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Abstract: This paper presents a beam model for a geometrically nonlinear stability analysis of the
composite beam-type structures. Each wall of the cross-section can be modeled with a different
material. The nonlinear incremental procedure is based on an updated Lagrangian formulation
where in each increment, the equilibrium equations are derived from the virtual work principle.
The beam model accounts for the restrained warping and large rotation effects by including the
nonlinear displacement field of the composite cross-section. First-order shear deformation theories
for torsion and bending are included in the model through Timoshenko’s bending theory and a
modified Vlasov’s torsion theory. The shear deformation coupling effects are included in the model
using the six shear correction factors. The accuracy and reliability of the proposed numerical model
are verified through a comparison of the shear-rigid and shear-deformable beam models in buckling
problems. The obtained results indicated the importance of including the shear deformation effects at
shorter beams and columns in which the difference that occurs is more than 10 percent.

Keywords: thin-walled composite cross-section; shear deformations; shear coupling effects; beam
model; nonlinear analysis

1. Introduction

Due to their appealing characteristics, composites have occupied a considerable place
in the design process of load-bearing structures. Weight, load-bearing capacity, functionality,
construction cost, energy efficiency, and resistance to the chemical processes are some of the
characteristics now able to be optimized by the use of different composite materials [1–3],
including the currently widely applied FRP composites [4–7].

Furthermore, thin-walled structures provide additional possibilities for optimizing
structures in some of the above-mentioned elements. Although there is a wider area
for the optimization of such structures, the response of such a structure to the effects of
external loading is much more complex. It should be emphasized that there is a tendency
of such a structure to lose the stability of the deformation form and the appearance of
the buckling [8,9]. Therefore, to produce optimal design solutions for such structures, an
exact determination of the limit state of the stability of the deformation forms, or of the
buckling strength, is of the utmost interest [10–12]. We note that the analytical solutions of
such complex structures are limited to only simple cases and primarily deal with just one
beam/column [13–15], and the development of an accurate numerical model is imposed as
a necessity [11,12].

Although for slender beam-type structural members, shear deformations do not
play a critical role in the determination of the buckling limit state and, respectively, the
Euler-Bernoulli and Vlasov theories for bending and torsion could be applied [16,17], a
combination of composite materials and various external loading conditions can provide
more pronounced shear deformations [18–20]. Several geometric nonlinear analyses of com-
posite beam structures with the influence of shear deformations are presented in [10–12]. It
should be emphasized here that these numerical models include higher numbers of degrees
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of freedom over the cross-section area, resulting in accurate models capable of dealing with
local stability issues, but they are very computationally demanding and, thus, are hardly
applicable for frame-type structures. In order to simplify the numerical models and include
the shear deformation effects applicable for frame structures, some researchers have applied
more conventional beam models [21–25]. For asymmetric thin-walled cross-sections at
which the principal bending and shear axes do not coincide, bending–torsion coupling
effects arise and are more significant in stability strength [21–26].

In [27], composite frames were considered where a geometrically nonlinear beam
model and shear deformation effects were presented. Cross-section walls were modeled
by cross-ply laminates, and the material was same in each wall of the cross-section. As
an extension to that work, an improved beam formulation will be presented herein which
takes into account a change in material along the walls of a thin-walled cross-section. The
material is assumed to be constant along the thickness of the cross-section wall, but it can
be different for each wall. Since the coupling between the normal and shear stresses is not
considered, the current beam model is not applicable for angle-ply composites. This will be
a topic in our future research activities.

The presented beam model also includes the following assumptions: the cross-section
is not deformable in its own plane and the beam member is prismatic and straight, while
the external loads are conservative and static, the material obeys Hooke’s law, translations
and rotations are allowed to be large but strains are treated as small, and the shear coupling
effects are introduced through corresponding shear correction factors [21,22,25,27,28].

The element geometric stiffness is obtained using the nonlinear displacement field of
a cross-section. The numerical procedure is formulated in the framework of an updated
Lagrangian (UL) formulation [17,29]. To describe large rotations, the nonlinear displace-
ment field includes the second-order displacement terms. To preserve the equilibrium
conditions at the frame joint, the internal bending and torsion moments are described as
semi-tangential [30,31]. The shear locking [32] does not occur in the beam model due to
the interdependent shape functions for the deflections and their slopes and for the twist
rotations and the warping parameters. The generalized displacement control method
is used in the incremental-iteration algorithm [31]. To update the nodal orientations,
special transformations are used due to the semi-tangential description of the internal
moments [33,34].

2. Kinematics of the Beam Element

A straight beam element with an arbitrary open thin-walled composite cross-section is
presented in Figure 1. The coordinate x- and y-axes are the principal inertial axes of the
cross-section, while the longitudinal z-axis passes through the centroid O of each cross-
section. The shear center S of the cross-section is defined by the coordinates xs and ys. All
the cross-section properties are material-weighted.

Displacement increments are described by the rigid-body translations of the cross-
sections wO, uS, and vS, and by the rigid-body rotations of the cross-sections ϕz, ϕx, and
ϕy. θ is the warping parameter. The displacement field of the cross-section is defined
as follows:

u = u0 +
~
ϕ r0 −

~
ω s +

1
2

~
ϕ

2
r0 −

1
2
ϕ̃

~
ω s, (1)

where

u0 =


wO + Ω θ

uS
vS

, r0 =


0
x
y

, s =


0
xS
yS

,
~
ϕ =

 0 −ϕy ϕx
ϕy 0 −ϕz
−ϕx ϕz 0

,
~
ω =

0 0 0
0 0 −ϕz
0 ϕz 0

. (2)

As can be seen, the displacement field contains nonlinear terms arising from the large
rotation effects [35]. The associated Green–Lagrange strain tensor can be written as:

E ≈ e + η+
~
e (3)
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where

e = 1
2

{
∇
(

u0 +
~
ϕ r0 −

~
ω s

)
+
[
∇
(

u0 +
~
ϕ r0 −

~
ω s

)]T
}

,

η = 1
2

[
∇
(

u0 +
~
ϕ r0 −

~
ω s

)]T
∇
(

u0 +
~
ϕ r0 −

~
ω s

)
,

~
e = 1

2

{
∇
(

1
2

~
ϕ

2
r0 − 1

2 ϕ̃
~
ω s

)
+

[
∇
(

1
2

~
ϕ

2
r0 − 1

2 ϕ̃
~
ω s

)]T
} (4)

It should be noted that the strain increments εx, εy, and γxy in Equation (4) are equal to
zero due to the applied beam theories. Since the shear deformation effects are considered,
it is valid for the linearized shear strain increments [25]:

eSD
zy =

dvS

dz
+ ϕx, eSD

zx =
duS

dz
− ϕy, θSD =

dϕz

dz
+ θ, (5)

where the right superscript ‘SD’ denotes the quantities arising from the shear deformability.
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3. Cross-Section Properties

In Figure 1b, an arbitrary open cross-section composed of a number of thin walls is
shown. Each wall is composed of a single orthotropic ply, x̂ and ŷ denote the reference axes,
and x̃ and ỹ are the centroid axes while x and y are the principal ones. Furthermore, s and
n are the contour and thickness coordinates with their origins in Oω while R1 is the total
number of walls. The incremental constitutive equations valid for a cross-section wall can
be written as: {

σzi
τzsi

}
=

[
Q11i 0

0 Q66i

]{
ez
ezs

}
,

ezs = eSV
zs + eSD

zs , eSV
zs = 2 θ n, eSD

zs = eSD
zx

dx
ds + eSD

zy
dy
ds + θSD dΩ

ds

(6)

In Equation (6), Q11i and Q66i denote the transformed reduced stiffness coeffi-
cients [36,37], ez is the linearized normal strain increment, and eSV

zs is the linearized shear
strain increment due the St. Venant torsion and eSD

zs is the linearized shear strain increment
occurring at bending with shear and warping torsion, respectively [28,38], while Ω denotes
the principal warping function. The reference moduli can be determined as follows:
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Q11R = 1
A
∫
s

t/2∫
−t/2

Q11i dn ds = 1
A

R1
∑

i=1

(
Q11i ti li

)
Q66R = 1

A
∫
s

t/2∫
−t/2

Q66i dn ds = 1
A

R1
∑

i=1

(
Q66i ti li

) (7)

In Figure 2, the local axes (s, n) of each wall should be transformed to the coordinate
system of reference axes (x̂, ŷ) of the cross-section as:

x̂ = x̂R − s sin α̂i + n cos α̂i
ŷ = ŷR + s cos α̂i + n sin α̂i

(8)
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(c) thickness warping function.

In the figure, A is an arbitrary point while R denotes the referent point placed on
the centerline on the arbitrary position along the wall (i). Applying Equation (8), the
modulus-weighted cross-section area and the modulus-weighted first moments of the area
can be obtained as follows:

A∗ =
∫
s

t/2∫
−t/2

Q11i

Q11R
dn ds =

R1

∑
i=1

Q11i

Q11R
ti li, (9)

Ŝ∗x =
∫
s

t/2∫
−t/2

ŷ
Q11i

Q11R
dn ds =

R1

∑
i=1

Q11i

Q11R

(
ŷR ti li +

1
2

ti l2
i cos α̂i

)
, and (10)

Ŝ∗y =
∫
s

t/2∫
−t/2

x̂
Q11i

Q11R
dn ds =

R1

∑
i=1

Q11i

Q11R

(
x̂R ti li −

1
2

ti l2
i sin α̂i

)
. (11)

The coordinates of the centroid with reference to the reference axes of the cross-section
can be obtained as:

x̂O =
Ŝ∗y
A∗

, ŷO =
Ŝ∗x
A∗

. (12)

After the position of the cross-section centroid is determined, the cross-section axes are
repositioned to the centroid. All the above cross-sectional properties need to be recalculated
for the new position of the axes. Analogously, the modulus-weighted second moments of
area can be derived as:
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Ĩ∗x =
∫
s

t/2∫
−t/2

ỹ2 Q11i

Q11R
dn ds =

R1

∑
i=1

Q11i

Q11R
ti li

[(
ỹR +

1
2

li cos αi

)2
+

1
12

l2
i cos2 αi +

1
12

t2
i sin2 αi

]
, (13)

Ĩ∗y =
∫
s

t/2∫
−t/2

x̃2 Q11i

Q11R
dn ds =

R1

∑
i=1

Q11i

Q11R
ti li

[(
x̃R −

1
2

li sin αi

)2
+

1
12

l2
i sin2 αi +

1
12

t2
i cos2 αi

]
, and (14)

Ĩ∗xy =
∫
s

t/2∫
−t/2

x̃ỹ
Q11i

Q11R
dn ds =

R1

∑
i=1

Q11i

Q11R
ti li

[
x̃RỹR +

1
2

li(x̃R cos αi − ỹR sin αi) +
1
6

sin 2αi

(
1
4

t2
i − l2

i

)]
. (15)

After that, the angles of the principal axes can be obtained from the well-known formula:

tan 2χ =
2 Ĩ∗xy

Ĩ∗y − Ĩ∗x
. (16)

Establishing the angle from Equation (12), the cross-section properties should be
recalculated for the principal axes of the cross-section.

The warping function is defined for the pole set at the centroid of the cross-section
and the associated origin is set according to Figure 1b. From Figure 2b, the difference in
contour warping function can be calculated as:

∆ ω = hRli, hR = xR cos αi + yR sin αi, (17)

while, from Figure 2c, the difference in thickness warping function is:

∆ ω = −
(

h R + li
)

n, hR = yR cos αi − xR sin αi. (18)

By combining Equations (13) and (14), the expression for the warping function of an
arbitrary point A is derived as:

ω = ω R + ∆ ω + ∆ ω = ω R + h Rs− hRn− s n. (19)

The warping function from Equation (15) is used to derive, respectively, the modulus-
weighted first and second sectorial moments as:

S∗ω =
∫
s

t/2∫
−t/2

ω
Q11i

Q11R
dn ds =

R1

∑
i=1

Q11i

Q11R
ti li

(
ωR +

1
2

li hR

)
, (20)

I∗xω =
∫
s

t/2∫
−t/2

xω Q11i
Q11R

dn ds =
R1
∑

i=1

Q11i
Q11R

ti li
[(

ωR + 1
2 hR li

)(
xR − 1

2 li sin αi

)
− 1

12 hR l2
i sin αi − 1

12 t2
i cos αi

(
hR + 1

2 li
)] , and (21)

I∗yω =
∫
s

t/2∫
−t/2

yω Q11i
Q11R

dn ds =
R1
∑

i=1

Q11i
Q11 R

ti li
[(

ωR + 1
2 hR li

)(
yR + 1

2 li cos αi

)
+ 1

12 hR l2
i cos αi − 1

12 t2
i sin αi

(
hR + 1

2 li
)] , (22)

and afterwards, the shear center position coordinates with reference to the principal axes
can be calculated as:

xS =
I∗yω

I∗x
, yS = − I∗xω

I∗y
. (23)
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Knowing the position of the shear center, the principal warping function is derived by
the following transformation [26]:

Ω = ω + yS x− xS y− S∗ω/A∗ = Ω R + r s− q n− s n,
Ω R = ω R + yS xR − xS yR − S∗ω/A∗

r = (xR − xS) cos αi + (yR − yS) sin αi,
q = (yR − yS) cos αi − (xR − xS) sin αi,

(24)

and the modulus-weighted warping constant can be determined as:

I∗ω =
∫
s

t/2∫
−t/2

Ω2 Q11i

Q11R
dn ds =

R1

∑
i=1

Q11i

Q11R
ti li

[(
Ω R +

1
2

r li

)2
+

1
12

l2
i

(
r2 +

1
3

t2
i

)
+

1
12

q t2
i (q + li)

]
. (25)

4. Governing Equations

Applying the conventional engineering theories for torsion and bending, the stress
resultant increments, shown in Figure 1a, can be calculated as follows:

Fz =
∫
A

σz dA , Fx =
∫
A

τzx dA , Fy =
∫
A

τzy dA, Mx =
∫
A

σz y dA,

My = −
∫
A

σz x dA, Mω =
∫
A

σz ω dA, Mz = TSV + Tω,

Tω =
∫
A

(
τzx

∂ω
∂y + τzy

∂ω
∂x

)
dA, K =

∫
A

σz

[
(x− xS)

2 + (y− yS)
2
]

dA,

TSV =
∫
A

[
τzy

(
x− xS − ∂ω

∂y

)
+ τzx

(
y− yS +

∂ω
∂x

)]
dA

(26)

where Fz is the axial force, Fx and Fy are the shear forces, TSV is the St. Venant torsion
moment, Tω is the warping torsion moment, Mx and My are the bending moments, Mω

is the bimoment, and K is the Wagner coefficient [17,38]. For a thin-walled composite
cross-section, the St. Venant torsion moment can be calculates as [38]:

TSV = 2θ
∫ t/2∫
−t/2

Q66i

(
t2
i
4
− n2

)
dn ds = Q66R θ I∗t , (27)

where I∗t is the modulus-weighted torsional moment of inertia, and it is defined as:

I∗t = 2
∫ t/2∫
−t/2

Q66i

Q66R

(
t2
i
4
− n2

)
dn ds =

R1

∑
i=1

Q66i

Q66R

1
3

li t3
i . (28)

From Equations (4), (6), and (20), expressions for the axial force, the bending moments,
and the bimoment for a thin-walled composite cross-section can be derived as follows:

Fz =
∫
s

t/2∫
−t/2

σz dn ds = Q11R

(
A∗

dwO

dz
+ S∗x

dϕx

dz
− S∗y

dϕy

dz
+ S∗ω

dθ

dz

)
, (29)

Mx =
∫
s

t/2∫
−t/2

σzy dn ds = Q11R

(
S∗x

dwO

dz
+ I∗x

dϕx

dz
− I∗xy

dϕy

dz
+ I∗yω

dθ

dz

)
, (30)

My = −
∫
s

t/2∫
−t/2

σzx dn ds = Q11R

(
−S∗y

dwO

dz
− I∗xy

dϕx

dz
+ I∗y

dϕy

dz
− I∗xω

dθ

dz

)
, and (31)
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Mω =
∫
s

t/2∫
−t/2

σzω dn ds = Q11R

(
S∗ω

dwO

dz
+ I∗yω

dϕx

dz
− I∗xω

dϕy

dz
+ I∗ω

dθ

dz

)
, (32)

where dwO/dz, dϕx/dz, dϕy/dz, and dθ/dz are the generalized deformation increments.
Since the following is valid tor the principal cross-sectional axes and the principal

warping function:
S∗x = S∗y = I∗xy = S∗ω = I∗xω = I∗yω = 0, (33)

the generalized deformation increments from Equations (29)–(32) can be rewritten as:

dwO

dz
=

Fz

Q11R A∗
,

dϕx

dz
=

Mx

Q11R I∗x
,

dϕy

dz
=

My

Q11R I∗y
,

dθ

dz
=

Mω

Q11R I∗ω
, (34)

while, for the normal stress increment, one can obtain:

σzR = Q11R ez =
Fz

A∗
+

Mx

I∗x
y−

My

I∗y
x +

Mω

I∗ω
ω. (35)

Since the shear stress increment is uniformly distributed over a wall thickness, it can be
expressed as:

τSD
zsR = Q66R eSD

zs =
Fy S∗x1

I∗x ti
+

Fx S∗y1

I∗y ti
+

TωS∗ω1
I∗ωti

, (36)

where S∗x1, S∗y1, and S∗ω1 are, respectively, the modulus-weighted first moments of the area
and the first sectorial moment for the cross-section cut off.

The virtual incremental strain energy due to shear deformability is derived using
Equations (6) and (27) as follows:

δUSD
E =

l∫
0

∫
s

t/2∫
−t/2

τSD
zsi δeSD

zs dn ds dz =

l∫
0

∫
s

Q66R
Q66i

Q66R
ti eSD

zs δeSD
zs ds dz =

l∫
0

∫
s

ti τSD
zsR

δτSD
zs R

Q66R

Q66i

Q66R
ds dz, (37)

i.e.,

δUSD
E = 1

Q66R

l∫
0

{
kx
A∗ Fx δFx +

ky
A∗ Fy δFy +

kω
I∗t

Tω δTω +
kxy
A∗
(

Fx δFy + Fy δFx
)

+ kxω√
A∗ I∗t

(Fx δTω + Tω δFx) +
kyω√
A∗ I∗t

(
Fy δTω + Tω δFy

)}
dz

. (38)

In Equation (29), kx, ky, kω, kxy, kxω, and kyω denote the shear correction factors
calculated as:

kx
A∗ =

1
(I∗y )

2

∫
s

(
S∗y1

)2

ti
ds , ky

A∗ =
1

(I∗x )
2

∫
s

(S∗x1)
2

ti
ds, kω

I∗t
= 1

(I∗ω)
2

∫
s

(S∗ω1)
2

ti
ds

kxy
A∗ = 1

I∗x I∗y

∫
s

S∗x1 S∗y1
ti

ds , kxω√
A∗ I∗t

= 1
I∗y I∗ω

∫
s

S∗y1 S∗ω1
ti

ds , kyω√
A∗ I∗t

= 1
I∗x I∗ω

∫
s

S∗x1 S∗ω1
ti

ds
(39)

By using Equations (5) and (6) in Equation (20), the shear forces and the warping torsion
moment increments can be expressed in terms of the linearized shear strain increments:


Fx
Fy
Tω

 = Q66R


A∗
Kx

A∗
Kxy

√
A∗ I∗t

Kxω

A∗
Kxy

A∗
Ky

√
A∗ I∗t

Kyω√
A∗ I∗t

Kxω

√
A∗ I∗t

Kyω

I∗t
Kω




eSD
zx

eSD
zy

θSD

, (40)
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where 
A∗
Kx

A∗
Kxy

√
A∗ I∗t

Kxω

A∗
Kxy

A∗
Ky

√
A∗ I∗t

Kyω√
A∗ I∗t

Kxω

√
A∗ I∗t

Kyω

I∗t
Kω

 =


kx
A∗

kxy
A∗

kxω√
A∗ I∗t

kxy
A∗

ky
A∗

kyω√
A∗ I∗t

kxω√
A∗ I∗t

kyω√
A∗ I∗t

kω
I∗t


−1

. (41)

In Equation (32), kij and Kij are dimensionless constants, while the explicit solutions of
the integrals from Equation (30) are provided in Appendix A.

5. Finite Element Formulation

A thin-walled beam element, as shown in Figure 1, consists of two nodes, and each
node has seven degrees-of-freedom. The corresponding nodal displacement and force
vectors are:

ue =

{
ue

A
ue

B

}
; (ue

i )
T =

{
wi ui vi ϕz i ϕx i ϕy i θi

}
, i = A, Band (42)

fe =

{
fe

A
fe

B

}
; (fe

i )
T =

{
Fz i Fx i Fy i Mz i Mx i My i Mω i

}
, i = A, B, (43)

where the right superscript e denotes the e-th finite element. The virtual work principle for
a beam element deforming between the last calculated configuration C1 and the current
unknown configuration C2 can be expressed as follows:

δUE + δU G = δ2W − δ1W , (44)

where, respectively, the virtual incremental elastic strain and geometric energy are deter-
mined as:

δUE ≈
∫

1V

δ1eT : 1C : 1e1dV and (45)

δUG =
∫

1V

1
1S : δ1η

1 dV +
∫

1V

1
1S : δ1

~
e

1
dV −

∫
At

1
1tn · δ1ũ1dAt. (46)

In Equation (35), the quantities on the right-hand side represent the virtual incremental
work performed by the nodal forces, i.e.,

δ2W =
∫

1At

2
1tn · δ1uldf

1dA t = (δ1ue)T2
1feand (47)

δ1W =
∫

1At

1
1tn · δ1uldf

1dA t = (δ1ue)T1
1fe. (48)

In the above equations, S is the second Piola–Kirchhoff stress tensor, tn represents the
surface tractions, and C is the incremental constitutive tensor. According to the applied UL
incremental description, all the quantities occurring in Equations (36)–(39) are expressed
with reference to the configuration C1. The index notation adopted in the presented work
is the same as that in [31], i.e., the left superscript refers to the configuration in which a
quantity occurs while the left subscript refers to the configuration in which the quantity
is measured.

Furthermore, the virtual incremental elastic strain energy can be decomposed as:

δUE = δUEB
E + δUSD

E , (49)

where the first term on the right-hand side denotes the incremental energy obtained by the
Euler–Bernoulli and St. Venant beam theories for bending and torsion, respectively, i.e.,
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δUEB
E =

l∫
0

Q11R

(
A∗

dwO
dz

δ
dwO
dz

+ I∗x
dϕx

dz
δ

dϕx

dz
+ I∗y

dϕy

dz
δ

dϕy

dz
+ I∗ω

dθ

dz
δ

dθ

dz
+ I∗t θ δθ

)
dz, (50)

while the second energy term is due to the shear deformability which, according to
Equations (29) and (31), can be defined as:

δUSD
E =

l∫
0

Q66R

[
A∗
Kx

eSD
zx δeSD

zx + A∗
Ky

eSD
zy δeSD

zy +
I∗t

Kω
θSD δθSD + A∗

Kxy

(
eSD

zx δeSD
zy + eSD

zy δeSD
zx

)
+

+

√
A∗ I∗t

Kxω

(
eSD

zx δθSD + θSD δeSD
zx
)
+

√
A∗ I∗t

Kyω

(
eSD

zy δθSD + θSD δeSD
zy

)]
dz

(51)

Applying a linear interpolation for the axial displacement and a cubic interpolation
for the deflections and twist rotations, respectively, the rigid-body displacements of the
cross-section can be defined as:

wO
uS
vS
ϕz
ϕx
ϕy
θ


=



Nw1 0 Nw2 0
Nu1 Nu2 Nu3 Nu4
Nv1 Nv2 Nv3 Nv4
Nϕz1 Nϕz2 Nϕz3 Nϕz4
Nϕx1 Nϕx2 Nϕx3 Nϕx4
Nϕy1 Nϕy2 Nϕy3 Nϕy4
Nθ1 Nθ2 Nθ3 Nθ4




wA uA vA ϕzA vA uA ϕzA
1 ϕyA ϕxA θA ϕxA ϕyA θA

wB uB vB ϕzB vB uB ϕzB
1 ϕyB ϕxB θB ϕxB ϕyB θB

, (52)

where the shape-functions occurring in the first matrix on the right-hand side of Equation
(43) are provided in Appendix B. Substituting Equations (36)–(43) into Equation (35), the
incremental equilibrium equations for the beam element in C2 can be rewritten as:

2
1fe = 1

1fe +
(

1ke
E + 1ke

G

)
1ue, (53)

where ke
E is the incremental elastic stiffness matrix of the beam element while ke

G is the
corresponding incremental geometric stiffness matrix. To perform the force recovery, the
so-called conventional approach [39] is adopted in this work, i.e.,

2
2fe = 2

1Te
[

1
1fe +

(
1ke

E + 1ke
G

)
1ue
]
, (54)

where 2
1Te denotes the incremental transformation matrix reported in [18]. After performing

the assembly procedure, the incremental equilibrium of a beam-type structure can be
obtained as:(

1KE + 1KG

)
1U = 2P − 1P, 1KE = ∑

e

(
1te
)T 1ke

E
1te, 1KG = ∑

e

(
1te
)T 1ke

G
1te, (55)

where 1KE is the incremental elastic stiffness matrix, 1KG is the incremental geometric
stiffness matrix, U is the incremental displacement vector, 1P is the external load vector
applied on the structure at C1, 2P is the external load vector applied on the structure at C2,
and 1te is the transformation matrix for the e-th beam element from the local coordinate
system (1z, 1x, and 1y) in C1 to the global coordinate system (Z, X, and Y).

6. Numerical Examples

A computer program, named THINWALL v.17 [25], is developed on the basis of the
numerical procedures presented in this paper. The nonlinear stability analysis is performed
in the form of incremental-iterative solver based on the generalized control method [31].
To initiate the buckling, a small perturbation load should be introduced. Nodal coordinates
and orientations of the cross-section axes of each beam element are updated at the end of
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each load step [25]. To stop the iteration, energy criteria is adopted with the tolerance value
of 10−6.

Three beam models are considered in the analysis in order to emphasize the signif-
icance of the shear effects on the stability behavior of the structure under consideration.
In the first beam model, the shear deformability effects are ignored entirely, and in the
presented results, it is labelled with ‘SR’. The second beam model includes shear defor-
mation coupling effects, using the procedures presented in this paper, and it is labelled
with ‘SD’. The last beam model ignores the shear deformation coupling effects, and in the
provided diagrams and tables, it is denoted by ‘SD1’. The structural material used in all the
examples is graphite-epoxy (AS4/3501), with E1 = 144 GPa, E2 = 9.65 GPa, G12 = 4.14 GPa,
and v12 = 0.3, as reported in [11]. The general cross-section shape used in the examples is
shown in Figure 3. Each wall of the cross-section is of the same thickness t and is composed
of single AS4/3501 ply. The ply orientations are provided in Figure 3.

J. Compos. Sci. 2022, 6, x FOR PEER REVIEW 11 of 19 
 

 

 

Figure 3. Cross-section geometry. 

6.1. Example 1 

Figure 4a shows a cantilever column under an axial force F. A mono-symmetric cross-

section of 6 × 10 × 6 × 1 cm (b1 × h × b2 × t) is adopted with the properties provided in Table 

1. A force F is applied at the geometric centroid of the cross-section. Since the neutral axis 

passes through the material-weighted centroid, the force acting through the geometric 

centroid behaves as the off-axis load. The lowest buckling load pertains to the torsional-

flexural (TF) mode, as shown in Figure 4c. The second buckling mode is the flexural (F) 

mode, as shown in Figure 4b. Both modes are analyzed using five different mesh config-

urations, each consisting of one, two, four, eight, and sixteen beam elements. The results 

obtained are shown in Figure 5a and are compared with the NX Nastran’s laminate shell 

results. 

Table 1. Cross-section properties of Examples 1 and 3. 

[0°/90°/0°] 

*A (cm2) 
*

xI
(cm4) 

*

yI
(cm4) 

*

tI (cm4) 
*I (cm4) 

xc 

(cm) 

xg 

(cm) 

xs 

(cm) 

22 532.343 72.525 7.333 1718.819 3.159 4.364 5.767 

Kx Ky Kω Kyω 11RQ
(GPa) 66RQ

(GPa) 
  

2.1504 2.3969 0.0217 – 0.4999 82.932 4.14   

 

   

(a) (b) (c) 

Figure 4. Simply supported column: (a) geometry, (b) flexural buckling mode, and (c) torsional-

flexural buckling mode. 

Figure 3. Cross-section geometry.

6.1. Example 1

Figure 4a shows a cantilever column under an axial force F. A mono-symmetric cross-
section of 6 × 10 × 6 × 1 cm (b1 × h × b2 × t) is adopted with the properties provided
in Table 1. A force F is applied at the geometric centroid of the cross-section. Since the
neutral axis passes through the material-weighted centroid, the force acting through the
geometric centroid behaves as the off-axis load. The lowest buckling load pertains to the
torsional-flexural (TF) mode, as shown in Figure 4c. The second buckling mode is the
flexural (F) mode, as shown in Figure 4b. Both modes are analyzed using five different
mesh configurations, each consisting of one, two, four, eight, and sixteen beam elements.
The results obtained are shown in Figure 5a and are compared with the NX Nastran’s
laminate shell results.
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Table 1. Cross-section properties of Examples 1 and 3.

[0◦/90◦/0◦]

A∗ (cm2) I∗x (cm4) I∗y (cm4) I∗t (cm4) I∗ω (cm4)
xc

(cm)
xg

(cm)
xs

(cm)

22 532.343 72.525 7.333 1718.819 3.159 4.364 5.767

Kx Ky Kω Kyω Q11R (GPa) Q66R (GPa)

2.1504 2.3969 0.0217 −0.4999 82.932 4.14
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Figure 5. (a) Buckling load convergence for L = 50 cm and (b) buckling load vs. column length.

As one can see, the shear locking does not occur in any of the shear deformable models
and the SD model’s results approach the shell solution. The results obtained by the SD1
model underestimate the column buckling strength in TF mode, leaving the construction on
the safe side if shear deformation effects are ignored. Since the beam model assumes a rigid
cross-section and is unable to model the cross-section distortion, some differences between
the beam model and the shell model are expected for higher loads and shorter beams where
the cross-section distortion affects the critical load, as can be observed in the F mode results.
Furthermore, the buckling strength reductions due to the shear deformability are 8% and
12% in comparison with the shear rigid model for the TF and F modes, respectively. The
buckling strength increase due to the shear coupling effects is 6% for the TF mode, and
there is no influence of the shear couplings for the F mode. In Figure 5b, the variations
in the value of buckling load against the column slenderness ratio are shown. It can be
seen that the differences between the results obtained by the SR and SD beam models are
decreasing as the slenderness ratio increases.

6.2. Example 2

In this example, a cantilever beam from Figure 6a is considered. The lateral force
F is acting at the free end in the Y-direction through the shear center of the asymmetric
cross-section 4 × 10 × 2 × 1 cm. The cross-section properties are shown in Table 2.

Four different mesh configurations, each consisting of two, four, eight, and sixteen
beam elements, are used to analyze the lateral-torsional buckling mode in Figure 6b. Since
the cross-section is asymmetric, a difference in the buckling load for the positive and
negative direction of the force is expected [38]. To initiate the buckling, a small perturbation
force of intensity 0.001 F, acting through the shear center in the X-direction, is applied at
the free end of the beam.
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Table 2. Example 2’s cross-section properties.

[0◦/90◦/0◦]

A∗ (cm2) I∗x (cm4) I∗y (cm4) I∗t (cm4) I∗ω (cm4) xs (cm) ys (cm) α (◦)

16 342.486 17.701 5.333 186.781 2.782 −1.769 6.404

Q11R (GPa) Q66R (GPa) Kx Ky Kω Kxy Kxω Kyω

60.031 4.14 3.2748 1.6373 0.0358 −36.7315 −1.2571 −0.7571

In Figure 7, the load-deflection curves are presented for the mesh configuration of
the sixteen beam elements and for both of the force directions. The convergence study
is shown in Figure 8. The critical forces obtained by NX Nastran’s laminate shell model
are Fcr = 5.75 kN for the force acting in the +Y direction and Fcr = 13.873 kN for the force
acting in the −Y direction. From the figures, it can be seen that all the mesh models
recognize the buckling load. Significant differences appear in the post-buckling range
above F > 3Fcr and F > 2.5Fcr, respectively. As can be seen, the reductions in the buckling
strength due to the shear deformability are 2% and 8% for the positive and negative force
directions, respectively.
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6.3. Example 3

In this example, an L-frame from Figure 9a is considered. the frame is loaded with
the force F acting through the geometric centroid of the cross-section at the free end. A
mono-symmetric cross-section of 6 × 10 × 6 × 1 cm is adopted with the properties shown
in Table 1. Warping is fully restrained at the frame corner. Four mesh configurations, each
consisting of one, two, four, and eight beam elements per frame member, are used for the
analysis of the lateral-torsional buckling mode, as shown in Figure 9b.
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Figure 9. L-frame: (a) geometry and (b) lateral-torsional buckling mode.

To initiate the buckling, a small perturbation force of intensity 0.001 F, acting in the
X-direction, is introduced. The obtained results are shown in Figure 10. The critical force
obtained by the NX Nastran’s laminate shell model is Fcr = 1.81 kN. From the figures, it can
be observed the significant overestimation of the SR buckling strength differs from the SD
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model by 12%. In addition, it can be seen that all the mesh models recognize the buckling
state very well.
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7. Conclusions

In this paper, a refined shear deformable beam model for the nonlinear stability
analysis of composite frame structures has been presented. The materials can vary over the
walls of the cross-section, where unique expressions have been derived for the properties
of such a composite cross-section. Shear deformations and shear deformation couplings
have been included by the use of the six shear correction factors. The UL procedure has
been used to describe the nonlinear behavior of such frame structures. The equilibrium
equations for the two-node beam element have been derived on the basis of the nonlinear
displacement field of the cross-section. In the incremental-iterative procedure, a generalized
control method has been used where the nodal coordinates and orientations of the cross-
section axes of each beam element are updated at the end of each load step. In the force
recovery phase of the incremental-iterative solver, conventional approach based on the
concept of the semi-tangential rotations have been adopted. Three benchmark examples
have been presented and the results have been explained in detail. As expected, shear
deformations can play a critical role in the design of composite frame structures, especially
for structures with low slenderness ratios. For very short structures, cross-section distortion
should be modeled in order to acquire accurate values for the critical force. In pure flexural
and torsional buckling modes, there is no influence of the coupling effects on the shear
deformations. In addition, from the presented results, it can be concluded that the presented
shear deformable beam model experiences no shear locking.

The topic of our future activities will be to extend the proposed nonlinear finite element
algorithm to large displacement problems of angle-ply laminates and functionally graded
materials, with special emphasis on the buckling problems.
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Appendix A

In order to determine the integrals in Equation (30), the modulus-weighted first area
and first sectorial moments need to be defined as functions of the contour coordinate s,
as follows:

S∗x1 =
∫
s

t/2∫
−t/2

y
Q11i

Q11R
dn ds =

i−1

∑
i=1

s∫
0

t/2∫
−t/2

y
Q11i

Q11R
dn ds = yR ti s +

1
2

ti s2 cos αi + S∗x0, (A1)

S∗y1 =
∫
s

t/2∫
−t/2

x
Q11i

Q11R
dn ds =

i−1

∑
i=1

s∫
0

t/2∫
−t/2

x
Q11i

Q11R
dn ds = xR ti s− 1

2
ti s2 sin αi + S∗y0, and (A2)

S∗ω1 =
∫
s

t/2∫
−t/2

Ω
Q11i

Q11R
dn ds =

i−1

∑
i=1

s∫
0

t/2∫
−t/2

Ω
Q11i

Q11R
dn ds = ti s

(
Ω R +

1
2

s r
)
+ S∗ω0, (A3)

where

S∗x0 =
i−1
∑

i=1

Q11i
Q11R

(
yR ti li + 1

2 ti l2
i cos αi

)
, S∗y0 =

i−1
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Q11i
Q11R

(
xR ti li − 1

2 ti l2
i sin αi

)
,

S∗ω0 =
i−1
∑

i=1

Q11i
Q11R

ti li
(

Ω R + 1
2 li r

) (A4)

Then, the integrals in Equation (30) can be calculated in the following way:

∫
s

(S∗x1)
2

ti
ds =

R1
∑

i=1
li

[
ti l2

i
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1
3 y2
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)(
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] (A5)

∫
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∫
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] (A7)



J. Compos. Sci. 2022, 6, 377 16 of 18

∫
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Appendix B

The shape functions in Equation (43) are those reported in [26]:

Nw1 = 1− z
l

, Nw2 =
z
l

, , (A11)

Nu1 = 2ζ3−3ζ2−12ψxζ+φx
φx

, Nu2 =
l[ζ3−2(1+3ψx)ζ2+(1+6ψx)ζ]

φx
,

Nu3 = −2ζ3+3ζ2+12ψxζ
φx

, Nu4 =
l[ζ3−(1−6ψx)ζ2−6ψxζ]

φx

(A12)

Nv1 =
2ζ3−3ζ2−12ψy ζ+φy

φy
, Nv2 =
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,
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φy
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φy

(A13)

Nϕz1 = 2ζ3−3ζ2−12ψω ζ+φω
φω

, Nϕz2 =
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φω
,
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φω
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φω

(A14)
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(
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(
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, (A15)

Nϕy1 =
6ζ2 − 6ζ

l φx
, Nϕy2 =

3ζ2 − 4(1 + 3ψx)ζ + φx

φx
, Nϕy3 =

−6ζ2 + 6ζ

l φx
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Nθ1 =
−6ζ2 + 6ζ

l φω
, Nθ2 =

3ζ2 − 4(1 + 3ψω)ζ + φω

φω
, Nθ3 =

6ζ2 − 6ζ

l φω
, Nθ4 =

3ζ2 − 2(1− 6ψω)ζ

φω
, (A17)

where
ζ = z

l , φx = 1 + 12ψx, φy = 1 + 12ψy, φω = 1 + 12ψω,

ψx =
Kx I∗y

Q66R A∗ l2 , ψy =
Ky I∗x

Q66R A∗ l2 , φω = Kω I∗ω
Q66R I∗t l2

(A18)

It should be noted that in Equations (A11)–(A18), l denotes the length of the beam
element presented in Figure 1a. For information about the formulation of the shape
functions, a detailed description is provided in [25].
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