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Abstract: During the impregnation of reinforcement fabrics in liquid composite molding processes,
the flow within fiber bundles and the channels between the fiber bundles usually advances at different
velocities. This so-called “dual-scale flow” results in void formation inside the composite material
and has a negative effect on its mechanical properties. Semi-empirical models can be applied to
calculate the extent of the dual-scale flow. In this study, a methodology is presented that stops
the impregnation of reinforcement fabrics at different filling levels by using a photo-reactive resin
system. By means of optical evaluation, the theoretical calculation models of the dual-scale flow are
validated metrologically. The results show increasingly distinct dual-scale flow effects with increasing
pressure gradients. The methodology enables the measurability of microscopic differences in flow
front progression to validate renowned theoretical models and compare simulations to measurements
of applied injection processes.

Keywords: void formation; dual-scale flow; permeability; textile preforms; liquid composite molding;
fiber reinforced plastics

1. Introduction

Liquid composite molding (LCM) is an established industrial production technology
for manufacturing thermoset fiber composites. Dry textile preforms are draped in a mold,
which is subsequently closed, and the semi-finished fiber product is impregnated with
a resin system by means of overpressure. During impregnation of the textile preforms,
voids are formed, which result in a reduction of the mechanical properties of the molded
component [1–3]. One cause of the formation of voids in fiber composite components is
inhomogeneous flow processes at microscopic levels inside the textile preforms. Depending
on the process parameters, the resin system flows at different rates within the tows of the
reinforcement fabrics and channels between the tows, due to the different permeability of
the two areas. As shown in Figure 1, a flow front is formed, which can be divided into a
saturated, partially saturated, and unsaturated region of the tows [4,5].
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This effect, known as dual-scale flow, is the focus of several studies since it is a major
reason for the formation and transport of voids [6–11]. If the flow velocities within the tows
and channels between the tows match, void-free components are produced [12–15] and the
lightweight potential of the materials is optimally exploited.

The flow of the liquid resin system through the textile preform as a porous medium is
described by Darcy’s law (Equation (1)).

vm = −
→
K
η
·∇p (1)

where vm is the volume-averaged velocity,
→
K the permeability tensor, η the resin viscosity,

and ∇p the pressure gradient from inlet to the flow front position.
Assuming that the resin system is an incompressible medium, the law of conservation

of mass applies:
∇·vm = 0 (2)

The semi-empirical Kozeny-Carman equation can be used to determine the macro-
scopic permeability K of the textile preform [16]:

K =
r2

f

4kc

(
1− ϕ f

)3

ϕ f
2 (3)

where r f is the fiber radius, ϕ f is the fiber volume fraction, and kc is the Kozeny constant.
The Kozeny constant is highly dependent on the resin used, impregnation direction, and
textile preform [17], and thus is not precisely determined [9,18]. Nevertheless, this model
allows calculations on the progression of the flow front in the textile preform and the
resulting process duration.

However, this model is not suitable for a more detailed consideration of the impreg-
nation of textile preforms [9] since no information is obtained about the microscopic flow
processes within and between the tows. The proportion of resin flowing into the individual
fiber bundles of a textile preform during impregnation is described in the numerical simu-
lations by means of an extension by a loss term q, which depends on pressure p and degree
of saturation s [6]:

∇·

→K
η
·∇p

 = q(p, s) (4)

Analytically, the phenomenon of dual-scale flow can be represented by the modi-
fied capillary number Ca*. The modified capillary number forms the ratio of viscosity-
dependent and capillary force-dependent flow [8,13] and thus allows conclusions about
the proportions of the unsaturated region of the flow front [14].

Ca∗ =
µ·u

γ· cos θ
(5)

where Ca∗ is the modified capillary number, µ the dynamic resin viscosity, u the averaged
macroscopic flow velocity, γ the surface tension, and θ the contact angle between the resin
and fibers.

At high injection pressures, the proportion of viscosity-dependent flow predominates.
The channels between the tows fill faster than the areas within the tows. This results in
the inclusion of elongated micropores in the tows (Figure 2b). If capillary forces prevail,
the flow front within the tows progresses faster. Spherical macropores are formed in the
channels (Figure 2a).
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Figure 2. Formation of voids in the dual-scale model; (a) Formation of spherical macrovoids in the
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With the help of the modified capillary number during injection, in conjunction with
the geometric structure of the textile preforms, conclusions can be drawn about the void
formation in the component [12–15,19].

Models for calculating the resulting void volume content are based on the ratio of
the flow front progress within and between the tows. Gueroult et al. [15] contrast the two
time scales of the flow time inside the fiber bundles ∆tt in relation to the flow time in the
channels ∆tc.

∆tt

∆tc
=

Kc

Kt
·(1− ϕFT)·

[
1− FS·Kc·ϕFT

dFi·(1− ϕFT)·Lt·Ca∗
·ln
(

Ca∗·dFi·(1− ϕFT)·Lt)

FS·Kc·ϕFT
+ 1
)]

(6)

where Kc is the permeability of the channel, Kt the permeability of the tow, ϕFT the fiber
volume content in the tow, FS a shape factor depending on longitudinal or transversal flow
direction, dFi the diameter of a single fiber, and Lt the length of a tow.

A ratio of ∆tt
∆tc

< 1 describes the advance of the resin within the fiber bundles and

resulting emergence of macropores. ∆tt
∆tc

> 1 implies a faster advance of resin within the

channels and the formation of microvoids. At a ratio of ∆tt
∆tc

= 1, the resin flows at identical
velocities in both sections, which means that no air can be entrapped, and no voids are
formed due to the dual-scale flow [15].

Validation of such “dual-scale” computational models usually involves evaluating the
resulting void volume contents and classifying them into microvoids and macrovoids [20,21].
An alternative is the optical detection of the different flow velocities. The dual-scale effect
was investigated by several studies [10,22,23] using a microscope locally during injection. The
challenge in this type of analysis is to find a compromise between maximizing the image
section of the flow front while retaining locally high resolution. Another possibility to prove
the phenomenon of dual-scale flow is numerical simulation. Godbole et al. [24] describe the
differences in the flow velocity within and between the fiber bundles by determining the
length of the partially saturated flow front Lps, by simulations (Figure 3):
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Neglecting capillary forces, it is shown that the length of the partially saturated zone
remains constant if the flow path is sufficiently long. This finding agrees with the results
of Zhou et al. [25,26], who also calculate a constant length of the partially saturated zone.
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The resulting length depends on the permeability of the textile preforms and the preform
geometry, as well as the volume fraction of the fiber bundles of a unidirectional (UD)
unit cell:

Lps =

√
2a

Kyytow

[
h3

3

]
·Vtow−ply (7)

where a is half of the width of a tow, Kyytow the transverse permeability of a tow, and h half
of the width of the channel between the tows. Vtow−ply is the volume fraction of tows inside
a UD unit cell and calculated from the proportion of fiber bundles as closed solids in the
cross-section of the laminate:

Vtow−ply =
a

h + a
(8)

Detailed information about the microscopic dual-scale flow and associated pore for-
mation becomes possible when the state of the impregnation can be imaged holistically
in a cavity. The state of the art in investigating void formation and transport are optical
methods [27–29]. Furthermore, ultrasonic measurements, as well as X-ray and micro-CT
examinations, were conducted in several renowned studies [1].

However, all the mentioned techniques are currently not suited to analyze big areas
of the partially saturated zone, because of their limited resolution or the requirement of
additives to increase visibility. Due to the limited field of view, a “snapshot” approach to
optical measurement of the void distribution is needed; however, a suitable method has
not yet been presented for this issue [30].

The novel approach presented in this article is to freeze the complete impregnation
process at different filling levels to investigate the flow front section by section. To obtain
snapshots of the component impregnation, a methodology is developed below that uses
spontaneous curing of a photopolymerizing resin. Unique to this method is the gathering of
specimen with spontaneously cured partially saturated flow fronts, which can be holistically
observed via microscopy.

The resin systems used for this purpose include photoreactive functional groups that
crosslink when exposed to light [31]. Components of such resin systems are monomers,
oligomers, and photo initiators. Upon absorption of high-energy light, mostly in the
ultraviolet spectrum, the photo initiators form radicals or ions. These serve as initiators for
the crosslinking reaction between oligomers and monomers [32,33].

Depending on the resin system used and film thickness, the time required for complete
crosslinking can range from a fraction of a second to several minutes [32]. To minimize
interferences caused by changing pressure gradients during crosslinking, it is advantageous
to react as quickly as possible. Only in the case of spontaneous crosslinking of the complete
molded part are the pore formation as well as the pore transport frozen in situ.

Based on the frozen filling samples produced with photopolymerizing resins, dual-
scale flow in fiber bundles and channels is investigated sequentially along the complete
flow front by means of microscopy. The images obtained are used to compare current com-
putational models with the optical measurements. The evaluation of the flow conditions
can be used to verify new calculation models and increase the accuracy of FEM calculations.

2. Materials and Methods
2.1. Experimental Setup

An injection mold for linear impregnation of textile preforms was designed. It consists
of a bottom side made of aluminum with a linear gate and riser, on which a single-layer
textile preform of 300 mm length and 130 mm width is draped. The opposite side of the
mold consists of a glass plate fixed with an aluminum frame (Figure 4). By means of defined
torque for the screws positioned circumferentially on the frame, a constant compression
pressure of 4.4 MPa is set.
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Figure 4. Experimental setup to produce planar test specimens with a photoreactive resin system.

The glass plate is transparent to light in the ultraviolet (UV) range. UV spotlights
are mounted above the mold, which completely and uniformly illuminate the cavity
when switched on. A photoreactive resin system is used which, when irradiated with
UV light, stops the flow process without any noticeable delay. Three YG-TGD20-405
LED emitters from Shenzhen Creality 3D Technology Co, Ltd., Shenzhen, China, with an
emitted waveband of 400 nm to 405 nm, at an overall system power of 7.8 W each, are
used at 100% intensity. The resin system is injected under constant injection pressure in
various gradations.

The mold is divided into five sections and the flow front is stopped after every 60 mm
by switching on the UV lamps. This is followed by an exposure time of 60 s, during which
the resin system cures completely.

This methodology allows the examination of the entire flow front of the fabricated
specimens after curing. Optical studies were performed using a Keyence VHX-7000 mi-
croscope at 100×magnification. The aim of the measurements is a quantified mapping of
the dual-scale flow behavior for comparison with the calculation results of the theoretical
models. For this purpose, the flow front progress within the tows lt and in the channels
between the tows lc, as well as their flow path difference ∆l, is measured (see Figure 5).

The process of impregnation is recorded by a camera to measure the mean flow velocity
within the sections and calculate the modified capillary number according to Equation (5).

The resin system is injected with constant injection pressure. The examined parameter
combinations are shown in Figure 6. Each combination is repeated three times so that a
total of 60 test specimens is produced and evaluated. The last mold section with a flow path
length of 300 mm is excluded, since the textile preforms could not be completely saturated
over the entire length at pressure levels of 0.05 MPa and 0.1 MPa. The pressure levels were
selected to show clearly distinct flow path differences; however, the pronounced dual-scale
flow leads to a very high number of overlapping microvoids that cannot be thoroughly
evaluated in this study.
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Figure 6. Parameter combinations for injection experiments.

For each parameter combination 20 flow path lengths in the fiber bundle lt and between
the fiber bundles lc are determined, their ratio is calculated, and the values are compared
with the models of Gueroult [15] (Equation (6)) and Godbole [24] (Equation (7)).

2.2. Materials

The resin system used is a photoreactive 3D Printing UV sensitive resin from the
manufacturer Shenzhen Anycubic Technology Co., Ltd., Shenzhen, China. It is composed
of 30% to 60% oligomers (polyurethane acrylate), 10% to 40% acrylate monomers and 2%
to 5% photo initiator. All experiments were conducted with the same batch of the resin
system to exclude variations in the components between the experiments.

The textile semi-finished product used is a glass fiber filament fabric type 92130 from
Porcher Industries Germany GmbH, Erbach, Germany for which the following data was
measured, as depicted in Table 1. A fabric with medium grammage and plain weave
with a high number of crossovers was chosen to establish a homogeneous flow while
producing samples with conventional thickness. Moreover, the fabric is resilient against
fiber displacement in the manual preparation process, which can potentially cause local
deviations in permeability.
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Table 1. Measured and calculated parameters of the fabric.

Parameter Abbreviation Value Unit

Type of weave Plain weave [-]
Grammage mf 395 [g/m2]

Thread count warp 6 [L/cm]
Thread count weft 6.5 [L/cm]

Fiber diameter df 9 [µm]
Width of tows 2a 1.38 [mm]

Width of channels 2h 0.39 [mm]
Transverse

permeability of tows Kyytow 5.32 × 10−7 [mm2]

Volume fraction of
tows in a unit cell Vtow−ply 77.99 [%]

3. Results and Discussion
3.1. Experimental Results

During the entire injection period of all specimens, the uniform, approximately linear
progress of the flow front must be ensured in order to avoid volume flows in the transverse
direction and comply with the boundary conditions of the continuity equation according to
Darcy (Equation (1)). Specimens with irregular flow fronts are excluded from the evaluation and
prepared again. Several individual images of the flow front are taken with a 100×magnification
factor and assembled to form a complete image of the frozen flow front, Figure 7a,b.

J. Compos. Sci. 2022, 6, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 7. (a) Frozen flow front in different mold sections and merged microscopy image; (b) single 
flow path difference Δl, shown magnified. 

 
Figure 8. Flow path difference along the mold sections. 

The existing scatter is mainly attributed to fluctuations in permeability caused by the 
manual insertion of the fabrics into the cavity, since the manual preparation of the pre-
forms may result in local displacements of the tows, and thusly produce irregular gaps 
and fiber distributions. 

The injection pressure has a considerable influence on the flow velocity and thus on 
the locally prevailing capillary number. Contrary to what was calculated by Godbole [24], 
the results averaged per experiment show the proportionality of the flow path difference 

Figure 7. (a) Frozen flow front in different mold sections and merged microscopy image; (b) single
flow path difference ∆l, shown magnified.

The frozen flow front of the cured specimen shows a distinct edge between the impreg-
nated and dry sections. These definite lines indicate a virtually instant pervasive curing
throughout the complete thickness of the transparent composite material and exist at each
applied pressure gradient.
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As in the literature [24–26], there are no distinct changes in the flow path difference
along the mold cavity at constant process parameters, as shown in the comparison in
Figure 8. However, there is a clear dependence of the flow path difference on the injec-
tion pressure.
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Figure 8. Flow path difference along the mold sections.

The existing scatter is mainly attributed to fluctuations in permeability caused by the
manual insertion of the fabrics into the cavity, since the manual preparation of the preforms
may result in local displacements of the tows, and thusly produce irregular gaps and fiber
distributions.

The injection pressure has a considerable influence on the flow velocity and thus on
the locally prevailing capillary number. Contrary to what was calculated by Godbole [24],
the results averaged per experiment show the proportionality of the flow path difference
and the capillary number to the injection pressure (Figure 9). This measurable effect
supports the model of Gueroult [15], in which the flow time ratio is largely determined
by the capillary number. According to Equations (1) and (5), the capillary number is also
pressure dependent. The calculations of Godbole [24] imply that a stronger expression
of the dual-scale flow is completely compensated for by increased crossflow effects. This
assumption is not confirmed by the measurement of the flow path differences for the
presented experimental setup.

Considering all local measurements of the flow path difference as a function of the
modified capillary number, an increase in flow path difference with an increasing modified
capillary number is observed (Figure 10). At capillary numbers above around 0.025, the
increase in the flow path difference is less substantial. The flattened slope is in accordance
with the natural logarithm of Equation (6), which determines the flow ratio inside tows
and channels. Additional experiments must be conducted to verify the shape of the curve
for higher capillary numbers.
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The increase in the flow path difference with increasing capillary number supports
the findings of renowned studies [12–14,19] for process conditions with predominantly
pressure-induced flow in the dual-scale model. Each specimen is in the region of micropore
formation ( ∆tt

∆tc
> 1). With increasing injection pressure, this flow time ratio also increases.

The measurement results illustrate that this increase is also reflected in increasing flow
path differences. The progression of the flow path difference towards a maximum value
implies an increase in crossflow effects, which counteracts the further increase in the flow
path difference.

The measurements show that the flow velocity in the fiber bundles is slower than in
the channels between the bundles. Neglecting crossflow effects, the flow path difference
can be inferred from the flow time ratio according to the model of Gueroult [15].

∆l = v·∆t (9)

Since the flow state in the bundle and channel is stopped after the identical injection
time ∆t when the UV illumination is activated, it follows:

∆lc(t) = vc·∆t (10)
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∆lt(t) = vt·∆t (11)

∆lc(t)
∆lt(t)

=
vc

vt
·∆t = cv·∆t (12)

However, Gueroult’s model [15] is based on the ratio of the flow times of the resin
system to saturation of the length ∆l of a single unit cell:

∆tc(l) =
∆l
vc

(13)

∆tt(l) =
∆l
vt

(14)

∆tc(l)
∆tt(l)

=
vt

vc
·∆l =

1
cv
·∆l (15)

Equations (12) and (15) indicate inverse proportionality of length ratios and time ratios
of impregnation of fiber bundles and channels.

∆lc(t)
∆lt(t)

∼ ∆tt(l)
∆tc(l)

(16)

If the ratios are plotted on top of each other as a function of the injection pressure, a
good agreement of the values is observed for the first mold section, see Figure 11.
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calculated time ratios according to Equation (6).

Due to crossflow of the resin out of the channels into the fiber bundles in the transverse
direction, as shown in Figure 12, the flow path difference ∆l stagnates while the macroscopic
flow path continues to increase.

As the flow path length progresses, the results of the successive mold sections (Figure 5)
therefore show considerable deviations (Figure 13).
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The deviations of the flow path ratios from the flow time ratios can be adjusted by
correction factors. As Bodaghi et al. [9] describe, a loss term q (p, s) from Equation (4)
contributes to the transverse impregnation of tows. The regression analysis of the mea-
surement results confirms the assumption that both the injection pressure and degree of
saturation of the macroscopic flow path influence the loss term, as shown in the comparison
in Figure 14 While the slopes of the compensation lines are determined by the injection
pressure, the intercept is related to the macroscopic flow path and is thus a measure of the
degree of saturation of the textile preform. It follows:

∆tt(l)
∆tc(l)

= ccorr·
∆lc(t)
∆lt(t)

(17)

ccorr = a·pinj + b(s) (18)

where ccorr is a correction factor, a is the slope factor, pinj the injection pressure, and b(s)
the saturation dependent offset.

This correction factor ckorr and its dependence on pressure and saturation proves the
occurrence of the loss term q (p, s) described by Bodaghi et al. and quantifies the effect of
crossflow for the given material and process parameter combination.
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3.2. Discussion

Two distinct aspects must be considered when analyzing the results. First is the
applicability of the novel methodology, followed by the observations regarding dual-scale
flow experiments.

The presented methodology allows taking snapshots of the flow processes during the
impregnation of textile preforms using a photoreactive resin system. Evidence was pro-
vided that photoreactive resin systems crosslink sufficiently fast to freeze the microscopic
saturation along the entire specimen. The curing occurred sufficiently rapidly for the given
glass fiber fabric and applied pressure settings. Upper limitations of flow velocity and
specimen thickness must be determined in prospective studies to eliminate the possibility
of partial flow progression below the irradiated surface. In contrast to point-wise optical
measurements, the complete unsaturated domain of the flow front can be analyzed. The
holistic analysis of the flow front represents an improvement compared with the limited
field of view of well-established methods [27,28,30]. It is more cost- and time-efficient than
x-ray or micro-CT measurements [1]. Depending on the type of microscope, voids with
diameters of 5 to 20 µm can be analyzed [1], whereas ultrasonic imaging is only suitable
for single defects with a minimum size between 1 and 0.6 mm [34,35]. The simple mold
setup and its similarity to live-microscopy makes the introduced method easily accessi-
ble. The glass cover allows the elimination of race tracking inside the entire mold during
impregnation, which cannot be ruled out with single point-wise observations, as Siddig
et al. [36] proved, at least three points of a rectangular shape need to be observed to detect
race tracking. However, one downside of this method is that it is not suited to quantify
void transport. Freezing the flow produces a single image that can be used to describe
the dual flow effect and formation of voids at the very front of the flow, but it contains no
information on the history of voids inside the specimen.

The result of the experimental setup provides a multitude of insights into the saturation
process of fabrics. A clear dependence on the injection pressure was determined for the
measured flow path difference. This effect can be explained by Equations (4)–(6), which
show that the flow time ratios of Gueroult [15] depend on the flow velocity caused by the
injection pressure gradient. A comparison of the results of the established relationship of
the flow paths in the fiber bundle and channels between the bundles with the model of
the flow time ratios of Gueroult [15] shows good agreement within the first mold section
with a 60 mm flow path. With an increasing flow path, the deviations of the time and path
ratios become larger, which is due to the increasing influence of crossflows in the transverse
fiber direction. These crossflows are summarized by Bodaghi et al. [9] in a loss term, which
depends on the injection pressure as well as the degree of saturation. The results of the
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measurements show that such a loss term can be described by a correction factor that
was determined for each section of the mold and the corresponding injection pressure.
Simulations of previous studies [24–26] showed that using constant tool and material
parameters, the flow front difference remains unchanged with sufficient tool length. These
results could only be partially confirmed. While the flow front difference remains constant
along the different mold sections within the individual parameter combinations, in contrast
to the studies of Godbole [24] and Zhou [25,26], the influence of injection pressure cannot
be neglected. However, there are considerable differences in the experimental setup and
simulation constraints. While the simulations [24–26] use perfectly unidirectional tows,
the experimental setup was conducted with plain weave fabric and a different type of
inlet. Furthermore, the simulated tow permeability Kyytow was higher than the determined
permeability of the experiments. Both factors result in differences in longitudinal and
transverse flow and have an influence on the impact of capillary forces. Further experiments
should be conducted that replicate the constraints of the simulations of Godbole and Zhou
to be able to compare results.

4. Conclusions

With the presented methodology, the flow front of the cross-linked specimens can be
viewed completely and contiguously at high resolution, which is a significant improvement
over locally confined in-situ measurements. The measurement methodology represents
a good starting point for the creation and validation of calculation models for the im-
pregnation of textile preforms. Optimization potential lies in the tool design and manual
preparation of the textile preforms. The adjustment of the compression pressure of the
textile preforms by means of a defined tightening torque of the screw connection is repro-
ducible to a limited extent and leads to fluctuating permeability. This deviation can be
eliminated by using a vertically loosely supported plate as the mold surface with pressure
sensors underneath. To specify exact physically based models for the calculation of the
correction factors, either a more precise adjustability of the compression pressure must
be ensured, or the tow permeability must be evaluated individually for each experiment
by cutting the cured specimen and determining the surface ratios of fiber bundles and
resin of the cross section. Analytical models of the dual-scale flow were confirmed and
an approach to quantify the loss term of transverse flow is given. The prevalent increase
of flow path differences differs from simulations, which emphasizes the need of further
investigations. Since only a limited number of experiments were conducted, additional
experiments should be performed to validate the findings. In future experiments, a variety
of textile preforms must be analyzed to verify the applicability of the method for diverse
types of weaves. Furthermore, higher modified capillary numbers must be examined, by
increasing the macroscopic resin velocity via increased injection pressure. After validation
of the methodology, future experiments can be conducted to directly evaluate resulting
void volume contents and the coherence with the now measurable flow path differences.
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