–(14) in Equation (11), the curvature equation for the
reference fiber path considered is obtained (Equation (15)). This last equation was also
considered in references [10,22].

K = 2
T1 − T0

a
cos
(
(T1 − T0)2

|x∗|
a

+ T0

)
(15)

3. Optimization

The optimization problem that this work intends to solve is defined in Equation (16).
The goal is to maximize the fundamental frequency, treated here as f1, of a laminated plate.
It is assumed that the laminate is symmetric and that the total number of plies (Np) is equal
to eight. The problem is solved considering different cases where the vector of design
variables (x) depends on whether only rectilinear or curvilinear fibers (whose orientation
is presented in Equation (1) are considered. The cases that only consider rectilinear fibers
are treated as non-steered cases and the cases that allow curvilinear fibers are treated as
steered cases. In the cases where only rectilinear fibers are considered (T0 = T1), the design
variables correspond to the orientation of each layer, T0 (Equations (17) and (18)) and,
therefore, the number of design variables is four (one per ply for a half laminate). In the
cases where steered fibers are considered, the design variables correspond to the angles T0
and T1 of each layer (Equations (17) and (18)). Consequently, there is a total of eight design
variables (two per ply for a half laminate). Each design variable is allowed to continuously
vary between −90◦ and 90◦, except when gaps were considered. In those cases the domain
of design variables is allowed to vary between −89◦ and 89◦, due to singularities of the
Matlab subroutine used. In some of the steered cases, the maximum curvature constraint,
displayed in Equation (15), is imposed in order to guarantee that the laminate can be
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manufactured using an AFP machine. Thus, in some steered cases the curvature of each
ply is constrained by the maximum value of curvature allowed (Kmax). It is not necessary
to impose the maximum curvature constraint in the non steered cases, because the fibers
are rectilinear and therefore the curvature (K) is always zero. Thus, the optimization of the
non-steered cases is an unconstrained problem. The boundary conditions considered are
the fully clamped and fully simply supported boundary conditions.

maximize f1(x)

by varying x ∈ Rn

subject to Kn(x) ≤ Kmax, if steered

n = 1, 2, . . . . . . , Np

(16)

given x = [x(1) . . . x(i) . . . x(Np)]T

such that − 90◦ < x(i) < 90◦
(17)

where x(i) =

{
[T(i)

0 ], if non-steered

[T(i)
0 , T(i)

1 ], if steered
(18)

The notation used to distinguish the different cases is orientation distribution—
boundary condition—unconstrained/constrained. The orientation distribution notation
can be NS (non-steered), if only non-steered plies are considered or LS (linearly steered), if
the fiber path orientation varies linearly across x∗ (Equation (1)). The boundary conditions
fully clamped (CCCC) and fully simply suported (SSSS) are treated here as C and S,
respectively. The unconstrained and constrained cases are denominated UN or CON,
respectively. In the constrained cases, it is considered a maximum curvature constraint
(Kmax) with two different values: 1.57 m−1 [16], treated here as constraint A, and 3.28 m−1

[32], denominated here as constraint B. For instance, LS-C-CON-A is a plate with a linear
fiber angle variation, fully clamped and with a maximum curvature constraint of 1.57 m−1.

The plates considered are symmetric with a total of eight plies, each one with a
thickness of 0.159 mm. The material properties considered are displayed in Table 2. The
length in the x∗ axis, a, is kept constant and equal to 0.5 m throughout all the plates. A
square plate and two rectangular plates with aspect ratios (a/b) equal to 0.5 and 2.0 are
considered.

Table 2. Carbon epoxy Cytec® G40-800/5276-1 and resin properties [17].

Property E1 [GPa] E2 [GPa] G12 [GPa] ν12 ρ [kg/m3]

G40-800/5276-1 143 9.1 4.8 0.3 1650

resin 3.7 3.7 1.4 0.3 1310

4. Implementation

The developed framework can be divided into two main components: the Matlab
and the Finite Element Model (Python/ABAQUS) environments as it is represented in
Figure 4. The optimization process starts in the Matlab where the optimizer, Matlab’s
built-in genetic algorithm, is implemented and where each generation’s population is
created. After that, the population information is passed to a Python script where the
geometry of the plate, property assignment, boundary and loading conditions are defined
before running the structural analysis using ABAQUS. The input data generated depend if
the case considered only non-steered, steered without imperfections and steered plates with
imperfections. Following the structural analysis, its results are then again passed to the
Matlab environment where they are post-processed and the resulting fitness is evaluated by
the genetic algorithm optimizer. If there is convergence, the optimization stops, otherwise
another population is created and the optimization process continues in the next generation.
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Figure 4. Framework scheme.

4.1. Finite Element Model

The geometry creation, element property assignment as well as the structural analysis
is defined in Python scripts and performed by ABAQUS. The orientation of the fibers and
material properties can differ in each iteration and it is generated as the input data by
Matlab. In the non-steered cases all the elements of a ply have the same orientation, so the
orientation is defined layer by layer and therefore Matlab only passes each layer orientation
to the Python Script. In the steered cases, the element orientation in a ply is calculated in
accordance with Equation (1), where the fiber orientation varies linearly along the x∗. As a
consequence, the orientation can no longer be defined layer by layer and has to be defined
element by element in each layer which leads to an increase of computational cost. Matlab
generates each ply T0 and T1 for half laminate (due to its symmetry) which are read by
the Python script. Then, each element orientation in a ply is assigned by substituting in
Equation (1) each element centroid position in x∗ and its respective ply T0 and T1. If defects
are being considered in the steered case, each element property is dependent on its resin
percentage. So, not only the orientation is defined element by element in each layer, but
also the material properties. For that reason, the steered cases considering defects are those
that require a higher computational cost.

It is chosen a mesh with a total of 2500, 5000, 1250, FSDT based shell S4R mesh
elements [35] for the square plates and plates with a/b = 0.5 and a/b = 2.0, respectively.
This choice was made after a mesh convergence study with the objective of simultaneously
assuring a good compromise between the model convergence and the computational cost
necessary to run a structural analysis.

4.2. Matlab Environment

The main script starts by generating a population. The problem is constrained and
the generated population should satisfy the optimization constraints which are defined
in a different script. After this, each individual is checked by a script that saves the
optimization history. That history has saved all the individuals already analysed and their
respective fitness evaluation. So, in case a certain individual has already been evaluated,
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then there is no need to run the structural analysis and this step can be skipped. This saves
computational time during the optimization process. If the individual has not yet been
evaluated, the respective input data needed to run the Python Script and ABAQUS CAE
is created.

The creation of input data depends on whether the plate considered is non-steered
or steered, and if defects are or are not being considered. It is important to note that only
symmetrical composites were considered in all cases, so the input data is only referred to
half of the laminate. When defects are considered, namely gaps, they are modeled in a
Matlab subroutine in the same way as in Fayabazh et al. [18]. Afterwards, each element
resin percentage is calculated and passed to the Python Script where the equivalent element
properties are calculated [18].

Following the input data creation the next steps that include the generation of the plate
geometry, property and fiber path assignment, boundary and loading conditions definition
and structural analysis are performed by the Python script which used ABAQUS to run the
structural analysis. After the structural analysis is finished, the output data, in this case, the
plate natural frequency, is passed to the Matlab script that defines the objective function in
order to evaluate its fitness. Finally, after all the individuals of a generation are evaluated,
the optimizer checks if the convergence has yet been achieved. If it meets the convergence
criterion, the optimization process is terminated. Otherwise, the optimizer generates the
next population using genetic operators such as selection, crossover and mutation and
the optimization process continues. A population size of 80, a function tolerance of 10−5,
a maximum number of stall generations equal to 25 and a constraint tolerance of 10−6

are considered. This choice was made after a study where these parameters were varied
with the objective of minimizing the computational cost necessary during the optimization
process while assuring a very high probability of finding the optimal solution.

4.3. Validation

The finite element model was verified by comparing its results with the linear natural
frequencies obtained in the study performed by Akhavan and Ribeiro [10] and by Akbarzadeh
et al. [20].

In the first study, imperfections are not considered and the fiberpath considered is also
the one presented in Equations (1) and (2). The respective plate dimensions and material
properties are presented in Table 3. The results, namely, the first three natural frequencies
are shown in Table 4, where a fully clamped boundary condition was considered. In the
same table it is possible to verify that the results obtained using the finite element model
developed in this work are in accordance with those obtained by Akhavan and Ribeiro [10].

The plate properties considered in the second study are presented in Table 5, where
square plates (a = b = 1 m) are considered. The comparison of results is presented in Table 6,

where the dimensionless fundamental frequency (ω̄ = ωa2

h

√
ρ

E2
) calculated using the

developed framework and obtained by Akbarzadeh et al. [20] are displayed and compared.
It is worth mentioning that the results were compared considering a defect free plate and
the same one with complete gap manufacturing defects. It is also important to note that
Akbarzadeh et al. [20] considered a plate with a constant curvature fiber path, which can
be the cause of the slight difference in the results displayed in Table 6.

Table 3. Characteristics of plate 1 [10].

Characteristic a [m] b [m] h [mm] E1 [GPa] E2 [GPa] G [GPa] ν12 ρ [kg/m3]

Value 1 1 0.01 173 7.2 3.76 0.29 1540
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Table 4. Natural frequencies [10].

Layup [◦] f1 [Hz] f2 [Hz] f3 [Hz]

[<0, 45>, <−45,−60>, <0, 45>] Ref. [10] 579.398 821.532 1225.79
Abaqus 579.790 822.538 1230.008

Difference (%) 0.07 0.12 0.34

[<30, 0>, <45, 90>, <30, 0>] Ref. [10] 667.177 862.919 1234.64
Abaqus 667.492 863.899 1239.187

Difference (%) 0.05 0.11 0.37

[<90, 45>, <60, 30>, <90, 45>] Ref. [10] 710.771 912.183 1335.49
Abaqus 710.597 912.246 1336.922

Difference (%) 0.02 0.01 0.11

Table 5. Prepreg and resin properties [20].

Property E1 (GPa) E2 (GPa) G12 (GPa) G13 (GPa) G23 (GPa) ν12 ρ kg/m3

Prepreg 143 9.1 4.82 4.9 4.9 0.3 1500

Resin 3.72 3.72 1.43 1.43 1.43 0.3 1100

Table 6. Dimensionless fundamental frequency—ω̄.

a/h Layup Manufacturing Defects
ω—Literature Results
FSDT (c f = 5/6) [20]

ω—Present
Results Difference (%)

200 [±<58|39>]4s Defect free 16.4566 16.2358 1.34
Complete gap 15.7916 15.7874 0.02

5. Results and Discussions

This section is dedicated to present and discuss the optimization results which aim to
maximize the fundamental frequency.

5.1. Non Steered Plates

This section has the goal of presenting the optimal results of plates that only consider
non steered plies. The first natural frequency is presented in Table 7 as well as the optimal
orientation of each ply (T∗0i). The computational cost is represented by the number of
generations (Gen.) required to perform the optimization.

Focusing first on the square plates, it is observable in Table 7 that the fully clamped
supported case achieves a higher first natural frequency (51.601 Hz) than the one obtained
in the simply supported case (31.223 Hz). It is also noticeable that the optimal orientation
of each ply is different in both cases. On the one hand, in the NS-C, the optimal orientation
alternates between approximately −90◦ and nearly 0◦. On the other hand, in the NS-S, the
exterior ply and its respective symmetric one have an orientation of approximately 45◦,
while all the interior ones have an orientation near−45◦. That again proves that the optimal
orientation of each ply is dependent on the imposed boundary conditions. Comparing
now both cases, but focusing on the last column of Table 7, it is possible to verify that both
required the same number of generations to perform the optimization.

The non steered rectangular optimal results are also presented in Table 7. When the
aspect ratio is equal to 0.5, the optimal orientations are near zero degrees for all plies and for
both boundary conditions. A similar behaviour is observed for an aspect ratio of 2, where
all plies have an orientation near 90◦ for both boundary conditions. So, for non steered plies,
these two cases are equivalent, because all plies are oriented parallel to the smaller side of
the plate for both boundary conditions considered. Regarding the computational cost, it is
visible that all the non steered cases have a similar number of function evaluations due to
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the fact that all of them have the same number of design variables. The small discrepancy
is explained by the randomness associated to the genetic algorithm used.

Table 7. Non Steered Results.

Design T∗
01 [◦] T∗

02 [◦] T∗
03 [◦] T∗

04 [◦] f∗1 [Hz] f∗2 [Hz] f∗3 [Hz] Gen.

a/b = 0.5 NS-C 0.0 0.0 −0.1 0.1 49.260 50.717 53.943 39
NS-S 1.6 −1.0 −0.9 −2.4 22.042 23.963 28.207 44

a/b = 1.0 NS-C −89.9 0.6 −89.5 0.5 51.601 92.924 119.100 55
NS-S 45.0 −45.0 −45.0 −45.0 31.223 70.371 73.737 55

a/b = 2.0 NS-C −90.0 89.9 89.9 −89.5 197.443 203.191 216.032 61
NS-S −89.9 89.9 −89.8 −89.5 88.275 95.840 112.720 43

5.2. Defect Free Steered Optimization Results

The optimal results for the ideal square steered plates are presented in Table 8
and shown in Figure 5. The optimization is performed considering unconstrained and
constrained cases with different maximum curvature constraints (Kmax = 1.57 m−1 (A)
and Kmax = 3.28 m−1 (B)) in order to assess the curvature effect on the final solution.
All these cases are optimized for fully clamped and fully simply supported boundary
conditions. Table 8 displays the optimal T0 and T1 for the first four plies (because the
composite laminate is symmetric) and the respective first three natural frequencies for the
cases considered. It is also visible the number of generations (Gen.) required to perform
the optimization.

The optimization results for a square plate considering the fully clamped boundary
condition are presented in columns four to six of Table 8. The unconstrained optimization
(no maximum curvature considered), the constrained case A (Kmax = 1.57 m−1) and the
constrained case B (Kmax = 3.28 m−1) are presented in the fourth, fifth and sixth columns,
respectively. An observation that can be made is that the unconstrained case (LS-C-UN)
is the one that achieves the highest first natural frequency (59.471 Hz) which represents
an increase of 15.25% with respect to the square NS-C case (Table 7). However, six plies of
this case have a maximum curvature (Kmax = 6.42 m−1 for ply 1 and 8, Kmax = 6.52 m−1

for ply 2 and 7, Kmax = 6.53 m−1 for ply 3 and 6) higher than the Kmax values considered
here. Consequently, this laminate can not be manufactured by an AFP machine. In spite
of that, the result of the unconstrained case is useful not only to show where the optimal
solution is, but also as, with the development of new manufacturing techniques that enable
to produce plates with higher fiber curvatures, it could become a feasible design in the
close future.

Focusing now in both constrained cases, LS-C-CON-A (Kmax = 1.57 m−1) and
LS-C-CON-B (Kmax = 3.28 m−1), Table 8 shows that LS-C-CON-B is the case with the
highest fist natural frequency (56.814 Hz) between the two. That constitutes an increase
of 10.10% with respect to the square NS-C case (Table 7), while the LS-C-CON-A increase
is only 4.58%. LS-C-CON-B is also the constrained case that allows a higher maximum
curvature, which, again, reinforces the influence of this parameter in the frequency obtained.
It is also worth noting that for both cases, Kmax is an active constraint for the first two
layers and their respective symmetric ones. Therefore, it can be argued that lowering
the maximum curvature allowed tends for the frequency to decrease. Regarding plies
four and five of LS-C-CON-B, their maximum curvature approaches zero similarly to the
unconstrained case. That is also the case for plies three and six in the LS-C-CON-A case.

The optimization results considering the fully simply supported boundary condition
case are presented in columns seven to nine of Table 8. The unconstrained optimization
(no maximum curvature considered), the constrained case A (Kmax = 1.57 m−1) and the
constrained case B (Kmax = 3.28 m−1) are presented in the seventh, eighth and ninth
columns, respectively. The unconstrained optimal solution (LS-S-UN) has a first natural
frequency equal to 31.229 Hz which is very similar to the one achieved by both constrained
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cases. The same phenomena is verified with respect to the second and third natural
frequencies. So, it is no surprise, that all the cases have similar T0 and T1 combinations
and, consequently, also similar maximum fiber curvatures (K∗max) in each ply. Regarding
the K∗max in each ply, it is important to note that its value in all cases and in all plies is near
zero, which implies that the maximum curvature is not an active constraint. It also means
that the unconstrained case is possible to manufacture using the AFP machine (because the
maximum curvature of all plies is lower than both Kmax considered here) and that the first
maximum natural frequency achieved is near the one obtained considering only rectilinear
fibers. This last affirmation can be proved by comparing the first natural frequency values
obtained in Table 8 with the one considering only non steered fibers in Table 7 for a fully
simply supported boundary condition. The respective increase of the first natural frequency
caused by the introduction of steered fibers is only 0.02%. So, it can be concluded that the
use of non steered fibers is almost as efficient as steered fibers in order to maximize the first
natural frequency of a square plate with a fully simply supported boundary condition.

(a) (b) (c) (d)

Figure 5. Square plate optimal reference fiber paths layouts. (a)LS-C-CON-A defect free;
(b) LS-S-CON-A defect free. (c) LS-C-CON-A with complete gap. (d) LS-S-CON-A with complete gap.

Focusing now on the plates with a/b = 0.5 (visible in Figure 6), columns two and three
of Table 8, it is observable that the orientation of each ply is near 0◦ for the fully clamped
boundary condition. Therefore, the optimal solution found is similar to the one obtained
considering only rectilinear fibers (Table 7). So, it appears that the use of curvilinear fibers
is not justifiable in this case. On the contrary, for the simply supported boundary condition,
there is a slight improvement of 1.49% on the optimal solution with the introduction of
curvilinear fibers. The influence of the curvature of the fibers is especially relevant because
the maximum curvature is an active constraint in the first two plies and their symmetric
ones (Kmax = 1.57 m−1). Regarding the plates with a/b = 2.0 (last two columns of Table 8),
the maximum curvature is also an active constraint for the fully simply supported boundary
condition. For this case, the orientation in the middle of all plies (T0) is near ±90◦, which
is also the optimal orientation of all plies for the correspondent non steered case (Table 7).
The orientation at the edge of the plies is clearly restricted by the maximum curvature
constraint, that, as aforementioned, is an active constraint in all plies. Analyzing now the
case with the fully clamped boundary condition, it is visible that all plies have almost zero
curvature and an orientation near ±90◦. So, the optimal solution obtained is very similar
to the one achieved in the non steered case.
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(a) (b) (c) (d)

Figure 6. Rectangular plate (a/b = 0.5) optimal reference fiber paths optimal layouts. (a) LS-C-CON-A
defect free; (b) LS-S-CON-A defect free; (c) LS-C-CON-A with complete gap; (d) LS-S-CON-A with
complete gap.

Table 8. Optimal defect free steered results.

a/b = 0.5 a/b = 1.0 a/b = 2.0

Design
LS-C LS-S LS-C LS-S LS-C LS-S
CON CON UN CON UN CON CON CON

A A - A B - A B A A

<T◦0 ,
T◦1 >

∗
1

<0.0,
0.3>

<0.1,
22.6>

<90.0,
−1.9>

<−74.9,
−43.7>

<−81.8,
−28.4>

<−42.8,
−45.9>

<42.3,
46.0>

<42.1,
46.0>

<89.9,
90.0>

<−90.0,
−52.9>

<T◦0 ,
T◦1 >

∗
2

<0.2,
0.1>

<−5.4,
−28.0>

<−89.7,
3.7>

<63.3,
35.7>

<74.9,
23.7>

<47.8,
44.0>

<−47.1,
−43.8>

<−48.0,
−43.7>

<−89.6,
−89.5>

<90.0,
52.9>

<T◦0 ,
T◦1 >

∗
3

<1.4,
−0.5>

<2.5,
−17.1>

<−90.0,
3.6>

<−90.0,
−89.2>

<87.1,
32.4>

<47.9,
43.9>

<−48.5,
−43.9>

<−49.1,
−43.8>

<89.2,
88.6>

<88.8,
52.2>

<T◦0 ,
T◦1 >

∗
4

<1.5,
2.7>

<20.4,
32.6>

<−5.4,
−5.9>

<80.9,
48.2>

<2.0,
2.6>

<42.7,
45.3>

<−49.9,
−43.0>

<−47.3,
−43.9>

<89.4,
88.3>

<90.0,
52.9>

f ∗1 (Hz) 49.258 22.370 59.471 53.962 56.814 31.229 31.229 31.229 197.436 90.146

f ∗2 (Hz) 50.715 26.603 95.181 85.656 90.604 70.595 70.601 70.648 203.181 105.580

f ∗3 (Hz) 53.943 33.571 129.029 126.412 129.466 73.518 73.463 73.445 216.032 138.403

Gen. 59 66 66 89 76 74 55 80 82 117

5.3. Defect Free Steered Results with Complete Gap

The previous section results do not consider the occurrence of any type of defect
inside the plate, which is a limitation of the model used. Therefore, the results would
be different from those shown. In order to better estimate that difference, the three first
natural frequencies of the previous constrained optimal layouts are calculated considering
the existence of gaps caused by the one sided cut with a zero percent coverage parameter
of an AFP machine. The results are shown in Table 9 for square and rectangular plates
considering the deposition of courses with 8, 16 and 32 tows. Each tow has a width of
3.175 mm. It is also visible the volumetric gap fraction (υG[%]) of each analysed case. As
previously mentioned, in a one sided cut strategy the tows of each course are only cut and
restarted on one side of the course, where the tow drop areas are formed. By fixing each
tow width, if the number of tows increases, so does the total course width. In consequence,
the number of course intersections inside the plate decreases, which leads to a reduction of
the tow drop area. So, as expected, it is clear that the volumetric gap fraction increases in
Table 9 with the decrease of the number of tows.

Another important aspect to notice in Table 9 is that all the first natural frequencies
decreased when compared with those obtained considering defect free steered plates
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(Table 8). It is also observable that with the increase of the volumetric gap fraction,
the fundamental frequency diminishes. This could imply that the existence of gaps is
responsible for the decrease of the first natural frequency. The stiffness reduction in the
areas where gaps are located can be the explanation for that frequencies’ decrease. It is also
worth mentioning that, in spite of that, the use of steered fibers in a square plate with a
fully clamped boundary condition considering 32 or 16 tows can still achieve a higher first
natural frequency when compared to a plate with non steered fibers (Table 7) for both Kmax.
However, if the boundary condition used is a fully simply supported one, the results show
that the opposite happens. The highest first natural frequency is instead achieved by the
plate that uses non steered fibers. This may be explained by the fact that when considering
ideally steered square plates, the obtained results were very similar to those obtained for
non steered plates (only 0.02% increase). When further adding the effect of gaps, the first
natural frequency decreases past the one obtained for non steered square plates. The same
argument could be used regarding the fully clamped rectangular plate cases, where the
achieved frequencies are lower than those obtained in the respective optimal non steered
plates as expected. In the rectangular plates simply supported cases, it is observed that with
the decrease of the number of tows, the gap area increases, and the fundamental frequency
decreases until it is no longer advantageous to have curvilinear fibers considering this
manufacturing process.

Table 9. Optimal defect free steered results with complete gaps introduced.

a/b = 1.0

32 tows 16 tows 8 tows
Design LS-C-CON LS-S-CON LS-C-CON LS-S-CON LS-C-CON LS-S-CON

A B A B A B A B A B A B

f ∗1 [Hz] 53.280 55.970 31.020 31.008 52.634 54.889 30.789 30.776 51.447 52.747 29.933 30.007

f ∗2 [Hz] 84.742 89.295 70.128 70.149 83.879 87.946 69.705 69.673 81.921 85.323 67.829 68.087

f ∗3 [Hz] 124.606 127.393 72.946 72.912 122.9 124.727 72.291 72.296 120.084 119.229 70.243 70.35

υG [%] 3.51 3.14 1.72 1.71 6.65 6.49 3.47 3.54 10.86 13.51 8.81 9.17

a/b = 0.5 a/b = 2.0

32 tows 16 tows 8 tows 32 tows 16 tows 8 tows
Design LS-C LS-S LS-C LS-S LS-C LS-S LS-C LS-S LS-C LS-S LS-C LS-S

CON-A CON-A

f ∗1 [Hz] 48.698 22.171 48.504 21.926 47.732 21.367 196.588 85.604 194.405 81.433 190.883 72.004

f ∗2 [Hz] 50.113 26.364 49.919 26.087 49.088 25.460 202.152 101.618 199.172 100.132 195.686 96.127

f ∗3 [Hz] 53.262 33.259 53.033 32.910 52.112 32.132 214.851 133.890 212.234 130.241 207.145 123.160

υG [%] 2.94 1.99 4.30 4.31 8.57 9.51 1.66 7.01 4.26 12.39 9.67 22.26

5.4. Complete Gap Steered Optimization Results

It was shown in the latest section that the occurrence of gaps leads to a decrease of the
fundamental frequency, which can be correlated to the reduction of the elastic properties in
the areas where gaps are located. It was also shown that the higher the gap percentage is, or
the lower the number of tows used, the lower the fundamental frequency is. However, the
optimization has not yet been performed considering the Defect Layer Method included
in the finite element model built, which is interesting in order to verify not only how the
defects affect the fundamental frequency, but also to check how they affect the optimal
laminated layout. With that in mind, the results presented in the following sections assume
that the AFP machine deposits 32 tows, each one with a width of 3.175 mm for both fully
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clamped and fully simply supported boundary conditions. Only constrained cases are
presented in order to assure that the plates could be manufactured.

The square plate results are displayed in Table 10 for both boundary conditions
and maximum curvature constraints values considered. As expected, all the optimal
fundamental frequencies achieved are lower than the respective optimal ones obtained
with the absence of defects. For instance, regarding the square plate cases with a fully
clamped boundary condition, fourth and fifth columns of Table 10, it is observable that
there is a decrease of approximately 0.83% and 2.65% in cases LS-C-CON-A (Figure 5) and
B, respectively, relative to the equivalent ones but without considering defects (Table 8).
Nonetheless, it is still verified an increase of 3.71% and 7.19%, respectively, with respect
to the NS-C solution (Table 7). Therefore, it can be argued that although a decrease of the
frequency is verified by the occurrence of gaps, it is still advantageous to use curvilinear
fibers to maximize the frequency for square plates with this boundary condition. It is also
important to note that the optimal layout for both cases differs from the one obtained when
no defects are considered. This evidence can be verified by comparing the optimal designs
from Tables 8 and 10. Nevertheless, the maximum curvature constraint is still an active one
in some of the plies and, when it is not, the maximum curvature obtained is near it. The
reason why the optimal layout has changed when gaps are considered can be explained
by comparing the results from Tables 9 and 10 when considering 32 tows. In Table 9 it is
visible that LS-C-CON-A and B have a gap volumetric fraction (υG[%]) of 3.51% and 3.14%,
respectively, while in Table 10 1.88% and 2.21% are the respective gap volume fractions.
The reduction in the occurrence of gaps is one of the factors that explains that the optimal
solution considering gaps is superior to the one found considering ideal plates with gaps
inserted afterwards. So, when the layout is optimized with the occurence of gaps included
it may be said that in order to maximize the fundamental frequency there is a trade-off
between having the desired fiber curvature and the minimum gap volume fraction.

Regarding the square plate, but focusing now on the fully simply supported boundary
condition (sixth and seventh columns of Table 10), it is again visible that the maximum
curvature of all plies is near zero. In consequence, the maximum curvature is not an active
constraint in both cases A and B. This phenomenon has been previously observed when
analysing the same cases, but without defects being considered (Table 8). The plate layout
is also similar to the one previously presented with the orientation of each layer tending to
±45◦, so the frequencies obtained are very similar to those obtained considering only non
steered fibers (NS-S, Table 7) and steered fiber but without gaps included (Table 8). Since
the optimal solutions found in this section still present some curvature, although tending
to zero, some gaps occur. In consequence, the optimal fundamental frequency is 0.56% and
0.46% lower in cases LS-S-CON A and B, respectively, when compared with the respective
non steered optimal solution (Table 7). So, because of the previously stated reasons, it can
be argued that it is more advantageous to use only rectilinear fibers for square plates with
this boundary condition.

The rectangular plate results are visible in Table 10 considering only Kmax = 1.57 m−1

for both boundary conditions and aspect ratios. As it could be expected, the optimal
fundamental frequencies achieved are lower than those obtained when defects are not
considered. Focusing first on the plates with a/b = 0.5 (visible in Figure 6), there is a
decrease of 0.31% and 0.74% for the LS-C-CON-A and LS-S-CON-A, respectively, with
respect to their equivalent cases where complete gaps are not included (Table 8). On the
one hand, in the fully clamped case, it is observable that the maximum curvature of each
ply tends to zero. On the other hand, in the simply supported boundary condition, the
constraint is active in some plies, as in the respective defect free cases. It is also worth
noting that there is a decrease for the fully clamped boundary condition of approximately
0.31% when compared to the optimal solution considering only non steered plies (Table 7).
As a result is can be said that it is preferable to use rectilinear fibers for this case. On the
contrary, when the BC is simply supported there is an increase near 0.74% when compared
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to the respective optimal NS case (Table 7), even taking into consideration the occurrence
of gaps.

Table 10. Optimal steered results with complete gaps.

a/b = 0.5 a/b = 1.0 a/b = 2.0

Design LS-C-CON LS-S-CON LS-C-CON LS-S-CON LS-C-CON LS-S-CON

A A A B A B A A

<T◦0 ,
T◦1 >

∗
1

<−0.3
1.0>

<1.2
−23.5>

<66.0,
37.7>

<−53.9,
−6.6>

<−41.2,
−46.9>

<47.6,
47.8>

<87.4,
87.3>

<−84.1,
−59.2>

<T◦0 ,
T◦1 >

∗
2

<1.0
−0.4>

<−1.1
−23.6>

<−56.2,
−30.2>

<65.3,
16.4>

<44.7,
44.9>

<−51.2,
−41.1>

<−84.9
−81.7>

<84.9,
51.4>

<T◦0 ,
T◦1 >

∗
3

<0.0
−2.1>

<−6.1
−28.6>

<−36.5,
−13.4>

<80.0,
27.3>

<52.3,
41.8>

<−43.2,
−45.5>

<87.9
86.9>

<86.2,
51.2>

<T◦0 ,
T◦1 >

∗
4

<1.7
−4.0>

<9.4
30.0>

<−36.5,
−13.4>

<55.2,
8.2>

<−39.6,
−39.7>

<89.0,
34.0>

<−88.7
−83.2>

<89.0,
65.5>

f ∗1 (Hz) 49.107 22.205 53.517 55.311 31.047 31.080 195.988 88.151

f ∗2 (Hz) 50.548 26.415 100.660 105.858 69.767 69.389 201.819 105.223

f ∗3 (Hz) 53.739 33.315 111.872 112.376 73.204 74.660 215.154 139.443

υG[%] 3.078 3.77 1.88 2.21 1.64 2.24 0.96 1.87

Gen. 66 62 122 75 83 88 84 91

A similar phenomenon occurs for plates with a/b = 2.0, however in these cases the
frequencies achieved are much higher. The plate’s maximum curvature tends to zero in
all plies for the fully clamped boundary condition and it is near the maximum curvature
constraint in some plies for the simply supported boundary condition (Table 10). It is
verified a reduction in frequency of 0.73% and 2.21% for LS-C-CON-A and LS-S-CON-A,
respectively, in relation to their optimal equivalent defect free cases (Table 8). Since there is
a reduction of 0.73% in the LS-C-CON-A with respect to its respective optimal non steered
case (Table 7), the non steered optimal solution is preferable for this boundary condition
just like in the previous case. Focusing now on the simply supported boundary condition,
there is a slight decrease of 0.14% with respect to its corresponding non steered optimal
solution (Table 7). In addition, the maximum curvatures especially in plies 2 and 4, and
their respective symmetric ones, are near the maximum curvature constraint. Therefore, it
can also be said that it is also preferable to use non steered plies for this boundary condition
as opposed to the previously case with an a/b = 0.5. Since the maximum curvature of the
plies does not tend to zero, it is possible to speculate that a better solution could be found if
the maximum curvature constraint imposed was higher.

In a similar way as with square plates, the optimal layout when complete gap
imperfections are considered during the optimization differs from the one obtained for
ideal plates. These differences in the orientations can be observed by comparing the
optimal layouts in Tables 8 and 10. When adding the complete gap imperfections to the
ideal optimal solutions (Table 9), it is visible for a plate with a/b = 0.5 that the υG[%]
obtained is lower than the one obtained when defects are taken into consideration within
the optimization framework (Table 10). On the contrary, for a plate with a/b = 2.0, υG[%]
is lower in Table 10 than on Table 9 considering a course with 32 tows. Therefore, when the
layout is optimized with the occurrence of gaps included it is once again visible that there
is a trade-off between having the desired fiber path and the minimum gap volume fraction
depending on the plate’s geometry and boundary condition.
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6. Conclusions

An optimization framework has been implemented with the objective of tailoring the
performance of laminated composite structures by maximizing the fundamental natural
frequency. The optimization is performed for both the non-steered and steered fibers in
order to evaluate the effects of curvilinear fibers on the structural performance. Furthermore,
manufacturing issues such as tow drop gaps are also taken into account using the Defect
Layer Method with the objective of assessing its effect on the fundamental frequency.

The steered plates were first optimized considering no manufacturing embedded
defects. It was found that the fibers curvature effect on the fundamental frequency
depends not only on the boundary condition considered, but also on the plate geometry.
For square plates, it was observed that the use of steered fibers is advantageous when
a fully clamped boundary condition is imposed, while the optimal fiber orientation is
rectilinear when a fully simply supported boundary condition is imposed. However, the
use of curvilinear fibers was found to be advantageous for rectangular plates with simply
supported boundary conditions.

Before considering embedded defects within the optimization framework, complete
gap defects were added to the optimal ideal steered plate designs. When tow drop defects
such as gaps were considered, results show that these rich resin areas lead to a reduction
in the fundamental frequency, which appears to be a consequence of a reduction of the
material equivalent elastic properties. It was also verified that reducing the number of tows
leads to an increase in the occurrence of rich resin areas and therefore to a higher decrease
in the fundamental frequency.

The plates were then optimized considering embedded defects within the optimization
framework. The results revealed that the optimal designs that consider ideal plates can
differ from the ones where manufacturing defects are considered. It can also be verified that
not considering defects within the optimization framework leads to a different (often worse)
gap area percentage. In spite of the occurrence of complete gaps, it was observed that the use
of steered fibers is still advantageous when a fully clamped boundary condition is imposed
in square plates. Moreover, the optimal fiber orientation is also rectilinear when a fully
simply supported boundary condition is imposed in square plates. Regarding rectangular
plates, results show that curvilinear fibers are only advantageous for a rectangular plate
with a/b = 0.5 and with a simply supported boundary condition.

It has been shown that the use of curvilinear fibers could be an effective way to
tailor the natural frequency of laminated composite plates. Nonetheless, variable angle tow
laminates are still a relatively recent field, therefore experimental validation and verification
would significantly contribute to the improvement of the numerical models proposed in this
paper. Future work would include critical buckling load and to account for the minimum
cut length constraint of the AFP machines.
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Abbreviations
The following abbreviations are used in this manuscript:

AFP Automated Fiber Placement
VAT Variable Angle Tow
LS Linearly Steered
NS Non Steered
C Boundary Condition Fully Clamped
S Boundary Condition Fully Simply Supported
VSCL Variable Stiffness Composite Laminate
SDC Specific Damping Capacity
CPT Classical Plate Theory
FSDT First-Order Shear Deformation Theory
FEM Finite Element Method
GA Genetic Algorithm
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